研究者業績

亀田 真吾

カメダ シンゴ  (Shingo Kameda)

基本情報

所属
立教大学 理学部 物理学科 教授
理学研究科 物理学専攻博士課程後期課程 教授
Graduate School of Science Field of Study: Physics Professor
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 特任教授
(兼任)宇宙科学研究所 WSO-UVプロジェクト 特任教授
学位
博士(理学)(東京大学)

研究者番号
30455464
J-GLOBAL ID
201101036293959472
researchmap会員ID
6000028006

研究キーワード

 1

論文

 125
  • Yoshikawa, I, Murakami, G, Ezawa, F, Yoshioka, K, Obana, Y, Taguchi, M, Yamazaki, A, Kameda, S, Nakamura, M, Kikuchi, M, Kagitani, M, Okano, S, Shiokawa, K, Miyake, W
    Adv. Geosci. 19 109-121 2010年  査読有り
  • A. Milillo, M. Fujimoto, E. Kallio, S. Kameda, F. Leblanc, Y. Narita, G. Cremonese, H. Laakso, M. Laurenza, S. Massetti, S. McKenna-Lawlor, A. Mura, R. Nakamura, Y. Omura, D. A. Rothery, K. Seki, M. Storini, P. Wurz, W. Baumjohann, E. J. Bunce, Y. Kasaba, J. Helbert, A. Sprague
    PLANETARY AND SPACE SCIENCE 58(1-2) 40-60 2010年1月  査読有り
    Mercury possesses a weak, internal, global magnetic field that supports a small magnetosphere populated by charged particles originating from the solar wind, the planet's exosphere and surface layers. Mercury's exosphere is continuously refilled and eroded through a variety of chemical and physical processes acting in the planet's surface and environment. Using simultaneous two-point measurements from two satellites, ESA's future mission BepiColombo will offer an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with solar radiation and interplanetary dust. The expected data will provide important insights into the evolution of a planet in close proximity of a star. Many payload instruments aboard the two spacecraft making up the mission will be completely, or partially, devoted to studying the close environment of the planet as well as the complex processes that govern it. Coordinated measurements by different onboard instruments will permit a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone. Thus, an important feature of the BepiColombo mission is that simultaneous two-point measurements can be implemented at a location in space other than the Earth. These joint observations are of key importance because many phenomena in Mercury's environment are temporarily and spatially varying. In the present paper, we focus on some of the exciting scientific goals achievable during the BepiColombo mission through making coordinated observations. (C) 2008 Elsevier Ltd. All rights reserved.
  • I. Yoshikawa, O. Korablev, S. Kameda, D. Rees, H. Nozawa, S. Okano, V. Gnedykh, V. Kottsov, K. Yoshioka, G. Murakami, F. Ezawa, G. Cremonese
    PLANETARY AND SPACE SCIENCE 58(1-2) 224-237 2010年1月  査読有り
    The Mercury Sodium Atmosphere Spectral Imager (MSASI) on the Mercury Magnetospheric Orbiter (MMO) of the JAXA/ESA Bepi-Colombo (BC) Mission will address a range of fundamental scientific questions pertaining to Mercury's exosphere. The measurements will provide new information on regolith-exosphere-magnetosphere coupling as well as new understanding of the dynamics governing the exosphere bounded by the planetary surface, the solar wind and interplanetary space. MSASI is a high-dispersion visible spectrometer working in the spectral region near the sodium D(2) emission (589 nm), a major constituent of the Mercury exosphere. A single high-resolution Fabry-Perot etalon is used in combination with a narrow-band interference filter to achieve a compact and efficient instrument design. The etalon and filter are extremely stable with respect to long-term aging and temperature variations. Full-disk images of the planet are obtained by means of a single-axis scanning mirror in combination with the spin of the MMO spacecraft. This paper presents an overview of the MSASI and the design of the Fabry-Perot interferometer used as its spectral analyser. It is concluded that: (1) The MSASI optical design is practical and can be implemented without new or critical technology developments. (2) The thermally stable etalon design is based on concepts, designs and materials that have a good space heritage. (3) The MSASI instrument will achieve a high signal-to-noise ratio (SNR) (> 10) in the range of 2K-10M Rayleigh. (C) 2008 Elsevier Ltd. All rights reserved.
  • Go Murakami, Ichiro Yoshikawa, Yuki Obana, Kazuo Yoshioka, Gentaro Ogawa, Atsushi Yamazaki, Masato Kagitani, Makoto Taguchi, Masayuki Kikuchi, Shingo Kameda, Masato Nakamura
    EARTH PLANETS AND SPACE 62(4) E9-E12 2010年  査読有り
    Our understanding of plasmaspheric dynamics has increased in recent years largely due to the information generated during the IMAGE-EUV mission. Even though this successful mission has ended, we have succeeded in imaging the terrestrial helium ions (He(+)) by the Telescope of Extreme Ultraviolet (TEX) aboard the Japanese lunar orbiter KAGUYA by detecting resonantly scattered emission at 30.4 nm. The view afforded by the KAGUYA orbit encompasses the plasma (He(+)) distribution in a single exposure, enabling us to examine for the first time the globally averaged properties of the plasmasphere from the "side" (meridian) perspective. The TEX instrument observed a medium-scale density structure in the dawnside plasmasphere during a quiet period (1-2 June 2008). The meridian shape of the structure clearly agreed with the dipole magnetic field line. The TEX instrument also observed the structure in the plasmasphere co-rotating with a duration of 26 h, which is consistent with results from a number of recent studies derived from the IMAGE-EUV mission. These results confirm that the TEX instrument successfully obtained the spatial distribution and temporal variation of the plasmasphere.
  • Shingo Kameda, Ichiro Yoshikawa, Masato Kagitani, Shoichi Okano
    GEOPHYSICAL RESEARCH LETTERS 36 2009年8月  査読有り
    The interplanetary dust (IPD) distribution in the inner solar system is not yet well understood because of lack of direct dust measurements in the inner solar system and so one needs to rely on zodiacal light observations that are difficult to interpret. Mercury has an unstable atmosphere, and the source processes of Na in its atmosphere are unclear. Results of past observations have revealed that the atmospheric Na density has no or low correlation with the solar flux, sunspot number, heliocentric distance, or solar radiation pressure. We show that the variability of Mercury's atmospheric Na density depends strongly on the IPD distribution. That is, Na density is low (high) when Mercury is far away from (close to) the symmetry plane of IPD, and so one can infer the IPD distribution near Mercury orbit from the temporal variability of Na density in Mercury's atmosphere. Citation: Kameda, S., I. Yoshikawa, M. Kagitani, and S. Okano (2009), Interplanetary dust distribution and temporal variability of Mercury's atmospheric Na, Geophys. Res. Lett., 36, L15201, doi:10.1029/2009GL039036.
  • M. Kagitani, M. Taguchi, A. Yamazaki, I. Yoshikawa, G. Murakami, K. Yoshioka, S. Kameda, F. Ezawa, T. Toyota, S. Okano
    Earth Planet. Space 61(1-5) 2009年  査読有り
  • M. Kagitani, M. Taguchi, A. Yamazaki, I. Yoshikawa, G. Murakami, K. Yoshioka, S. Kameda, F. Ezawa, T. Toyota, S. Okano
    EARTH PLANETS AND SPACE 61(8) 1025-1029 2009年  査読有り
    The first successful observations of resonant scattering emission from the lunar sodium exosphere were made from the lunar orbiter SELENE (Kaguya) using TVIS instruments during the period 17-19 December, 2008. The emission intensity of the NaD-line decreased by 12 +/- 6%, with an average value of 5.4 kR (kilorayleighs) in this period, which was preceded, by I day, by enhancement of the solar proton flux associated with a corotating interaction region. The results suggest that solar wind particles foster the diffusion of sodium atoms or ions in the lunar regolith up to the surface and that the time scale of the diffusion is a few tens of hours. The declining activity of the Geminid meteor shower is also one possible explanation for the decreasing sodium exosphere.
  • M. Taguchi, T. Sakanoi, S. Okano, M. Kagitani, M. Kikuchi, M. Ejiri, I. Yoshikawa, A. Yamazaki, G. Murakami, K. Yoshioka, S. Kameda, W. Miyake, M. Nakamura, K. Shiokawa
    EARTH PLANETS AND SPACE 61(12) XVII-XXIII 2009年  査読有り
    The Upper Atmosphere and Plasma Imager (UPI) was placed in a lunar orbit in order to Study both the Moon and Earth. The UPI consists of two telescopes: a Telescope of Extreme Ultraviolet (TEX) and a Telescope of Visible Light (TVIS), which are both mounted on a two-axis gimbals system. The TVIS is equipped with fast catadioptric optics and a high-sensitivity CCD to image swift aurora and dark airglow ill the terrestrial upper atmosphere. TVIS has a field-of-view equivalent to the Earth's disk as seen from the Moon. The spatial resolution is about 30 km x 70 km on the Earth's surface at auroral latitudes. The observation wavelengths can be changed by selecting different bandpass filters. Using the images of the northern and Southern auroral ovals taken by TVIS, the intensities and shapes of the conjugate auroras will be quantitatively compared. Using the an-low imaging, medium- and large-scale ionospheric disturbances will be Studied. In this paper, the instrumental design and performance of TVIS are presented.
  • Ichiro Yoshikawa, Junya Ono, Kazuo Yoshioka, Go Murakami, Fukuhiro Ezawa, Shingo Kameda, Satoru Ueno
    PLANETARY AND SPACE SCIENCE 56(13) 1676-1680 2008年11月  査読有り
    A rare, but normal, astronomical event occurred on November 9th 2006 (JST) as Mercury passed in front of the Sun from the perspective of the Earth. The abundance of the sodium vapor above the planet limb was observed by detecting an excess absorption in the solar sodium line D, during this event. The observation was performed with a 10-m spectrograph of Czerny-Turnar system at Domeless Solar Tower Telescope at the Hida Observatory in Japan. The excess absorption was red-shifted by 10 pm relative to the solar line, and was measured at the dawnside (eastside) and duskside (westside) of Mercury. Between the dawn and dusksides, an asymmetry of total sodium abundance was clearly identified. At the dawnside, the total sodium column density was 6.1 x 10(10) Na atoms/cm(2), while it was 4.1 x 10(10) Na atoms/cm(2) at the duskside. The investigation of dawn-dusk asymmetry of the sodium exosphere of Mercury is a clue to understand the release mechanism of sodium from the surface rock. Our result suggests that a thermal desorption is a main source process for sodium vapor in the vicinity of Mercury. (C) 2008 Elsevier Ltd. All rights reserved.
  • Yoshikawa, I, Kameda, S, Hikosaka, K, Murakami, G, Rees, D, Nozawa, H, Okano, S, Korablev, O
    Advances in Space Research 42(7) 1172-1179 2008年10月  査読有り
  • Kameda, S, Kagitani, M, Okano, S, Yoshikawa, I, Ono, J
    Advances in Space Research 41(9) 1381-1385 2008年  査読有り
  • Yoshioka, K, Hikosaka, K, Kameda, S, Nozawa, H, Yamazaki, A, Yoshikawa, I
    Advances in Space Research 41(9) 1386-1391 2008年  査読有り
  • I. Yoshikawa, A. Yamazaki, G. Murakami, K. Yoshioka, S. Kameda, F. Ezawa, T. Toyota, W. Miyake, M. Taguchi, M. Kikuchi, M. Nakamura
    EARTH PLANETS AND SPACE 60(4) 407-416 2008年  査読有り
    The Upper Atmosphere and Plasma Imager (UPI) is to be launched in 2007 and sent to the Moon. From the lunar orbit, two telescopes are to be directed towards the Earth. The Moon has no atmosphere, which results in there being no active emission near the spacecraft; consequently, we will have a high-quality image of the near-Earth environment. As the Moon orbits the Earth once a month, the Earth will also be observed from many different directions. This is called a "science from the Moon". The two telescopes are mounted on a two-axis gimbal system, the Telescope of Extreme ultraviolet (TEX) and Telescope of Visible light (TVIS). TEX detects the O II (83.4 nm) and He II (30.4 nm) emissions scattered by ionized oxygen and helium, respectively. The targets of extreme-ultraviolet (EUV) imaging are the polar ionosphere, the polar wind, and the plasmasphere and inner magnetosphere. The maximum spatial and time resolutions are 0.09 Re and 1 min, respectively.
  • I. Yoshikawa, S. Kameda, K. Matsuura, K. Hikosaka, G. Murakami, K. Yoshioka, H. Nozawa, D. Rees, S. Okano, H. Misawa, A. Yamazaki, O. Korablev
    PLANETARY AND SPACE SCIENCE 55(11) 1622-1633 2007年9月  査読有り
    The Mercury's sodium atmosphere spectral imager (MSASI) on BepiColombo (BC) will address a range of fundamental scientific questions pertaining to Mercury's exosphere. The measurements will provide new information on regolith-exosphere-magnetosphere coupling as well as new understanding of the dynamics governing the exosphere bounded by the planetary surface, the solar wind and interplanetary space. MSASI is a high-dispersion visible spectrometer working in the spectral range around sodium D2 emission (589 nm). A tandem Fabry-Perot etalon is used to achieve a compact design. A one-degree-of-freedom scanning mirror is employed to obtain full-disk images of the planet. This paper presents an overview of the MSASI and the design of its spectral analyzer, which uses a Fabry-Perot interferometer. We conclude that: (1) The MSASI optical design is practical and can be implemented without new or critical technology developments. (2) The thermally tuned etalon design is based on concepts, designs and materials that have good space heritage. (3) The MSASI instrument achieves a high SNR (> 10) in the range of 2k-10 MRayleigh. (C) 2007 Elsevier Ltd. All rights reserved.
  • S. Kameda, I. Yoshikawa, J. Ono, H. Nozawa
    PLANETARY AND SPACE SCIENCE 55(11) 1509-1517 2007年9月  査読有り
    We conducted continuous spectroscopic observations of the Mercury's sodium exosphere with a 188 cm telescope and a high dispersion echelle spectrograph, for 1-6h in the daytime on December 4, 13, 14, and 15, 2005. To correct the images of the sodium emission blurred by Earth's atmosphere, the observed distribution was deconvolved with the point spread function which was obtained using Hapke's surface reflection model and the observed surface reflection. The average column density of sodium atoms was 1-2 x 10(11) atoms/cm(2) and significant diurnal changes were not observed. However, the sodium densities at low latitudes and high latitude changed during the observation and the rate of change in density at low latitude was higher than that at high latitude on December 14 and 15. Although the rates of suggested release processes are higher than the observed rate, the suggested release processes cannot explain the rapid change in density at low latitude. This may suggest the effect of transport of neutral atoms and the recycling of ions to the surface dominates the time variation in the spatial distribution of exospheric sodium atoms on Mercury. (C) 2007 Elsevier Ltd. All rights reserved.
  • Kameda, S, Kagitani, M, Ono, J, Nozawa, H, Yoshikawa, I, Okano, S
    36th COSPAR Scientific Assembly. Held 16 - 23 July 2004, in Beijing, China 2384 2006年7月  
  • Yoshikawa, I, Hikosaka, K, Kameda, S, Okano, S, Nozawa, H, Yamazaki, A, Korablev, O, Rees, D
    36th COSPAR Scientific Assembly. Held 16 - 23 July 2004, in Beijing, China 1333 2006年7月  
  • Ichiro Yoshikawa, Hiromasa Nozawa, Shingo Kameda, Shoichi Okano, Hiroaki Misawa
    MERCURY, MARS AND SATURN 38(4) 659-+ 2006年  査読有り
    The Mercury Sodium Atmosphere Spectral Imager (MSASI) in the BepiColombo mission will address a wealth of fundamental scientific questions pertaining to the Mercury's exosphere. Together, our measurements on the overall scale will provide ample new information on regolith-exo sphere-magneto sphere coupling as well as new understanding of the dynamics governing the 'surface-bounded exosphere'. It arises quite clearly from ground-based observations that the regolith of Mercury releases a fraction of its content to the exosphere. Some processes are identified up to now as leading to this ejection, e.g., photon-stimulated desorption. These processes are associated with different energies of ejection and behaviors in different regions of Mercury's surface. Therefore, different types of population are born from the surface, depending on the processes. The MSASI measurements definitely can identify the release processes, how exospheric sodium is born from the regolith. MSASI/BepiColombo is the first and unique opportunity to study the formation, circulation, and maintenance of the surface-bounded exosphere. (c) 2006 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • 吉岡和夫彦坂健太郎, 亀田真吾, 野澤宏大, 吉岡和夫, 山崎敦, 吉川一朗, 笠羽康正
    宇宙航空研究開発機構研究開発報告 JAXA-RR-05-021(1) 16-16 2006年  査読有り
    我々はBepiColombo水星探査計画の磁気圏探査機(MMO)の搭載機器として、ナトリウム大気の運動を可視化するカメラ(MSASI)を開発している。これはファブリペロー干渉計を用いてナトリウムD2線を分光観測する装置である。 水星のナトリウム大気は地上からの観測により、その放出機構として太陽光による光脱離、微小隕石の衝突による気化、太陽風イオンによるスパッタリングが主な候補として考えられている。今回この三つの場合でそれぞれ数値計算を行いナトリウムのコラム密度を求めた結果、放出機構によりナトリウム大気の分布に特徴が表れることが確認された。さらにMSASIによる撮像を想定し、MMOの軌道・太陽活動度・ナトリウム大気の明るさなどを考慮することでD2線の強度分布を計算した結果、コラム密度の場合と同様に放出機構によってそれぞれ特徴的な大気分布がMSASIで撮像できることを確認した。今回の計算結果より水星探査機に搭載する大気カメラ(MSASI)での観測が実現することで、発見以来謎とされていた水星大気の生成メカニズムを解明することが可能であると結論付けた。
  • Ichiro Yoshikawa, Hiromasa Nozawa, Shingo Kameda, Shoichi Okano, Hiroaki Misawa
    ADVANCES IN SPACE RESEARCH 38(4) 659-663 2006年  査読有り
    The Mercury Sodium Atmosphere Spectral Imager (MSASI) in the BepiColombo mission will address a wealth of fundamental scientific questions pertaining to the Mercury's exosphere. Together, our measurements on the overall scale will provide ample new information on regolith-exosphere-magnetosphere coupling as well as new understanding of the dynamics governing the 'surface-bounded exosphere'. It arises quite clearly from ground-based observations that the regolith of Mercury releases a fraction of its content to the exosphere. Some processes are identified up to now as leading to this ejection, e.g., photon-stimulated desorption. These processes are associated with different energies of ejection and behaviors in different regions of Mercury's surface. Therefore, different types of population are born from the surface, depending on the processes. The MSASI measurements definitely can identify the release processes, how exospheric sodium is born from the regolith. MSASI/BepiColombo is the first and unique opportunity to study the formation, circulation, and maintenance of the surface-bounded exosphere. (c) 2006 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • Nozawa, H, I. Yoshikawa, S. Kameda, H. Misawa, S. Okano, M. Taguchi, A. Yamazaki, Y. Kasaba, K. Takamizawa, O. Korablev
    JAXA Research and Development Report 5 JAXA-RR-05-007E-52 2005年  査読有り
    The Mercury Sodium Atmosphere Spectral Imager (MSASI) on the BepiColombo/Mercury Magnetospheric Orbiter (MMO) is a high-dispersion Fabry-Perot imager. MSASI will address a wealth of fundamental scientific questions pertaining to the Mercury's exosphere. Together, our measurement on the overall scale will provide ample new information on regolith-exospheremagnetosphere coupling as well as new understanding of the dynamics governing the 'surfacebounded exosphere'. It arises quite clearly from continuous ground-based observations that the regolith of Mercury releases a fraction of its content to Mercury's exosphere. Some processes are identified up to now as leading to this ejection. These processes are associated with different energies of ejection, behavior in different regions of Mercury's surface and eject different types of population from the surface. The responsible processes are (1) Chemical sputtering, (2) Thermal desorption, (3) Photon-stimulated desorption, (4) Ion sputtering, and (5) Micro-meteoroid impact/vaporization. Each candidate seems to be fairly operative, but any cannot completely explain phenomena observed from the Earth. Also, the fate of ejecta from the regolith is still unknown. Some are expected to return to the lithosphere, the other are lost to interplanetary space. Circulation of lithospheric sodium atoms via exosphere-magnetosphere might bring a significant change in the composition of surface layer on Mercury. The MSASI measurements clearly and definitely can identify the release mechanism, how exospheric sodium is born from the regolith, and bring comprehensive picture of global circulation of regolith materials. Also, BepiColombo is the first and unique opportunity to study the formation, circulation, maintenance of this surface-bounded exosphere, which is a different type of terrestrial atmosphere. Below we describe in somewhat more detail the primary scientific objectives of MSASI.
  • Yoshikawa I, Murachi T, Kameda S, Yamazaki A, Okano S, Nakamura M
    ADVANCES IN MIRROR TECHNOLOGY FOR X-RAY, EUV LITHOGRAPHY, LASER, AND OTHER APPLICATIONS 5193 164-171 2004年  査読有り
  • Yoshikawa, I, A Yamazaki, T Murachi, S Kameda, H Sagawa, S Okano, T Okada, M Nakamura
    MERCURY, MARS AND SATURN 33(12) 2195-2199 2004年  査読有り
    Extreme and far ultraviolet imaging spectrometers are proposed for the low-altitude orbiter of the BepiColombo mission. The UV instrument, consisting of the two spectrometers with common electronics, aims at measuring (1) emission lines from molecules, atoms and ions present in the Mercury's tenuous atmosphere and (2) the reflectance spectrum of Mercury's surface. The instrument pursues a complete coverage in UV spectroscopy. The extreme UV spectrometer covers the spectral range of 30-150 nm with the field of view of 5.0degrees, and the spectrum from 130 to 430 nm is obtained by the far UV spectrometer. The extreme UV spectrometer employs multi-layer coating technology to enhance its sensitivity at particular emission lines. This technology enables us to identify small ionospheric signatures such as He II (30.4 nm) and Na II (37.2 nm), which could not be detected with conventional optics. (C) 2003 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • 亀田 真吾, 佐川 英夫, 村地 哲徳, 山崎 敦, 吉川 一朗, 中村 正人
    宇宙科学研究所報告 124(124) 1-14 2003年9月  査読有り
    "我々は,極端紫外領域にある水星大気の共鳴散乱光を分光する極端紫外分光撮像器(EUIS:Extreme Ultraviolet Imaging Spectrometer)を水星探査計画に向け開発している.本稿では,本観測器開発の鍵となる多層膜回折格子の性能試験について報告する.結論は以下の通りである.(a)機械刻線回折格子とホログラフィック回折格子のどちらが適しているか調査し,その結果迷光の少なさという点からホログラフィック回折格子が優れていると結論した.(b)ホログラフィック平面回折格子にMoとSiのペアからなる多層膜コーティングと金コーティングを施し,回折効率を比較した.多層膜回折格子が金単層膜回折格子よりも1桁ほど効率が高いことを確認した."

MISC

 83
  • 倉本圭, 倉本圭, 川勝康弘, 藤本正樹, BARUCCI Maria Antonella, 玄田英典, HELBERT Joern, 平田成, 今村剛, 亀田真吾, 亀田真吾, 小林正規, 草野広樹, LAWRENCE David J., 松本晃治, MICHEL Patrick, 宮本英昭, 中川広務, 中村智樹, 小川和律, 大嶽久志, 尾崎正伸, RUSSELL Sara, 佐々木晶, 澤田弘崇, 千秋博紀, 寺田直樹, ULAMEC Stephan, 臼井寛裕, 和田浩二, 横田勝一郎
    日本惑星科学会秋季講演会予稿集(Web) 2023 2023年  
  • 中村智樹, 池田人, 竹尾洋介, 神山徹, 中川広務, 松本晃治, 千秋博紀, 亀田真吾, 寺田直樹, 岩田隆浩, 横田勝一郎, 尾崎直哉, 平田成, 宮本英昭, 小川和律, 草野広樹, 小林正規, 大木優介, BARUCCI Antonietta, SAWYER Eric, LAWRENCE David J., CHABOT Nancy L., PEPLOWSKI Patrick N., ULAMEC Stephan, MICHEL Patrick, 今田高峰, 今井茂, 石田初美, 尾川順子, 倉本圭, 安光亮一郎, 大嶽久志, 川勝康弘
    宇宙科学技術連合講演会講演集(CD-ROM) 67th 2023年  
  • 亀田真吾, 尾崎正伸, 神山徹, 三谷烈史, 塩谷圭吾, 布施綾太, 鈴木秀彦, 坂谷尚哉, 小川和律, 佐藤泰貴, 宮本英昭, 山崎敦, 合田雄哉, 山崎正宗, 村尾一, 藤島早織, 青山翼, 萩原啓司, 水本訓子, 田中紀子, 村上宏輔, 松本実保, 田中健慈, 作田博伸
    宇宙科学技術連合講演会講演集(CD-ROM) 67th 2023年  
  • 倉本圭, 倉本圭, 川勝康弘, 藤本正樹, BARUCCI Maria Antonella, 玄田英典, HELBERT Joern, 平田成, 今村剛, 亀田真吾, 亀田真吾, 小林正規, 草野広樹, LAWRENCE David J., 松本晃治, MICHEL Patrick, 宮本英昭, 中川広務, 中村智樹, 小川和律, 大嶽久志, 尾崎正伸, RUSSELL Sara, 佐々木晶, 澤田弘崇, 千秋博紀, 寺田直樹, ULAMEC Stephan, 臼井寛裕, 和田浩二, 横田勝一郎
    日本惑星科学会秋季講演会予稿集(Web) 2022 2022年  
  • 竹尾洋介, 中村智樹, 池田人, 神山徹, 中川広務, 松本晃治, 千秋博紀, 亀田真吾, 寺田直樹, 岩田隆浩, 横田勝一郎, 尾崎直哉, GONZALEZ-FRANQUESA Ferran, 平田成, 宮本英昭, 小川和律, 草野広樹, 小林正規, 大木優介, BARESI Nicola, BARUCCI Antonietta, SAWYER Eric, LAWRENCE David J., CHABOT Nancy L., PEPLOWSKI Patrick N., ULAMEC Stephan, MICHEL Patrick, 今田高峰, 今井茂, 石田初美, 尾川順子, 倉本圭, 安光亮一郎, 大嶽久志, 川勝康弘
    宇宙科学技術連合講演会講演集(CD-ROM) 66th 2022年  

共同研究・競争的資金等の研究課題

 17