研究者業績

岡田 達明

オカダ タツアキ  (Tatsuaki Okada)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 太陽系科学研究系 准教授
東京大学大学院 理学系研究科化学専攻 准教授
学位
博士(理学)(1996年3月 東京大学)

研究者番号
30321566
J-GLOBAL ID
201501026547105146
researchmap会員ID
B000243484

外部リンク

専門は惑星科学、惑星物理学、惑星物質・物性科学、惑星探査科学。特に熱赤外カメラを用いた史上初の小惑星探査により、惑星探査に「熱撮像」の手法を世界で初めて導入に成功し、さらに「太陽系物性科学」の分野を創設。観測機器の開発による惑星探査でのその場観測とサンプルリターンによる帰還試料分析を主な研究手法とする。

主要な開発機器は、蛍光X線分光計、熱赤外カメラ、多波長熱赤外カメラである。また開発中のものはマルチターン飛行時間型質量分析計等である。地上分析においてはハイパースペクトル顕微鏡による帰還試料の分析の他、将来の資料熱物性分析のための多色熱赤外顕微鏡の開発を推進中である。

◆国内外の惑星探査計画(観測機器担当)

・月探査「Lunar-A」 光学カメラLIC(Co-I)1993-2005 

・火星探査「のぞみ」 HFレーダ高度計PWS/ALT(Co-I)1994-2003、可視カメラMIC(Co-I)1995-2003

・小惑星探査「はやぶさ」 蛍光エックス線分光計XRS担当(PI)1995-2010

・月周回探査「かぐや(SELENE)」 蛍光X線分光計XRS担当(PI)1998-2009

・小惑星探査「はやぶさ2」 中間赤外カメラTIR担当(PI)2010-present.、

・小惑星探査「はやぶさ2」 小型ランダーMASCOT担当(JAXAリエゾン)2010-2019

・小惑星探査「はやぶさ2」 デジタルエレキDE担当(PI)2010-present

・小惑星探査「はやぶさ2」 ハイパースペクトル顕微鏡MicrOmega担当(Co-PI)2019-present

・二重小惑星探査計画Hera 熱赤外カメラTIRI担当(PI)2020-present

・二重小惑星探査計画Hera Hera Investigation Team メンバ(招聘)2020-present

◆帰還サンプルの分析(地上分析)

・JAXAキュレーションセンター(地球外物質研究グループ所属)2009-present

・ハイパースペクトル顕微鏡MicrOmega-CF(Co-PI)

・熱赤外顕微鏡(PI)

◆海外ミッション参画

・SMART-1 D-CIXS(Co-I)2000-2005

・Chandrayaan-1 C1XS(Co-I)2006-2009

・BepiColombo MIXS(Co-I)2003-present、SIXS (Co-I)2003-present

・Hera (-JP) Proejct Manager & TIRI(PI)2020-present、Investigation Team 2020-present

◆WG参画

・ESA MarcoPolo(=Hayabusa-MkII)においてX線分光、熱積外カメラ、着陸機

・月着陸機SELENE-B、SELENE-II

・月着陸SLIM(科学システム検討担当)

・火星探査MELOS(科学システム検討担当(固体惑星)、着陸探査)

・OKEANOS (科学システム検討担当、質量分析計HRMSの開発)

・月縦孔探査Uzume(科学システム検討担当、熱赤外カメラの開発)

 


委員歴

 3

受賞

 24

論文

 244
  • Fridolin Spitzer, Thorsten Kleine, Christoph Burkhardt, Timo Hopp, Tetsuya Yokoyama, Yoshinari Abe, Jérôme Aléon, Conel M. O’D Alexander, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Tommaso Di Rocco, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Kouki Kitajima, Shintaro Komatani, Alexander N. Krot, Ming-Chang Liu, Yuki Masuda, Mayu Morita, Fréderic Moynier, Kazuko Motomura, Izumi Nakai, Kazuhide Nagashima, Ann Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Sara S. Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Science Advances 10(39) 2024年9月27日  
    The isotopic compositions of samples returned from Cb-type asteroid Ryugu and Ivuna-type (CI) chondrites are distinct from other carbonaceous chondrites, which has led to the suggestion that Ryugu/CI chondrites formed in a different region of the accretion disk, possibly around the orbits of Uranus and Neptune. We show that, like for Fe, Ryugu and CI chondrites also have indistinguishable Ni isotope anomalies, which differ from those of other carbonaceous chondrites. We propose that this unique Fe and Ni isotopic composition reflects different accretion efficiencies of small FeNi metal grains among the carbonaceous chondrite parent bodies. The CI chondrites incorporated these grains more efficiently, possibly because they formed at the end of the disk’s lifetime, when planetesimal formation was also triggered by photoevaporation of the disk. Isotopic variations among carbonaceous chondrites may thus reflect fractionation of distinct dust components from a common reservoir, implying CI chondrites/Ryugu may have formed in the same region of the accretion disk as other carbonaceous chondrites.
  • C. Pilorget, D. Baklouti, J.-P. Bibring, R. Brunetto, M. Ito, I. Franchi, N. Tomioka, M. Uesugi, A. Yamaguchi, R. Greenwood, T. Okada, T. Usui, T. Yada, K. Hatakeda, K. Yogata, D. Loizeau, T. Le Pivert-Jolivet, T. Jiang, J. Carter, V. Hamm, M. Abe, A. Aléon-Toppani, F. Borondics, Y. Enokido, Y. Hitomi, N. Imae, Y. Karouji, K. Kumagai, M. Kimura, Y. Langevin, C. Lantz, M.-C. Liu, M. Mahlke, A. Miyazaki, Z. Mughal, K. Nagashima, A. Nakano, A. Nakata, A. Nakato, M. Nishimura, T. Ohigashi, T. Ojima, F. Poulet, L. Riu, N. Shirai, Y. Sugiyama, R. Tahara, K. Uesugi, M. Yasutake, H. Yuzawa, A. Moussi-Soffys, S. Nakazawa, T. Saiki, F. Terui, M. Yoshikawa, S. Tanaka, S. Watanabe, Y. Tsuda
    Nature Astronomy 2024年9月25日  
  • Hiroharu Yui, Shu-hei Urashima, Morihiko Onose, Mayu Morita, Shintaro Komatani, Izumi Nakai, Yoshinari Abe, Yasuko Terada, Hisashi Homma, Kazuko Motomura, Kiyohiro Ichida, Tetsuya Yokoyama, Kazuhide Nagashima, Jérôme Aléon, Conel M. O’D. Alexander, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Peter Hoppe, Gary R. Huss, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Sasha Krot, Ming-Chang Liu, Yuki Masuda, Frédéric Moynier, Ann Nguyen, Larry Nittler, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Tommaso Di Rocco, Sara S. Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Shigekazu Yoneda, Edward D. Young, Ai-Cheng Zhang, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Tatsuaki Okada, Toru Yada, Kasumi Yogata, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Makoto Yoshikawa, Shogo Tachibana, Hisayoshi Yurimoto
    Geochimica et Cosmochimica Acta 379 172-183 2024年8月  
  • Larry R Nittler, Jens Barosch, Katherine Burgess, Rhonda M Stroud, Jianhua Wang, Hikaru Yabuta, Yuma Enokido, Megumi Matsumoto, Tomoki Nakamura, Yoko Kebukawa, Shohei Yamashita, Yoshio Takahashi, Laure Bejach, Lydie Bonal, George D Cody, Emmanuel Dartois, Alexandre Dazzi, Bradley De Gregorio, Ariane Deniset-Besseau, Jean Duprat, Cécile Engrand, Minako Hashiguchi, A.L. David Kilcoyne, Mutsumi Komatsu, Zita Martins, Jérémie Mathurin, Gilles Montagnac, Smail Mostefaoui, Taiga Okumura, Eric Quirico, Laurent Remusat, Scott Sandford, Miho Shigenaka, Hiroki Suga, Yasuo Takeichi, Yusuke Tamenori, Maximilien Verdier-Paoletti, Daisuke Wakabayashi, Masanao Abe, Kanami Kamide, Akiko Miyazaki, Aiko Nakato, Satoru Nakazawa, Masahiro Nishimura, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Tomohiro Usui, Toru Yada, Kasumi Yogata, Makoto Yoshikawa, Hisayoshi Yurimoto, Takaaki Noguchi, Ryuji Okazaki, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Sei-ichiro Watanabe, Yuichi Tsuda
    Earth and Planetary Science Letters 637 118719-118719 2024年7月  
  • Tatsuaki Okada, Satoshi Tanaka, Naoya Sakatani, Yuri Shimaki, Takehiko Arai, Hiroki Senshu, Hirohide Demura, Tomohiko Sekiguchi, Masanori Kanamaru, Toru Kouyama, Joris Blommaert, Özgür Karatekin
    2024年5月2日  

MISC

 537
  • Tatsuaki Okada, Satoshi Tanaka, Yuri Shimaki, Naoya Sakatani, Takehiko Arai, Hiroki Senshu, Hirohide Demura, Toru Kouyama, Tomohiko Sekiguchi, Tetsuya Fukuhara
    Europlanet Science Congress 2020 EPSC2020-12 2024年5月2日  招待有り筆頭著者責任著者
    <p>Thermal imaging, or thermography, has revealed the surface physical state of the C-type near-Earth asteroid 162173 Ryugu (Okada et al., 2020). The asteroid is the target body of JAXA Hayabsua2 asteroid sample return mission, and it has been characterized through remote sensing and surface experiments, and will be deeply and accurately investigated by analysis of returned sample. Thermal observations are among such multi-scale observations, providing a new insight into understanding planetary evolution process.</p> <p>Thermal infrared imager TIR (Okada et al., 2017; 2020) was used to take one-rotation global thermal images of Ryugu at every 6° step, from the home position (20 km altitude) or from the Mid-Altitude (5 km altitude). There were two big surprises contrary to the predictions before arrival at Ryugu: i) flat diurnal temperature profiles compared to the case of non-rough surface, and ii) non-cold spots identified for most of boulders. The flat diurnal temperature profiles and its maximum temperature in a day indicate that Ryugu must have very rough surfaces made of highly porous materials, derived from the thermal inertia of 300 ± 100 J K<sup>-1</sup>s<sup>-0.5</sup>m<sup>-2</sup> (hereafter, tiu). Non-cold boulders indicate that boulders are less consolidated or compacted than typical carbonaceous chondrite meteorites, and shows the same thermophysical properties as the surroundings. TIR was also used to take close-up thermal images during the descent operations, and to have proven that the surface of asteroid is covered with fragments of porous rocks, larger than several centimeters in diameter. The typical size of fragments larger than thermal skin depth (~35 mm) results in similar thermal properties between the boulders and their surroundings. We also consider the surface roughness effect (Shimaki et al., 2020) to obtain the maps of thermal inertia ( 225 ± 45 tiu) and the roughness (0.41 ± 0.05) at the same time, corresponding to very rough surfaces made of highly-porous materials. This thermal inertia is basically consistent with the value (282 +93/-35 tiu) by in situ measurement using a thermal radiometer MARA on MASCOT lander (Grott et al., 2019). Furthermore, in the close-up thermal images, there were found boulders colder by 20 °C or more, indicating the thermal inertia of typical carbonaceous chondrite meteorites.</p> <p>Considering these results, we proposed a formation scenario of Ryugu: fluffy cosmic dusts gathered to form porous planetesimals, and then much larger sized but still porous bodies. A low degree of consolidation and alteration has occurred at most of the body, while a higher degree of consolidation or alteration proceeded at the deep interior. Huge meteoritic impacts destroyed and fragmented the bodies, and part of those fragments were re-accreted to form the next generation, rubble-pile bodies (asteroids). Boulders found on Ryugu might have originated from the deep interior of parent bodies, so that most of them are very porous and less consolidated but some of them are relatively dense materials similar to carbonaceous chondrites, which might have originated from the interior. Due to YORP effect, the rotation rate decreased to current one, and the current shape of a spinning top-shape were formed. Analysis of returned sample will make progress in our knowledge of the planetary formation process.</p>
  • 金丸 礼, 矢田 達, 田原 瑠衣, 中山 悠, 深井 稜汰, 畠田 健太朗, 石崎 拓也, 榎戸 祐馬, 小野寺 圭祐, 保田 慶直, 西村 征洋, 坂本 佳奈子, 人見 勇矢, 副島 広道, 熊谷 和也, 小嶋 智子, 安部 正真, 岡田 達明, 臼井 寛裕
    遊・星・人 = Planetary people : 日本惑星科学会誌 33(1) 78-86 2024年3月  
  • B. E. Clark, A. Sen, X. D. Zou, D. N. DellaGiustina, S. Sugita, N. Sakatani, M. Thompson, D. Trang, E. Tatsumi, M. A. Barucci, M. Barker, H. Campins, T. Morota, C. Lantz, A. R. Hendrix, F. Vilas, L. Keller, V. E. Hamilton, K. Kitazato, S. Sasaki, M. Matsuoka, T. Nakamura, A. Praet, S. M. Ferrone, T. Hiroi, H. H. Kaplan, W. F. Bottke, J. Y. Li, L. Le Corre, J. L. Molaro, R. L. Ballouz, C. W. Hergenrother, B. Rizk, K. N. Burke, C. A. Bennett, D. R. Golish, E. S. Howell, K. Becker, A. J. Ryan, J. P. Emery, S. Fornasier, A. A. Simon, D. C. Reuter, L. F. Lim, G. Poggiali, P. Michel, M. Delbo, O. S. Barnouin, E. R. Jawin, M. Pajola, L. Riu, T. Okada, J. D.P. Deshapriya, J. R. Brucato, R. P. Binzel, D. S. Lauretta
    Icarus 400 2023年8月  
    This paper summarizes the evidence for the optical effects of space weathering, as well as the properties of the surface that control optical changes, on asteroid (101955) Bennu. First, we set the stage by briefly reviewing what was known about space weathering of low-albedo materials from telescopic surveys, laboratory simulations, and sample return analysis. We then look at the evidence for the nature of space weathering on Bennu from recent spacecraft imaging and spectroscopy observations, including the visible to near-infrared and thermal infrared wavelengths, followed by other measurements such as normal albedo measurements from LIDAR scans. We synthesize these different lines of evidence in an effort to describe a general model of space weathering processes and resulting color effects on dark C-complex asteroids, with hypotheses that can be tested by analyzing samples returned by the mission. A working hypothesis that synthesizes findings thus far is that the optical effects of maturation in the space environment depend on the level of hydration of the silicate/phyllosilicate substrate. Subsequent variations in color depend on surface processes and exposure age. On strongly hydrated Bennu, in color imaging data, very young craters are darker and redder than their surroundings (more positive spectral slope in the wavelength range 0.4–0.7μm) as a result of their smaller particle sizes and/or fresh exposures of organics by impacts. Solar wind, dehydration, or migration of fines may cause intermediate-age surfaces to appear bluer than the very young craters. Exposed surfaces evolve toward Bennu's moderately blue global average spectral slope. However, in spectroscopic and LIDAR data, the equator, the oldest surface on Bennu, is darker and redder (wavelength range 0.55–2.0μm) than average and has shallower absorption bands, possibly due to dehydration and/or nanophase and/or microphase opaque production. Bennu is a rubble pile with an active surface, making age relationships, which are critical for determining space weathering signals, difficult to locate and quantify. Hence, the full story ultimately awaits analyses of the Bennu samples that will soon be delivered to Earth.
  • 岡田達明, Hera チーム
    2022 年度プラネタリーディフェンス・シンポジウム 1-4 2023年2月  招待有り
  • 岡田達明, 岡田達明, 田中智, 坂谷尚哉, 嶌生有理, 石崎拓也, 吉川真, 竹内央, 山本幸生, 荒井武彦, 千秋博紀, 出村裕英, 関口朋彦, 神山徹, 金丸仁明
    日本地球惑星科学連合大会予稿集(Web) 2023 2023年  

講演・口頭発表等

 522
  • Hatakeda K, Yada T, Abe M, Okada T, Nakato A, Yogata K, Miyazaki A, Kumagai K, Nishimura M, Hitomi Y, Soejima H, Nagashima K, Yoshitake M, Iwamae A, Furuya S, Usui T, Tachibana S, Sakamoto K, Kitazato K, Yurimoto H
    53rd Lunar and Planetary Science Conference 2022年3月
  • Kanamaru M, Hyodo R, Okada T, Usui T, Sasaki S, Tatsumi E, Cho Y, Morota T, Sugita S
    53rd Lunar and Planetary Science Conference 2022年3月
  • Loizeau D, Bibring J. -P, Brunetto R, Pilorget C, Okada T, Carter J, Gondet B, Hamm V, Hatakeda K, Langevin Y, Lantz C, Le Pivert-Jolivet T, Nakato A, Riu L, Usui T, Yada T, Yogata K
    53rd Lunar and Planetary Science Conference 2022年3月
  • Nakato A, Yada T, Yogata K, Miyazaki A, Hatakeda K, Kumagai K, Nishimura M, Hitomi Y, Soejima H, Nagashima K, Bibring J. -P, Pilorget C, Hamm V, Brunetto R, Riu L, Lourit L, Loizeau D, Pivert-Jolivet L. T, Lequertier G, Moussi-Soffys A, Abe M, Okada T, Usui T
    53rd Lunar and Planetary Science Conference 2022年3月
  • Nishimura M, Yada T, Abe M, Nakato A, Yogata K, Miyazaki A, Nagashima K, Kumagai K, Hatakeda K, Hitomi Y, Soejima H, Okada T, Usui T, Tachibana S
    53rd Lunar and Planetary Science Conference, 2022年3月
  • Ohsugi A, Sakatani N, Shimaki Y, Kanamaru M, Senshu H, Arai T, Demura H, Kouyama T, Sekiguchi T, Tanaka S, Okada T
    53rd Lunar and Planetary Science Conference, 2022年3月
  • Okada T, Tanaka S, Sakatani N, Shimaki Y, Arai T, Senshu H, Demura H, Sekiguchi T, Ishizaki T, Kouyama T, Blommaert J, Karatekin O
    53rd Lunar and Planetary Science Conference 2022年3月
  • Pilorget C, Okada T, Hamm V, Brunetto R, Yada T, Loizeau D, Riu L, Usui T, Moussi-Soffys A, Hatakeda K, Nakato A, Yogata K, Abe M, Aléon-Toppani A, Carter J, Chaigneau M, Crane B, Gondet B, Kumagai K, Langevin Y, Lantz C, Le Pivert-Jolivet T, Lequertier G, Lourit L, Miyazaki A, Nishimura M, Poulet F, Arakawa M, Hirata N, Kitazato K, Nakazawa S, Namiki N, Saiki T, Sugita S, Tachibana S, Tanaka S, Yoshikawa M, Tsuda Y, Watanabe S, Bibring J.-P
    53rd Lunar and Planetary Science Conference 2022年3月
  • Yabe Y, Yumoto K, Cho Y, Mori S, Ogura A, Miyazaki A, Yada T, Hatakeda K, Yogata K, Abe M, Okada T, Nishimura M, Usui T, Sugita S
    53rd Lunar and Planetary Science Conference 2022年3月
  • Yada T, Abe M, Nakato A, Yogata K, Miyazaki A, Okada T, Kumagai K, Hatakeda K, Nishimura M, Sakamoto K, Yamamoto D, Hayashi T, Fukai R, Ishizaki T, Nagashima K, Suzuki S, Sugahara H, Hitomi Y, Soejima H, Kanemaru R, Sawada R, Tachibana S, Usui T
    53rd Lunar and Planetary Science Conference 2022年3月
  • Yogata K, Okada T, Hatakeda K, Yada T, Nishimura M, Nakato A, Miyazaki A, Nagashima K, Kumagai K, Hitomi Y, Soejima H, Sawada R, Bibring J. -P, Pilorget C, Hamm V, Brunetto R, Loizeau D, Riu L, Lourit L, Lequertier G, Lantz C, Le Pivert-Jolivet T, Tachibana S, Abe M, Usui T
    53rd Lunar and Planetary Science Conference 2022年3月
  • Yumoto K, Cho Y, Yabe Y, Mori S, Ogura A, Miyazaki A, Yada T, Hatakeda K, Yogata K, Abe M, Okada T, Nishimura M, Usui T, Sugita S
    53rd Lunar and Planetary Science Conference 2022年3月
  • 古谷克司, 犬飼亮太, 高野孝義, 岡田達明, 佐伯和人, 大上寛之
    精密工学会誌(Web) 2022年
  • 嶌生有理, 坂谷尚哉, 深井稜汰, 兵頭龍樹, 巽瑛理, 脇田茂, 浦川聖太郎, 末次竜, 岡田達明, 田中智, 渡邊誠一郎, 森治, 佐伯孝尚, 津田雄一
    日本惑星科学会秋季講演会予稿集(Web) 2022年
  • 千秋博紀, 坂谷尚哉, 諸田智克, 横田康弘, 嶌生有理, HAMM Maximilian, 田中智, 岡田達明, 荒井武彦, 金丸仁明, 竹内央
    日本惑星科学会秋季講演会予稿集(Web) 2022年
  • Bibring J.-P, Pilorget C, Okada T, Yada T, Aléon-Toppani A, Baklouti D, Brunetto R, Carter J, Gondet B, Hamm V, Hatakeda K, Langevin Y, Lantz C, Loizeau D, Nakato A, Le-Pivert-Jolivet T, Poulet F, Riu L, Usui T, Yogata K
    44th COSPAR Scientific Assembly 2022年
  • Hihara H, Sano J, Oshima T, Okada T, Ogawa N, Tsuda Y
    International SpaceWire & SpaceFibre Conference (ISC) 2022年  招待有り
  • 臼井寛裕, 安部正真, 岡田達明, 鈴木志野, 矢田達, 西村征洋, 坂本佳奈子, 林佑, 山本大貴, 深井稜汰, 石崎拓也, 橘省吾, 菅原春菜, 中藤亜衣子, 宮崎明子, 与賀田佳澄, 長島加奈, 金丸礼, 熊谷和也, 畠田健太郎, 副島広道, 人見勇矢
    第22回宇宙科学シンポジウム 2022年1月
  • 岡田達明, 田中智, 嶌生有理, 坂谷尚哉, 荒井武彦, 千秋博紀, 出村裕英, 関口朋彦, 金丸仁明, 石崎拓也, 神山徹, 和田武彦, 荒川政彦, 中村昭子, 杉田精司, 宮本英昭, 吉川真, 阿部新助, 安部正真, 池永敏憲, 浦川聖太郎, 菊地翔太, 北里宏平, 小松吾郎, 佐々木晶, 巽瑛理, 津田雄一, 野口高明, 薮田ひかる, 渡邊誠一郎
    第22回宇宙科学シンポジウム 2022年1月
  • T. Okada, T. Fukuhara, S. Tanaka, N. Sakatani, Y. Shimaki, T. Arai, H. Senshu, H. Demura, T. Kouyama, T. Sekiguchi, Hera TIRI Team
    52nd Lunar and Planetary Science Conference 2021 2021年3月
  • A. Ohsugi, N. Sakatani, Y. Shimaki, T. Arai, H. Senshu, T. Kouyama, H. Demura, T. Sekiguchi, S. Tanaka, T. Okada
    52nd Lunar and Planetary Science Conference 2021 2021年3月
  • M. Kanamaru, S. Sasaki, T. Morota, Y. Cho, E. Tatsumi, M. Hirabayashi, N. Hirata, H. Senshu, Y. Shimaki, N. Sakatani, S. Tanaka, T. Okada, T. Usui, S. Sugita, S. Watanabe
    52nd Lunar and Planetary Science Conference 2021 2021年3月
  • N. Sakatani, S. Tanaka, T. Okada, T. Fukuhara, L. Riu, S. Sugita, R. Honda, T. Morota, S. Kameda, Y. Yokota, E. Tatsumi, K. Yumoto, N. Hirata, A. Miura, T. Kouyama, H. Senshu, Y. Shimaki, T. Arai, J. Takita, H. Demura, T. Sekiguchi, T. G. Müller, A. Hagermann, J. Biele, M. Grott, M. Hamm, M. Delbo, W. Neumann, M. Yamada, H. Suzuki, C. Honda, K. Ogawa, M. Hayakawa, K. Yoshioka, M. Matsuoka, Y. Cho, H. Sawada, K. Kitazato, T. Saiki, H. Imamura, Y. Takagi, H. Yano, K. Shirai, S. Nakazawa, M. Arakawa, K. Wada, T. Kadono, K. Ishibashi
    52nd Lunar and Planetary Science Conference 2021 2021年3月
  • T. Yada, M. Abe, A, Nakato, K. Yogata, A. Miyazaki, K. Kumagai, K. Hatakeda, T. Okada, M. Nishimura, S. Furuya, M. Yoshitake, A. Iwamae, S. Tachibana, T. Sawada, K. Sakamoto, T. Hayashi, D. Yamamoto, R. Fukai, H. Sugahara, H. Yurimoto, T. Usui, S. Watanabe, Y. Tsuda, Hayabusa, Project Team
    52nd Lunar and Planetary Science Conference 2021 2021年3月
  • Tatsuaki Okada, Tetsuya Fukuhara, Makoto Yoshikawa, Yuri Shimaki, Naoya Sakatani, Hiroki Senshu, Hirohide Demura, Toru Kouyama, Tomohiko Sekiguchi, Satoshi Tanaka
    COSPAR2021 2021年2月
  • T. Yada, K. Kumagai, S. Tachibana, M. Abe, T. Okada, M. Nishimura, M. Yoshitake, K. Sakamoto, A. Nakato, S. Furuya, A. Miyazaki, D. Yamamoto, T. Hayashi, R. Fukai, A. Iwamae, K. Hatakeda, T. Usui
    JAXA-SP 2021年2月
  • 岡田達明, 田中 智, 福原哲哉, 坂谷尚哉, 嶌生有理, 千秋博紀, 荒井武彦, 出村裕英, 神山 徹, 関口朋彦, Hera TIRIチーム
    宇宙科学シンポジウム 2021年1月
  • Tatsuaki Okada, Takahiro Iwata, Hajime Yano, Shuji Matsuura, Daisuke Yonetoku, Ayako Matsuoka, Yoko Kebukawa, Stephan Ulamec, Osamu Mori
    COSPAR2021 2021年1月  招待有り
  • 渡邊誠一郎, 田中智, 吉川真, 杉田精司, 岡田達明, 北里宏平, 竝木則行, 橘省吾, 荒川政彦, はやぶさ, サイエンスチーム
    宇宙科学シンポジウム 2021年1月  招待有り
  • 春山純一, 河野功, 西堀俊幸, 角有司, 庄司大悟, 殿谷登, 澤井秀次郎, 安光亮一郎, 岩田隆浩, 大槻真嗣, 上森規光, 桜井誠人, 永松愛子, 山本幸生, 岡田達明, 尾崎直哉, 香河英司, 佐藤毅彦
    宇宙科学シンポジウム 2021年1月
  • 吉川真, 渡邊誠一郎, 杉田精司, 並木則行, 北里宏平, 田中智, 荒川政彦, 橘省吾, 岡田達明, 出村裕英, 池田人, 石黒正晃, 山本幸生, 藤田和央, 安部正真, 臼井寛裕, JAUMANN Ralf, BIBRING Jean-Pierre, GROTT Matthias, GLASSMEIER Karl-Heinz, HELBERT Joern, HO Tra-Mi, SOFFYS Aurelie Moussi, 中澤暁, 津田雄一
    宇宙科学技術連合講演会講演集(CD-ROM) 2021年
  • 岡田達明, 岡田達明, 田中智, 坂谷尚哉, 嶌生有理, 千秋博紀, 荒井武彦, 神山徹, 出村裕英, 関口朋彦, 金丸仁明
    日本惑星科学会秋季講演会予稿集(Web) 2021年
  • 大杉歩, 大杉歩, 坂谷尚哉, 嶌生有理, 金丸仁明, 千秋博紀, 荒井武彦, 出村裕英, 神山徹, 関口朋彦, 田中智, 田中智, 岡田達明, 岡田達明
    日本惑星科学会秋季講演会予稿集(Web) 2021年
  • 渡邊誠一郎, 安部正真, 諸田智克, 道上達弘, 平田直之, 平田成, 嶌生有理, 杉田精司, 岡田達明, 北里宏平, 竝木則行, 橘省吾, 橘省吾, 荒川政彦, 田中智
    日本惑星科学会秋季講演会予稿集(Web) 2021年
  • 岡田達明, 岡田達明, 与賀田佳澄, 畠田健太朗, 畠田健太朗, 矢田達, 中藤亜衣子, 宮崎明子, 熊谷和也, 熊谷和也, 人見勇矢, 人見勇矢, 西村征洋, 安部正真, 安部正真, 臼井寛裕, 臼井寛裕, BIBRING Jean-Pierre, PILORGET Cedric, HAMM Vincent, BRUNETTO Rosario, LOIZEAU Damien, RIU Lucie, LOURIT Lionel, LEQUERTIER Guillaume
    日本惑星科学会秋季講演会予稿集(Web) 2021年
  • 金丸仁明, 兵頭龍樹, 臼井寛裕, 岡田達明
    日本惑星科学会秋季講演会予稿集(Web) 2021年
  • 矢部佑奈, 湯本航生, 長勇一郎, 森晶輝, 小倉暁乃丞, 宮崎明子, 矢田達, 畠田健太郎, 与賀田佳澄, 安部正真, 岡田達明, 岡田達明, 西村征洋, 臼井寛裕, 臼井寛裕, 杉田精司
    日本惑星科学会秋季講演会予稿集(Web) 2021年
  • 荒井武彦, 岡田達明, 田中智, 福原哲哉, 出村裕英, 坂谷尚哉, 嶌生有理, 千秋博紀, 神山徹, 関口朋彦, 金丸仁明
    日本惑星科学会秋季講演会予稿集(Web) 2021年
  • 田中智, 伊藤瑞生, 坂谷尚哉, 嶌生有理, 岡田達明, 荒井武彦, 千秋博紀, 関口朋彦, 出村裕英, 長野方星, 中村智樹
    Thermophysical Properties (CD-ROM) 2021年
  • 吉田二美, 吉田二美, 阿部新助, 荒井朋子, 有松亘, 飯野孝浩, 伊藤孝士, 伊藤孝士, 臼井文彦, 浦川聖太郎, 大澤亮, 大槻圭史, 大坪貴文, 岡田達明, 笠羽康正, 河北秀世, 北元, 木村宏, 小林仁美, 小林浩, 坂野井健, 佐川英夫, 嶌生有理, 新中善晴, 関口朋彦, 関根康人, 高遠徳尚, 寺居剛, 中川朋子, 中村昭子, 中本泰史, 長谷川直, リカフィカ パトリック S, 樋口有理可, 前澤裕之, 薮田ひかる, 和田浩二
    日本惑星科学会秋季講演会予稿集(Web) 2021年
  • 矢田達, 安部正真, 安部正真, 岡田達明, 岡田達明, 中藤亜衣子, 与賀田佳澄, 宮崎明子, 熊谷和也, 畠田健太朗, 西村征洋, 人見勇矢, 副島広道, 吉武美和, 吉武美和, 岩前絢子, 岩前絢子, 古屋静萌, 古屋静萌, 臼井寛裕, 林佑, 山本大貴, 深井稜汰, 杉田精司, 長勇一郎, 湯本航生, 矢部佑奈, BIBRING Jean-Pierre, PILORGET Cedric, HAMM Vincent, BRUNETTO Rosario, RIU Lucie, RIU Lucie, 橘省吾, 橘省吾, 澤田弘崇, 岡崎隆司, 高野淑識, 坂本佳奈子, 三浦弥生, 矢野創, IRELAND Trevor, 山田哲哉, 藤本正樹, 中澤暁, 田中智, 佐伯孝尚, 吉川真, 渡邊誠一郎, 津田雄一
    日本惑星科学会秋季講演会予稿集(Web) 2021年
  • 湯本航生, 長勇一郎, 矢部佑奈, 森晶輝, 小倉暁乃丞, 宮崎明子, 矢田達, 畠田健太郎, 与賀田佳澄, 安部正真, 岡田達明, 西村征洋, 臼井寛裕, 杉田精司
    日本惑星科学会秋季講演会予稿集(Web) 2021年
  • 荒井武彦, 岡田達明, 田中智, 福原哲哉, 出村裕英, 神山徹, 坂谷尚哉, 嶌生有理, 千秋博紀, 関口朋彦, 滝田隼
    日本地球惑星科学連合大会予稿集(Web) 2021年
  • M. Hamm, M. Grott, F. Scholten, J. de Wiljes, J. Knollenberg, K.D. Matz, Y. Shimaki, H. Senshu, N. Sakatani, T. Okada, F. Preusker, R. Jaumann, S. Elgner, J. Biele, S. Sugita, S. Tanaka
    AGU Fallmeeting 2020 2020年12月
  • Tatsuaki Okada, Tetsuya Fukuhara, Makoto Yoshikawa
    Apophis T–9 Years 2020 2020年11月
  • Tatsuaki Okada, Satoshi Tanaka, Yuri Shimaki, Naoya Sakatani, Takehiko Arai, Hiroki Senshu, Hirohide Demura, Toru Kouyama, Tomohiko Sekiguchi, Tetsuya Fukuhara
    Europlanet Science Congress 2020 2020年10月8日 Copernicus GmbH  招待有り
    <p>Thermal imaging, or thermography, has revealed the surface physical state of the C-type near-Earth asteroid 162173 Ryugu (Okada et al., 2020). The asteroid is the target body of JAXA Hayabsua2 asteroid sample return mission, and it has been characterized through remote sensing and surface experiments, and will be deeply and accurately investigated by analysis of returned sample. Thermal observations are among such multi-scale observations, providing a new insight into understanding planetary evolution process.</p> <p>Thermal infrared imager TIR (Okada et al., 2017; 2020) was used to take one-rotation global thermal images of Ryugu at every 6° step, from the home position (20 km altitude) or from the Mid-Altitude (5 km altitude). There were two big surprises contrary to the predictions before arrival at Ryugu: i) flat diurnal temperature profiles compared to the case of non-rough surface, and ii) non-cold spots identified for most of boulders. The flat diurnal temperature profiles and its maximum temperature in a day indicate that Ryugu must have very rough surfaces made of highly porous materials, derived from the thermal inertia of 300 ± 100 J K<sup>-1</sup>s<sup>-0.5</sup>m<sup>-2</sup> (hereafter, tiu). Non-cold boulders indicate that boulders are less consolidated or compacted than typical carbonaceous chondrite meteorites, and shows the same thermophysical properties as the surroundings. TIR was also used to take close-up thermal images during the descent operations, and to have proven that the surface of asteroid is covered with fragments of porous rocks, larger than several centimeters in diameter. The typical size of fragments larger than thermal skin depth (~35 mm) results in similar thermal properties between the boulders and their surroundings. We also consider the surface roughness effect (Shimaki et al., 2020) to obtain the maps of thermal inertia ( 225 ± 45 tiu) and the roughness (0.41 ± 0.05) at the same time, corresponding to very rough surfaces made of highly-porous materials. This thermal inertia is basically consistent with the value (282 +93/-35 tiu) by in situ measurement using a thermal radiometer MARA on MASCOT lander (Grott et al., 2019). Furthermore, in the close-up thermal images, there were found boulders colder by 20 °C or more, indicating the thermal inertia of typical carbonaceous chondrite meteorites.</p> <p>Considering these results, we proposed a formation scenario of Ryugu: fluffy cosmic dusts gathered to form porous planetesimals, and then much larger sized but still porous bodies. A low degree of consolidation and alteration has occurred at most of the body, while a higher degree of consolidation or alteration proceeded at the deep interior. Huge meteoritic impacts destroyed and fragmented the bodies, and part of those fragments were re-accreted to form the next generation, rubble-pile bodies (asteroids). Boulders found on Ryugu might have originated from the deep interior of parent bodies, so that most of them are very porous and less consolidated but some of them are relatively dense materials similar to carbonaceous chondrites, which might have originated from the interior. Due to YORP effect, the rotation rate decreased to current one, and the current shape of a spinning top-shape were formed. Analysis of returned sample will make progress in our knowledge of the planetary formation process.</p>
  • Seiji Sugita, Rie Honda, Tomokatsu Morota, Shingo Kameda, Eri Tatsumi, Shogo Tachibana, Kohei Kitazato, Tatsuaki Okada, Noriyuki Namiki, Masahiko Arakawa, Patrick Michel, Deborah Domingue, Satoshi Tanaka, Makoto Yoshikawa, Sei-ichiro Watanabe, Yuichi Tsuda
    Europlanet Science Congress 2020 2020年10月8日 Copernicus GmbH  招待有り
    <p>JAXA’s Hayabusa2 is a sample-return mission was launched on Dec. 3, 2014 for bringing back first samples from a C-complex asteroid [1,2]. It arrived at asteroid Ryugu on June 27, 2018 and left for Earth on Nov. 13, 2019 after conducting global remote-sensing observations, two touchdown sampling operations, rover deployments, and an artificial impact experiment. We review our science results and update the mission status of Hayabusa2 in this presentation. </p> <p>The global observations revealed that Ryugu has a top-shaped body with very low density (1.19±0.02 g/cc) [3], spatially uniform Cb-type spectra without strong Fe-rich serpentine absorption at 0.7-um [4], and a weak but significant OH absorption at 2.7 um [5]. Based on these observations, we proposed that Ryugu materials may have experienced aqueous alteration and subsequent thermal metamorphism due to radiogenic heating [4]. However, other scenarios, such as impact-induced thermal metamorphism and extremely primitive carbonaceous materials before extensive alteration, were also considered because there were many new properties of Ryugu whose origins are unclear. Also, numerical calculations show that impact heating can raise the temperatures high enough to dehydrate serpentine at typical collision speed in the asteroid main belt [6].  </p> <p>Further analysis using high-resolution data obtained at low-altitude descents for both rehearsal and actual touchdown operations as well as the artificial impact experiment by small carryon impactor (SCI) and landers observations the Ryugu surface on allowed us to find out what caused the properties of Ryugu. For example, subtle but distinct latitudinal variation of spectral slope in optical wavelengths found in the initial observations [4] turned out be caused by solar heating or space weathering during orbital excursion toward the Sun and subsequent erosion of the equatorial ridge owing to slowdown in Ryugu’s spin rate [7]. The SCI impact created a very large (~17 m in crest diameter) crater consistent with gravity-controlled scaling showing that Ryugu surface has very low intra-boulder cohesion and the Ryugu surface is very young and well mixed [8].</p> <p>Furthermore, the MASCOT lander also showed that typical boulders on Ryugu is not covered with a layer of fine regolith [9] and yet possess very low thermal inertia (282+93/-35 MKS) consistent with highly porous structure [10]. This value is consistent with the global values or Ryugu [4, 11], suggesting that the vast majority of boulders on Ryugu are very porous. However, thermal infrared imager (TIR) also found that Ryugu has a number of “dense boulders” with high thermal inertia (>600 MKS) consistent with typical carbonaceous chondrites, showing that Ryugu’s parent body must have had a large enough gravity and pressure to compress the constituent materials [11]. This observation supports that Ryugu originated from a large parent body, such as proto-Polana and proto-Eulalia, which are estimated to be ~100 km in diameter.</p> <p>Some of the dense boulders were also covered by multi-band images of optical navigation camera (ONC-T) and turned out to have C-type spectra with albedos much higher than the Ryugu average [12]. These spectra and albedos are similar to carbonaceous chondrites heated at low temperatures. Although the total mass of these high-albedo boulders on Ryugu is estimated to be very small (< 1%), the spectral and albedo varieties are much greater than the bulk Ryugu surface and approximately follow the dehydration track of carbonaceous chondrites [12]. These spectral match supports that Ryugu materials experienced aqueous alteration and subsequent thermal metamorphism. The dominance of a high-temperature component and scarcity of lower temperature components are consistent with radiogenic heating in a relatively large parent body because large bodies would have only thin low-temperature thermal skin and large volume of high-temperature interior. </p> <p>If radiogenic heating is really responsible for Ryugu’s moderate dehydration, this may place a very important constraint on the timing of the formation of Ryugu’s parent body. Because the radiogenic heat source for most meteorite parent bodies are likely extinct species, such as 26Al, the peak temperature is chiefly controlled by the timing of accretion [13]. Thus, high metamorphism temperatures (several hundred degrees in Celsius) of Ryugu’s bulk materials inferred from spectral comparison with laboratory heated CM and CI meteorites [4, 12] require Ryugu’s parent body formed early in the Solar System. Because Ryugu’s parent body contained substantial amount of water at the time of formation, it must have been formed outside the snowline. Thus, the birth place of Ryugu’s parent body would be a high-accretion-rate location outside the snowline.</p> <p>Recent high-precision measurements of stable isotopes of meteorites have found that there is a major dichotomy between carbonaceous chondrites (CCs) and some iron meteorites, which formed outside Jupiter’s orbit, and non-carbonaceous meteorites (NCs), which formed inside Jupiter’s orbit [e.g., 14]. If Ryugu belongs to CCs, then Ryugu materials could be form near Jupiter, where accretion could occur early. Thus, measurements of stable isotopes of elements, such as Cr, Ti and Mo, of Ryugu samples to be returned to Earth by the end of 2020 would be highly valuable for constraining the original locations of Polana or Eulalia, among the largest C-complex asteroids in the inner main belt. </p> <p><strong>Acknowledgements:</strong> This study was supported by JSPS Core-to-Core program “International Network of Planetary Sciences”, CNES, and Univ. Co?te d’Azur. </p> <p><strong>References:</strong>  [1] Watanabe et al., SSR, 208, 3-16, 2017. [2] Tsuda et at., Acta Astronaut. 91, 356-363, 2013. [3] Watanabe et al., Science, 364, 268-272, 2019. [4] Sugita et al., Science, 364, eaaw0422, 2019. [5] Kitazato et al., Science, 364, 272-275, 2019. [6] Michel et al., Nature Comm., 11, 5184, 2020. [7] Morota et al., Science, 368, 654-659, 2020. [8] Akarawa et al. Science, 368, 67-671, 2020. [9] Jaumann et al. Science, 365, 817-820, 2019.  [10] Grott et al., Nature Astron. 3, 971-976, 2019.  [11] Okada et al., Nature, 579, 518-522, 2020. [12] Sugimoto et al. 51st LPSC, #1770, 2020.  [13] Grimm and McSween, Science, 259, 653-655, 1993.  [14] Kruijer et al., PNAS, 114, 6712-6716, 2017. </p>
  • Patrick Michel, Tatsuaki Okada, Michael Kueppers, Ian Carnelli, Paolo Martino, Adriano Campo Bagatin, Benoit Carry, Sebastien Charnoz, Julia de Leon, Alan Fitzsimmons, Simon Green, Carsten Guettler, Alain Herique, Martin Jutzi, Ozgur Karatekin, Naomi Murdoch, Petr Pravec, Holger Sierks, Colin Snodgrass, Paolo Tortora, Kleomenis Tsiganis, Stephan Ulamec, Jean-Baptiste Vincent, Kai Wuennemann, Andy Cheng, Andy Rivkin, Nancy Chabot, Olivier S Barnouin, Carolyn Ernst, Derek C Richardson, Angela Stickle, Masahiko Arakawa, Akiko Nakamura, Hideaki Miyamoto, Seiji Sugita, Makoto Yoshikawa
    JpGU-AGU2020 2020年7月  招待有り
  • Masanori Kanamaru, Sho Sasaki, Tomokatsu Morota, Yuichiro Cho, Naru Hirata, Naoyuki Hirata, Hiroki Senshu, Yuri Shimaki, Satoshi Tanaka, Tatsuaki Okada, Tomohiro Usui, Seiji Sugita, Sei-ichiro Watanabe
    JpGU-AGU2020 2020年7月
  • Ayumu Ohsugi, Naoya Sakatani, Yuri Shimaki, Hiroki Senshu, Takehiko Arai, Hirohide Demura, Satoshi Tanaka, Tetsuya Fukuhara, Tatsuaki Okada
    JpGU-AGU2020 2020年7月

担当経験のある科目(授業)

 2

共同研究・競争的資金等の研究課題

 6

● 専任大学名

 1
  • 専任大学名
    東京大学(University of Tokyo)

● 所属する所内委員会

 1
  • 所内委員会名
    放射線安全委員会