Shunsuke Nakagawa, Chinathip Narongphun, Zamba Leonel, Hari Shrestha, Isami Kato, Emino Fukumoto, Rodrigo Cordova, Victor Hugo Schulz, Necmi Cihan Örger, Kei Sano, Takao Nakagawa, Koji Takimoto, Shuji Matsuura, Kohji Tsumura, Aoi Takahashi, Daisuke Nakayama, Akimasa Ojika, Rin Sato, Keenan A. A. Chatar, Yukihisa Otani, Ezra Fielding, Kentaro Hayashida, Hayato Tanaka, Eyoas E. Areda, Bastien B. A. Morelle, Hisataka Kawasaki, Umi Enokidani, Reynel Josue Galindo Rosales, Karaki Shohei, Ichiro Jikuya
Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 13092 117-117 2024年8月23日
Extragalactic Background Light (EBL), the cumulative light from outside the galaxy, is a crucial observational target for understanding the history of the universe. We are developing a CubeSat; VERTECS (Visible Extragalactic background RadiaTion Exploration by CubeSat) with a 6U size (approximately 10 × 20 × 30 cm), equipped with Solar Array Wings (SAW). Our mission is to conduct extensive observations of the visible EBL. The satellite is designed to operate in a sun-synchronous orbit at an altitude of 500-680 km (approximately 15 orbits per day) and observe the EBL on the shadow side to avoid stray light from the Sun and Earth. To observe EBL, a high-performance CMOS sensor, attitude control devices, and high-speed communication equipment X-band are essential. We should note that these components these components consume a significant amount of power. Therefore, some strategic operational plans are necessary to operate this CubeSat within the limited power resources. In addition, VERTECS needs to meet its mission requirements, conducting 10 observations, 4 data downlinks, and 1 command uplink within a day. We have constructed some operational scenarios utilizing attitude control and SAW to meet these requirements, and we also constructed a power budget simulation for VERTECS. In this presentation, we describe how we plan to operate VERTECS utilizing the subsystems and the results of the power simulation during the operation.