Curriculum Vitaes

Masahiko HAYAKAWA

  (早川 雅彦)

Profile Information

Affiliation
Assistant Professor, Institute of Space and Astronautical Science, Department of Planetary Science, Japan Aerospace Exploration Agency
assistant professor, Department of Earth and Planetary Science, The University of Tokyo
Degree
Master of Science(Nagoya University)
Doctor of Science(Nagoya University)

Contact information
hayakawaplaneta.sci.isas.jaxa.jp
J-GLOBAL ID
200901009402364446
researchmap Member ID
1000363026

Papers

 61
  • Shota Kikuchi, Kei Shirai, Ko Ishibashi, Koji Wada, Yasuhiro Yokota, Rie Honda, Toshihiko Kadono, Yuri Shimaki, Naoya Sakatani, Kazunori Ogawa, Hirotaka Sawada, Takanao Saiki, Yuya Mimasu, Yuto Takei, Seiji Sugita, Toru Kouyama, Naru Hirata, Satoru Nakazawa, Makoto Yoshikawa, Satoshi Tanaka, Sei-ichiro Watanabe, Yuichi Tsuda, Masahiko Arakawa
    Advances in Space Research, May, 2024  
  • Moe Matsuoka, Ei-ichi Kagawa, Kana Amano, Tomoki Nakamura, Eri Tatsumi, Takahito Osawa, Takahiro Hiroi, Ralph Milliken, Deborah Domingue, Driss Takir, Rosario Brunetto, Antonella Barucci, Kohei Kitazato, Seiji Sugita, Yuri Fujioka, Osamu Sasaki, Shiho Kobayashi, Takahiro Iwata, Tomokatsu Morota, Yasuhiro Yokota, Toru Kouyama, Rie Honda, Shingo Kameda, Yuichiro Cho, Kazuo Yoshioka, Hirotaka Sawada, Masahiko Hayakawa, Naoya Sakatani, Manabu Yamada, Hidehiko Suzuki, Chikatoshi Honda, Kazunori Ogawa, Kei Shirai, Cateline Lantz, Stefano Rubino, Hisayoshi Yurimoto, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei-ichiro Watanabe, Yuichi Tsuda
    Communications Earth & Environment, 4(1), Sep 27, 2023  Peer-reviewed
    Abstract Returned samples from Cb-type asteroid (162173) Ryugu exhibit very dark spectra in visible and near-infrared ranges, generally consistent with the Hayabusa2 observations. A critical difference is that a structural water absorption of hydrous silicates is around twice as deep in the returned samples compared with those of Ryugu’s surface, suggesting Ryugu surface is more dehydrated. Here we use laboratory experiments data to indicate the spectral differences between returned samples and asteroid surface are best explained if Ryugu surface has (1) higher porosity, (2) larger particle size, and (3) more space-weathered condition, with the last being the most effective. On Ryugu, space weathering by micrometeoroid bombardments promoting dehydration seem to be more effective than that by solar-wind implantation. Extremely homogeneous spectra of the Ryugu’s global surface is in contrast with the heterogeneous S-type asteroid (25143) Itokawa’s spectra, which suggests space weathering has proceeded more rapidly on Cb-type asteroids than S-type asteroids.
  • Kohji Tsumura, Shuji Matsuura, Kei Sano, Takahiro Iwata, Hajime Yano, Kohei Kitazato, Kohji Takimoto, Manabu Yamada, Tomokatsu Morota, Toru Kouyama, Masahiko Hayakawa, Yasuhiro Yokota, Eri Tatsumi, Moe Matsuoka, Naoya Sakatani, Rie Honda, Shingo Kameda, Hidehiko Suzuki, Yuichiro Cho, Kazuo Yoshioka, Kazunori Ogawa, Kei Shirai, Hirotaka Sawada, Seiji Sugita
    Earth, Planets and Space, 75(1), Aug 22, 2023  Peer-reviewed
    Abstract Zodiacal light (ZL) is sunlight scattered by interplanetary dust particles (IDPs) at optical wavelengths. The spatial distribution of IDPs in the Solar System may hold an important key to understanding the evolution of the Solar System and material transportation within it. The number density of IDPs can be expressed as $$n(r) \sim r^{-\alpha }$$, and the exponent $$\alpha \sim 1.3$$ was obtained by previous observations from interplanetary space by Helios 1/2 and Pioneer 10/11 in the 1970s and 1980s. However, no direct measurements of $$\alpha $$ based on ZL observations from interplanetary space outside Earth’s orbit have been performed since then. Here, we introduce initial results for the radial profile of the ZL at optical wavelengths observed over the range 0.76$$-$$1.06 au by ONC-T aboard the Hayabusa2# mission in 2021-2022. The ZL brightness we obtained is well reproduced by a model brightness, although there is a small excess of the observed ZL brightness over the model brightness at around 0.9 au. The radial power-law index we obtained is $$\alpha = 1.30 \pm 0.08$$, which is consistent with previous results based on ZL observations. The dominant source of uncertainty arises from the uncertainty in estimating the diffuse Galactic light (DGL). Graphical Abstract
  • Manabu Yamada, Toru Kouyama, Koki Yumoto, Eri Tatsumi, Naofumi Takaki, Yasuhiro Yokota, Tomokatsu Morota, Naoya Sakatani, Masahiko Hayakawa, Moe Matsuoka, Rie Honda, Chikatoshi Honda, Shingo Kameda, Hidehiko Suzuki, Yuichiro Cho, Kazuo Yoshioka, Kazunori Ogawa, Kei Shirai, Hirotaka Sawada, Seiji Sugita
    Earth, Planets and Space, 75(1), Mar 13, 2023  Peer-reviewed
    After delivering its sample capsule to Earth, the Hayabusa2 spacecraft started its extended mission to perform a flyby of asteroid 2001 CC21 in 2026 and rendezvous with asteroid 1998 KY26 in 2031. During the extended mission, the optical navigation camera (ONC) of Hayabusa2 will play an important role in navigation and science observations, but it has suffered from optical deterioration after the spacecraft's surface contact with and sampling of asteroid Ryugu. Furthermore, the sensitivity of the telescopic camera (ONC-T) has continued to decrease for more than a year, posing a serious problem for the extended mission. These are problems that could potentially be encountered by other sample-return missions involving surface contact. In this study, we evaluated the long-term variation of ONC performance over the 6.5 years following the launch in 2014 to predict how it will perform during observations of the two target asteroids in its extended mission (6 and 11 years from the Earth return, respectively). Our results showed several important long-term trends in ONC performance, such as transmission, dark noise level, and hot pixels. During the long cruising period of the extended mission, we plan to observe both zodiacal light and exoplanet transits as additional science targets. The accuracy of these observations is sensitive to background noise level and stray-light contamination, so we conducted new test observations to search for the lowest stray light, which has been found to depend on spacecraft attitude. The results of these analyses and new test observations suggest that the Hayabusa2 ONC will be able to conduct cruising, flyby, and rendezvous observations of asteroids with sufficient accuracy.
  • Hikaru Yabuta, George D. Cody, Cécile Engrand, Yoko Kebukawa, Bradley De Gregorio, Lydie Bonal, Laurent Remusat, Rhonda Stroud, Eric Quirico, Larry Nittler, Minako Hashiguchi, Mutsumi Komatsu, Taiga Okumura, Jérémie Mathurin, Emmanuel Dartois, Jean Duprat, Yoshio Takahashi, Yasuo Takeichi, David Kilcoyne, Shohei Yamashita, Alexandre Dazzi, Ariane Deniset-Besseau, Scott Sandford, Zita Martins, Yusuke Tamenori, Takuji Ohigashi, Hiroki Suga, Daisuke Wakabayashi, Maximilien Verdier-Paoletti, Smail Mostefaoui, Gilles Montagnac, Jens Barosch, Kanami Kamide, Miho Shigenaka, Laure Bejach, Megumi Matsumoto, Yuma Enokido, Takaaki Noguchi, Hisayoshi Yurimoto, Tomoki Nakamura, Ryuji Okazaki, Hiroshi Naraoka, Kanako Sakamoto, Harold C. Connolly, Dante S. Lauretta, Masanao Abe, Tatsuaki Okada, Toru Yada, Masahiro Nishimura, Kasumi Yogata, Aiko Nakato, Miwa Yoshitake, Ayako Iwamae, Shizuho Furuya, Kentaro Hatakeda, Akiko Miyazaki, Hiromichi Soejima, Yuya Hitomi, Kazuya Kumagai, Tomohiro Usui, Tasuku Hayashi, Daiki Yamamoto, Ryota Fukai, Seiji Sugita, Kohei Kitazato, Naru Hirata, Rie Honda, Tomokatsu Morota, Eri Tatsumi, Naoya Sakatani, Noriyuki Namiki, Koji Matsumoto, Rina Noguchi, Koji Wada, Hiroki Senshu, Kazunori Ogawa, Yasuhiro Yokota, Yoshiaki Ishihara, Yuri Shimaki, Manabu Yamada, Chikatoshi Honda, Tatsuhiro Michikami, Moe Matsuoka, Naoyuki Hirata, Masahiko Arakawa, Chisato Okamoto, Masateru Ishiguro, Ralf Jaumann, Jean-Pierre Bibring, Matthias Grott, Stefan Schröder, Katharina Otto, Cedric Pilorget, Nicole Schmitz, Jens Biele, Tra-Mi Ho, Aurélie Moussi-Soffys, Akira Miura, Hirotomo Noda, Tetsuya Yamada, Keisuke Yoshihara, Kosuke Kawahara, Hitoshi Ikeda, Yukio Yamamoto, Kei Shirai, Shota Kikuchi, Naoko Ogawa, Hiroshi Takeuchi, Go Ono, Yuya Mimasu, Kent Yoshikawa, Yuto Takei, Atsushi Fujii, Yu-ichi Iijima, Satoru Nakazawa, Satoshi Hosoda, Takahiro Iwata, Masahiko Hayakawa, Hirotaka Sawada, Hajime Yano, Ryudo Tsukizaki, Masanobu Ozaki, Fuyuto Terui, Satoshi Tanaka, Masaki Fujimoto, Makoto Yoshikawa, Takanao Saiki, Shogo Tachibana, Sei-ichiro Watanabe, Yuichi Tsuda
    Science, 379(6634), Feb 24, 2023  Peer-reviewed
    Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water). The morphology of the organic carbon includes nanoglobules and diffuse carbon associated with phyllosilicate and carbonate minerals. Deuterium and/or nitrogen-15 enrichments indicate that the organic matter formed in a cold molecular cloud or the presolar nebula. The diversity of the organic matter indicates variable levels of aqueous alteration on Ryugu’s parent body.
  • Hiroshi Naraoka, Yoshinori Takano, Jason P. Dworkin, Yasuhiro Oba, Kenji Hamase, Aogu Furusho, Nanako O. Ogawa, Minako Hashiguchi, Kazuhiko Fukushima, Dan Aoki, Philippe Schmitt-Kopplin, José C. Aponte, Eric T. Parker, Daniel P. Glavin, Hannah L. McLain, Jamie E. Elsila, Heather V. Graham, John M. Eiler, Francois-Regis Orthous-Daunay, Cédric Wolters, Junko Isa, Véronique Vuitton, Roland Thissen, Saburo Sakai, Toshihiro Yoshimura, Toshiki Koga, Naohiko Ohkouchi, Yoshito Chikaraishi, Haruna Sugahara, Hajime Mita, Yoshihiro Furukawa, Norbert Hertkorn, Alexander Ruf, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Kanako Sakamoto, Shogo Tachibana, Harold C. Connolly, Dante S. Lauretta, Masanao Abe, Toru Yada, Masahiro Nishimura, Kasumi Yogata, Aiko Nakato, Miwa Yoshitake, Ayako Suzuki, Akiko Miyazaki, Shizuho Furuya, Kentaro Hatakeda, Hiromichi Soejima, Yuya Hitomi, Kazuya Kumagai, Tomohiro Usui, Tasuku Hayashi, Daiki Yamamoto, Ryota Fukai, Kohei Kitazato, Seiji Sugita, Noriyuki Namiki, Masahiko Arakawa, Hitoshi Ikeda, Masateru Ishiguro, Naru Hirata, Koji Wada, Yoshiaki Ishihara, Rina Noguchi, Tomokatsu Morota, Naoya Sakatani, Koji Matsumoto, Hiroki Senshu, Rie Honda, Eri Tatsumi, Yasuhiro Yokota, Chikatoshi Honda, Tatsuhiro Michikami, Moe Matsuoka, Akira Miura, Hirotomo Noda, Tetsuya Yamada, Keisuke Yoshihara, Kosuke Kawahara, Masanobu Ozaki, Yu-ichi Iijima, Hajime Yano, Masahiko Hayakawa, Takahiro Iwata, Ryudo Tsukizaki, Hirotaka Sawada, Satoshi Hosoda, Kazunori Ogawa, Chisato Okamoto, Naoyuki Hirata, Kei Shirai, Yuri Shimaki, Manabu Yamada, Tatsuaki Okada, Yukio Yamamoto, Hiroshi Takeuchi, Atsushi Fujii, Yuto Takei, Kento Yoshikawa, Yuya Mimasu, Go Ono, Naoko Ogawa, Shota Kikuchi, Satoru Nakazawa, Fuyuto Terui, Satoshi Tanaka, Takanao Saiki, Makoto Yoshikawa, Sei-ichiro Watanabe, Yuichi Tsuda
    Science, 379(6634), Feb 24, 2023  Peer-reviewed
    The Hayabusa2 spacecraft collected samples from the surface of the carbonaceous near-Earth asteroid (162173) Ryugu and brought them to Earth. The samples were expected to contain organic molecules, which record processes that occurred in the early Solar System. We analyzed organic molecules extracted from the Ryugu surface samples. We identified a variety of molecules containing the atoms CHNOS, formed by methylation, hydration, hydroxylation, and sulfurization reactions. Amino acids, aliphatic amines, carboxylic acids, polycyclic aromatic hydrocarbons, and nitrogen-heterocyclic compounds were detected, which had properties consistent with an abiotic origin. These compounds likely arose from an aqueous reaction on Ryugu’s parent body and are similar to the organics in Ivuna-type meteorites. These molecules can survive on the surfaces of asteroids and be transported throughout the Solar System.
  • Ryuji Okazaki, Bernard Marty, Henner Busemann, Ko Hashizume, Jamie D. Gilmour, Alex Meshik, Toru Yada, Fumio Kitajima, Michael W. Broadley, David Byrne, Evelyn Füri, My E. I. Riebe, Daniela Krietsch, Colin Maden, Akizumi Ishida, Patricia Clay, Sarah A. Crowther, Lydia Fawcett, Thomas Lawton, Olga Pravdivtseva, Yayoi N. Miura, Jisun Park, Ken-ichi Bajo, Yoshinori Takano, Keita Yamada, Shinsuke Kawagucci, Yohei Matsui, Mizuki Yamamoto, Kevin Righter, Saburo Sakai, Naoyoshi Iwata, Naoki Shirai, Shun Sekimoto, Makoto Inagaki, Mitsuru Ebihara, Reika Yokochi, Kunihiko Nishiizumi, Keisuke Nagao, Jong Ik Lee, Akihiro Kano, Marc W. Caffee, Ryu Uemura, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Hikaru Yabuta, Hisayoshi Yurimoto, Shogo Tachibana, Hirotaka Sawada, Kanako Sakamoto, Masanao Abe, Masahiko Arakawa, Atsushi Fujii, Masahiko Hayakawa, Naoyuki Hirata, Naru Hirata, Rie Honda, Chikatoshi Honda, Satoshi Hosoda, Yu-ichi Iijima, Hitoshi Ikeda, Masateru Ishiguro, Yoshiaki Ishihara, Takahiro Iwata, Kosuke Kawahara, Shota Kikuchi, Kohei Kitazato, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Yuya Mimasu, Akira Miura, Tomokatsu Morota, Satoru Nakazawa, Noriyuki Namiki, Hirotomo Noda, Rina Noguchi, Naoko Ogawa, Kazunori Ogawa, Tatsuaki Okada, Chisato Okamoto, Go Ono, Masanobu Ozaki, Takanao Saiki, Naoya Sakatani, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Seiji Sugita, Yuto Takei, Hiroshi Takeuchi, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Ryudo Tsukizaki, Koji Wada, Manabu Yamada, Tetsuya Yamada, Yukio Yamamoto, Hajime Yano, Yasuhiro Yokota, Keisuke Yoshihara, Makoto Yoshikawa, Kent Yoshikawa, Shizuho Furuya, Kentaro Hatakeda, Tasuku Hayashi, Yuya Hitomi, Kazuya Kumagai, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Hiromichi Soejima, Ayako Iwamae, Daiki Yamamoto, Kasumi Yogata, Miwa Yoshitake, Ryota Fukai, Tomohiro Usui, Harold C. Connolly, Dante Lauretta, Sei-ichiro Watanabe, Yuichi Tsuda
    Science, 379(6634), Feb 24, 2023  Peer-reviewed
    The near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth’s volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measured noble gas and nitrogen isotopes in Ryugu samples and found that they are dominated by presolar and primordial components, incorporated during Solar System formation. Noble gas concentrations are higher than those in Ivuna-type carbonaceous (CI) chondrite meteorites. Several host phases of isotopically distinct nitrogen have different abundances among the samples. Our measurements support a close relationship between Ryugu and CI chondrites. Noble gases produced by galactic cosmic rays, indicating a ~5 million year exposure, and from implanted solar wind record the recent irradiation history of Ryugu after it migrated to its current orbit.
  • T. Nakamura, M. Matsumoto, K. Amano, Y. Enokido, M. E. Zolensky, T. Mikouchi, H. Genda, S. Tanaka, M. Y. Zolotov, K. Kurosawa, S. Wakita, R. Hyodo, H. Nagano, D. Nakashima, Y. Takahashi, Y. Fujioka, M. Kikuiri, E. Kagawa, M. Matsuoka, A. J. Brearley, A. Tsuchiyama, M. Uesugi, J. Matsuno, Y. Kimura, M. Sato, R. E. Milliken, E. Tatsumi, S. Sugita, T. Hiroi, K. Kitazato, D. Brownlee, D. J. Joswiak, M. Takahashi, K. Ninomiya, T. Takahashi, T. Osawa, K. Terada, F. E. Brenker, B. J. Tkalcec, L. Vincze, R. Brunetto, A. Aléon-Toppani, Q. H. S. Chan, M. Roskosz, J.-C. Viennet, P. Beck, E. E. Alp, T. Michikami, Y. Nagaashi, T. Tsuji, Y. Ino, J. Martinez, J. Han, A. Dolocan, R. J. Bodnar, M. Tanaka, H. Yoshida, K. Sugiyama, A. J. King, K. Fukushi, H. Suga, S. Yamashita, T. Kawai, K. Inoue, A. Nakato, T. Noguchi, F. Vilas, A. R. Hendrix, C. Jaramillo-Correa, D. L. Domingue, G. Dominguez, Z. Gainsforth, C. Engrand, J. Duprat, S. S. Russell, E. Bonato, C. Ma, T. Kawamoto, T. Wada, S. Watanabe, R. Endo, S. Enju, L. Riu, S. Rubino, P. Tack, S. Takeshita, Y. Takeichi, A. Takeuchi, A. Takigawa, D. Takir, T. Tanigaki, A. Taniguchi, K. Tsukamoto, T. Yagi, S. Yamada, K. Yamamoto, Y. Yamashita, M. Yasutake, K. Uesugi, I. Umegaki, I. Chiu, T. Ishizaki, S. Okumura, E. Palomba, C. Pilorget, S. M. Potin, A. Alasli, S. Anada, Y. Araki, N. Sakatani, C. Schultz, O. Sekizawa, S. D. Sitzman, K. Sugiura, M. Sun, E. Dartois, E. De Pauw, Z. Dionnet, Z. Djouadi, G. Falkenberg, R. Fujita, T. Fukuma, I. R. Gearba, K. Hagiya, M. Y. Hu, T. Kato, T. Kawamura, M. Kimura, M. K. Kubo, F. Langenhorst, C. Lantz, B. Lavina, M. Lindner, J. Zhao, B. Vekemans, D. Baklouti, B. Bazi, F. Borondics, S. Nagasawa, G. Nishiyama, K. Nitta, J. Mathurin, T. Matsumoto, I. Mitsukawa, H. Miura, A. Miyake, Y. Miyake, H. Yurimoto, R. Okazaki, H. Yabuta, H. Naraoka, K. Sakamoto, S. Tachibana, H. C. Connolly, D. S. Lauretta, M. Yoshitake, M. Yoshikawa, K. Yoshikawa, K. Yoshihara, Y. Yokota, K. Yogata, H. Yano, Y. Yamamoto, D. Yamamoto, M. Yamada, T. Yamada, T. Yada, K. Wada, T. Usui, R. Tsukizaki, F. Terui, H. Takeuchi, Y. Takei, A. Iwamae, H. Soejima, K. Shirai, Y. Shimaki, H. Senshu, H. Sawada, T. Saiki, M. Ozaki, G. Ono, T. Okada, N. Ogawa, K. Ogawa, R. Noguchi, H. Noda, M. Nishimura, N. Namiki, S. Nakazawa, T. Morota, A. Miyazaki, A. Miura, Y. Mimasu, K. Matsumoto, K. Kumagai, T. Kouyama, S. Kikuchi, K. Kawahara, S. Kameda, T. Iwata, Y. Ishihara, M. Ishiguro, H. Ikeda, S. Hosoda, R. Honda, C. Honda, Y. Hitomi, N. Hirata, N. Hirata, T. Hayashi, M. Hayakawa, K. Hatakeda, S. Furuya, R. Fukai, A. Fujii, Y. Cho, M. Arakawa, M. Abe, S. Watanabe, Y. Tsuda
    Science, 379(6634), Feb 24, 2023  Peer-reviewed
    Samples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 spacecraft. We analyzed 17 Ryugu samples measuring 1 to 8 millimeters. Carbon dioxide–bearing water inclusions are present within a pyrrhotite crystal, indicating that Ryugu’s parent asteroid formed in the outer Solar System. The samples contain low abundances of materials that formed at high temperatures, such as chondrules and calcium- and aluminum-rich inclusions. The samples are rich in phyllosilicates and carbonates, which formed through aqueous alteration reactions at low temperature, high pH, and water/rock ratios of <1 (by mass). Less altered fragments contain olivine, pyroxene, amorphous silicates, calcite, and phosphide. Numerical simulations, based on the mineralogical and physical properties of the samples, indicate that Ryugu’s parent body formed ~2 million years after the beginning of Solar System formation.
  • Tetsuya Yokoyama, Kazuhide Nagashima, Izumi Nakai, Edward D. Young, Yoshinari Abe, Jérôme Aléon, Conel M. O’D. Alexander, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Martin Bizzarro, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, Nicolas Dauphas, Andrew M. Davis, Tommaso Di Rocco, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Motoo Ito, Shoichi Itoh, Noriyuki Kawasaki, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Shintaro Komatani, Alexander N. Krot, Ming-Chang Liu, Yuki Masuda, Kevin D. McKeegan, Mayu Morita, Kazuko Motomura, Frédéric Moynier, Ann Nguyen, Larry Nittler, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Sara S. Russell, Naoya Sakamoto, Maria Schönbächler, Lauren Tafla, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Sohei Wada, Meenakshi Wadhwa, Richard J. Walker, Katsuyuki Yamashita, Qing-Zhu Yin, Shigekazu Yoneda, Hiroharu Yui, Ai-Cheng Zhang, Harold C. Connolly, Dante S. Lauretta, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Hikaru Yabuta, Masanao Abe, Masahiko Arakawa, Atsushi Fujii, Masahiko Hayakawa, Naoyuki Hirata, Naru Hirata, Rie Honda, Chikatoshi Honda, Satoshi Hosoda, Yu-ichi Iijima, Hitoshi Ikeda, Masateru Ishiguro, Yoshiaki Ishihara, Takahiro Iwata, Kosuke Kawahara, Shota Kikuchi, Kohei Kitazato, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Yuya Mimasu, Akira Miura, Tomokatsu Morota, Satoru Nakazawa, Noriyuki Namiki, Hirotomo Noda, Rina Noguchi, Naoko Ogawa, Kazunori Ogawa, Tatsuaki Okada, Chisato Okamoto, Go Ono, Masanobu Ozaki, Takanao Saiki, Naoya Sakatani, Hirotaka Sawada, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Seiji Sugita, Yuto Takei, Hiroshi Takeuchi, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Yuichi Tsuda, Ryudo Tsukizaki, Koji Wada, Sei-ichiro Watanabe, Manabu Yamada, Tetsuya Yamada, Yukio Yamamoto, Hajime Yano, Yasuhiro Yokota, Keisuke Yoshihara, Makoto Yoshikawa, Kent Yoshikawa, Shizuho Furuya, Kentaro Hatakeda, Tasuku Hayashi, Yuya Hitomi, Kazuya Kumagai, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Hiromichi Soejima, Ayako Suzuki, Toru Yada, Daiki Yamamoto, Kasumi Yogata, Miwa Yoshitake, Shogo Tachibana, Hisayoshi Yurimoto
    Science, 379(6634), Feb 24, 2023  Peer-reviewed
    Carbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measured the mineralogy and bulk chemical and isotopic compositions of Ryugu samples. The samples are mainly composed of materials similar to those of carbonaceous chondrite meteorites, particularly the CI (Ivuna-type) group. The samples consist predominantly of minerals formed in aqueous fluid on a parent planetesimal. The primary minerals were altered by fluids at a temperature of 37° ± 10°C, about million (statistical) or million (systematic) years after the formation of the first solids in the Solar System. After aqueous alteration, the Ryugu samples were likely never heated above ~100°C. The samples have a chemical composition that more closely resembles that of the Sun’s photosphere than other natural samples do.
  • Takaaki Noguchi, Toru Matsumoto, Akira Miyake, Yohei Igami, Mitsutaka Haruta, Hikaru Saito, Satoshi Hata, Yusuke Seto, Masaaki Miyahara, Naotaka Tomioka, Hope A. Ishii, John P. Bradley, Kenta K. Ohtaki, Elena Dobrică, Hugues Leroux, Corentin Le Guillou, Damien Jacob, Francisco de la Peña, Sylvain Laforet, Maya Marinova, Falko Langenhorst, Dennis Harries, Pierre Beck, Thi H. V. Phan, Rolando Rebois, Neyda M. Abreu, Jennifer Gray, Thomas Zega, Pierre-M. Zanetta, Michelle S. Thompson, Rhonda Stroud, Kate Burgess, Brittany A. Cymes, John C. Bridges, Leon Hicks, Martin R. Lee, Luke Daly, Phil A. Bland, Michael E. Zolensky, David R. Frank, James Martinez, Akira Tsuchiyama, Masahiro Yasutake, Junya Matsuno, Shota Okumura, Itaru Mitsukawa, Kentaro Uesugi, Masayuki Uesugi, Akihisa Takeuchi, Mingqi Sun, Satomi Enju, Aki Takigawa, Tatsuhiro Michikami, Tomoki Nakamura, Megumi Matsumoto, Yusuke Nakauchi, Masanao Abe, Masahiko Arakawa, Atsushi Fujii, Masahiko Hayakawa, Naru Hirata, Naoyuki Hirata, Rie Honda, Chikatoshi Honda, Satoshi Hosoda, Yu-ichi Iijima, Hitoshi Ikeda, Masateru Ishiguro, Yoshiaki Ishihara, Takahiro Iwata, Kousuke Kawahara, Shota Kikuchi, Kohei Kitazato, Koji Matsumoto, Moe Matsuoka, Yuya Mimasu, Akira Miura, Tomokatsu Morota, Satoru Nakazawa, Noriyuki Namiki, Hirotomo Noda, Rina Noguchi, Naoko Ogawa, Kazunori Ogawa, Tatsuaki Okada, Chisato Okamoto, Go Ono, Masanobu Ozaki, Takanao Saiki, Naoya Sakatani, Hirotaka Sawada, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Seiji Sugita, Yuto Takei, Hiroshi Takeuchi, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Ryudo Tsukizaki, Koji Wada, Manabu Yamada, Tetsuya Yamada, Yukio Yamamoto, Hajime Yano, Yasuhiro Yokota, Keisuke Yoshihara, Makoto Yoshikawa, Kent Yoshikawa, Ryohta Fukai, Shizuho Furuya, Kentaro Hatakeda, Tasuku Hayashi, Yuya Hitomi, Kazuya Kumagai, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Hiromichi Soejima, Ayako I. Suzuki, Tomohiro Usui, Toru Yada, Daiki Yamamoto, Kasumi Yogata, Miwa Yoshitake, Harold C. Connolly, Dante S. Lauretta, Hisayoshi Yurimoto, Kazuhide Nagashima, Noriyuki Kawasaki, Naoya Sakamoto, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Sei-ichiro Watanabe, Yuichi Tsuda
    Nature Astronomy, 7 170-181, Dec 19, 2022  Peer-reviewed
    Abstract Without a protective atmosphere, space-exposed surfaces of airless Solar System bodies gradually experience an alteration in composition, structure and optical properties through a collective process called space weathering. The return of samples from near-Earth asteroid (162173) Ryugu by Hayabusa2 provides the first opportunity for laboratory study of space-weathering signatures on the most abundant type of inner solar system body: a C-type asteroid, composed of materials largely unchanged since the formation of the Solar System. Weathered Ryugu grains show areas of surface amorphization and partial melting of phyllosilicates, in which reduction from Fe3+ to Fe2+ and dehydration developed. Space weathering probably contributed to dehydration by dehydroxylation of Ryugu surface phyllosilicates that had already lost interlayer water molecules and to weakening of the 2.7 µm hydroxyl (–OH) band in reflectance spectra. For C-type asteroids in general, this indicates that a weak 2.7 µm band can signify space-weathering-induced surface dehydration, rather than bulk volatile loss.
  • K. Ogawa, N. Sakatani, T. Kadono, M. Arakawa, R. Honda, K. Wada, K. Shirai, Y. Shimaki, K. Ishibashi, Y. Yokota, T. Saiki, H. Imamura, Y. Tsuda, S. Nakazawa, Y. Takagi, M. Hayakawa, H. Yano, C. Okamoto, Y. Iijima, T. Morota, S. Kameda, E. Tatsumi, Y. Cho, K. Yoshioka, H. Sawada, M. Matsuoka, M. Yamada, T. Kouyama, H. Suzuki, C. Honda, S. Sugita
    Earth, Planets and Space, 74(1), Dec, 2022  Peer-reviewed
    Japanese Hayabusa2 spacecraft has successfully carried out an impact experiment using a small carry-on impactor (SCI) on an asteroid (162173) Ryugu. We examine the size distribution of particles inside and outside an artificial impact crater (the SCI crater) based on the images taken by the optical navigation camera onboard the Hayabusa2 spacecraft. The circumferential variation in particle size distribution inside the SCI crater is recognized and we interpret that major circumferential variation is caused by the large boulders inside the SCI crater that existed prior to the impact. The size distribution inside the SCI crater also shows that the subsurface layer beneath the SCI impact site had a large number of particles with a characteristic size of – 9 cm, which is consistent with the previous evaluations. On the other hand, the size distribution outside the SCI crater exhibits the radial variation, implying that the deposition of ejecta from the SCI crater is involved. The slope of the size distribution outside the crater at small sizes differs from the slope of the size distribution on the surface of Ryugu by approximately 1 or slightly less. This is consistent with the claim that some particles are buried in fine particles of the subsurface origin included in ejecta from the SCI crater. Thus, the particle size distributions inside and outside the SCI crater reveal that the subsurface layer beneath the SCI impact site is rich in fine particles with – 9 cm in size while the particles on the surface have a size distribution of a power-law form with shallower slopes at small sizes due to the deposition of fine ejecta from the subsurface layer. Finally, we discuss a process responsible for this difference in particle size distribution between the surface and the subsurface layers. The occurrence of segregation in the gravitational flow of particles on the surface of Ryugu is plausible. Graphical Abstract: [Figure not available: see fulltext.].
  • Ryuji Okazaki, Yayoi N. Miura, Yoshinori Takano, Hirotaka Sawada, Kanako Sakamoto, Toru Yada, Keita Yamada, Shinsuke Kawagucci, Yohei Matsui, Ko Hashizume, Akizumi Ishida, Michael W. Broadley, Bernard Marty, David Byrne, Evelyn Füri, Alex Meshik, Olga Pravdivtseva, Henner Busemann, My E.I. Riebe, Jamie Gilmour, Jisun Park, Ken-ichi Bajo, Kevin Righter, Saburo Sakai, Shun Sekimoto, Fumio Kitajima, Sarah A. Crowther, Naoyoshi Iwata, Naoki Shirai, Mitsuru Ebihara, Reika Yokochi, Kunihiko Nishiizumi, Keisuke Nagao, Jong Ik Lee, Patricia Clay, Akihiro Kano, Marc W. Caffee, Ryu Uemura, Makoto Inagaki, Daniela Krietsch, Colin Maden, Mizuki Yamamoto, Lydia Fawcett, Thomas Lawton, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Hikaru Yabuta, Hisayoshi Yurimoto, Yuichi Tsuda, Sei-ichiro Watanabe, Masanao Abe, Masahiko Arakawa, Atsushi Fujii, Masahiko Hayakawa, Naoyuki Hirata, Naru Hirata, Rie Honda, Chikatoshi Honda, Satoshi Hosoda, Yu-ichi Iijima, Hitoshi Ikeda, Masateru Ishiguro, Yoshiaki Ishihara, Takahiro Iwata, Kosuke Kawahara, Shota Kikuchi, Kohei Kitazato, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Yuya Mimasu, Akira Miura, Tomokatsu Morota, Satoru Nakazawa, Noriyuki Namiki, Hirotomo Noda, Rina Noguchi, Naoko Ogawa, Kazunori Ogawa, Tatsuaki Okada, Chisato Okamoto, Go Ono, Masanobu Ozaki, Takanao Saiki, Naoya Sakatani, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Seiji Sugita, Yuto Takei, Hiroshi Takeuchi, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Ryudo Tsukizaki, Koji Wada, Manabu Yamada, Tetsuya Yamada, Yukio Yamamoto, Hajime Yano, Yasuhiro Yokota, Keisuke Yoshihara, Makoto Yoshikawa, Kent Yoshikawa, Shizuho Furuya, Kentaro Hatakeda, Tasuku Hayashi, Yuya Hitomi, Kazuya Kumagai, Akiko Miyazaki, Aiko Nakato, Masahiro Nishimura, Hiromichi Soejima, Ayako Iwamae, Daiki Yamamoto, Kasumi Yogata, Miwa Yoshitake, Ryota Fukai, Tomohiro Usui, Trevor Ireland, Harold C. Connolly, Dante S. Lauretta, Shogo Tachibana
    Science Advances, 8(46), Nov 18, 2022  Peer-reviewed
    The Hayabusa2 spacecraft returned to Earth from the asteroid 162173 Ryugu on 6 December 2020. One day after the recovery, the gas species retained in the sample container were extracted and measured on-site and stored in gas collection bottles. The container gas consists of helium and neon with an extraterrestrial 3 He/ 4 He and 20 Ne/ 22 Ne ratios, along with some contaminant terrestrial atmospheric gases. A mixture of solar and Earth’s atmospheric gas is the best explanation for the container gas composition. Fragmentation of Ryugu grains within the sample container is discussed on the basis of the estimated amount of indigenous He and the size distribution of the recovered Ryugu grains. This is the first successful return of gas species from a near-Earth asteroid.
  • Motoo Ito, Naotaka Tomioka, Masayuki Uesugi, Akira Yamaguchi, Naoki Shirai, Takuji Ohigashi, Ming-Chang Liu, Richard C. Greenwood, Makoto Kimura, Naoya Imae, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yu Kodama, Akira Tsuchiyama, Masahiro Yasutake, Ross Findlay, Ian A. Franchi, James A. Malley, Kaitlyn A. McCain, Nozomi Matsuda, Kevin D. McKeegan, Kaori Hirahara, Akihisa Takeuchi, Shun Sekimoto, Ikuya Sakurai, Ikuo Okada, Yuzuru Karouji, Masahiko Arakawa, Atsushi Fujii, Masaki Fujimoto, Masahiko Hayakawa, Naoyuki Hirata, Naru Hirata, Rie Honda, Chikatoshi Honda, Satoshi Hosoda, Yu-ichi Iijima, Hitoshi Ikeda, Masateru Ishiguro, Yoshiaki Ishihara, Takahiro Iwata, Kosuke Kawahara, Shota Kikuchi, Kohei Kitazato, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Yuya Mimasu, Akira Miura, Osamu Mori, Tomokatsu Morota, Satoru Nakazawa, Noriyuki Namiki, Hirotomo Noda, Rina Noguchi, Naoko Ogawa, Kazunori Ogawa, Tatsuaki Okada, Chisato Okamoto, Go Ono, Masanobu Ozaki, Takanao Saiki, Naoya Sakatani, Hirotaka Sawada, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Seiji Sugita, Yuto Takei, Hiroshi Takeuchi, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Ryudo Tsukizaki, Koji Wada, Manabu Yamada, Tetsuya Yamada, Yukio Yamamoto, Hajime Yano, Yasuhiro Yokota, Keisuke Yoshihara, Makoto Yoshikawa, Kent Yoshikawa, Ryota Fukai, Shizuho Furuya, Kentaro Hatakeda, Tasuku Hayashi, Yuya Hitomi, Kazuya Kumagai, Akiko Miyazaki, Masahiro Nishimura, Hiromichi Soejima, Ayako Iwamae, Daiki Yamamoto, Miwa Yoshitake, Toru Yada, Masanao Abe, Tomohiro Usui, Sei-ichiro Watanabe, Yuichi Tsuda
    Nature Astronomy, 6(10) 1163-1171, Aug 15, 2022  Peer-reviewed
    Abstract Volatile and organic-rich C-type asteroids may have been one of the main sources of Earth’s water. Our best insight into their chemistry is currently provided by carbonaceous chondritic meteorites, but the meteorite record is biased: only the strongest types survive atmospheric entry and are then modified by interaction with the terrestrial environment. Here we present the results of a detailed bulk and microanalytical study of pristine Ryugu particles, brought to Earth by the Hayabusa2 spacecraft. Ryugu particles display a close compositional match with the chemically unfractionated, but aqueously altered, CI (Ivuna-type) chondrites, which are widely used as a proxy for the bulk Solar System composition. The sample shows an intricate spatial relationship between aliphatic-rich organics and phyllosilicates and indicates maximum temperatures of ~30 °C during aqueous alteration. We find that heavy hydrogen and nitrogen abundances are consistent with an outer Solar System origin. Ryugu particles are the most uncontaminated and unfractionated extraterrestrial materials studied so far, and provide the best available match to the bulk Solar System composition.
  • Eizo NAKAMURA, Katsura KOBAYASHI, Ryoji TANAKA, Tak KUNIHIRO, Hiroshi KITAGAWA, Christian POTISZIL, Tsutomu OTA, Chie SAKAGUCHI, Masahiro YAMANAKA, Dilan M. RATNAYAKE, Havishk TRIPATHI, Rahul KUMAR, Maya-Liliana AVRAMESCU, Hidehisa TSUCHIDA, Yusuke YACHI, Hitoshi MIURA, Masanao ABE, Ryota FUKAI, Shizuho FURUYA, Kentaro HATAKEDA, Tasuku HAYASHI, Yuya HITOMI, Kazuya KUMAGAI, Akiko MIYAZAKI, Aiko NAKATO, Masahiro NISHIMURA, Tatsuaki OKADA, Hiromichi SOEJIMA, Seiji SUGITA, Ayako SUZUKI, Tomohiro USUI, Toru YADA, Daiki YAMAMOTO, Kasumi YOGATA, Miwa YOSHITAKE, Masahiko ARAKAWA, Atsushi FUJII, Masahiko HAYAKAWA, Naoyuki HIRATA, Naru HIRATA, Rie HONDA, Chikatoshi HONDA, Satoshi HOSODA, Yu-ichi IIJIMA, Hitoshi IKEDA, Masateru ISHIGURO, Yoshiaki ISHIHARA, Takahiro IWATA, Kosuke KAWAHARA, Shota KIKUCHI, Kohei KITAZATO, Koji MATSUMOTO, Moe MATSUOKA, Tatsuhiro MICHIKAMI, Yuya MIMASU, Akira MIURA, Tomokatsu MOROTA, Satoru NAKAZAWA, Noriyuki NAMIKI, Hirotomo NODA, Rina NOGUCHI, Naoko OGAWA, Kazunori OGAWA, Chisato OKAMOTO, Go ONO, Masanobu OZAKI, Takanao SAIKI, Naoya SAKATANI, Hirotaka SAWADA, Hiroki SENSHU, Yuri SHIMAKI, Kei SHIRAI, Yuto TAKEI, Hiroshi TAKEUCHI, Satoshi TANAKA, Eri TATSUMI, Fuyuto TERUI, Ryudo TSUKIZAKI, Koji WADA, Manabu YAMADA, Tetsuya YAMADA, Yukio YAMAMOTO, Hajime YANO, Yasuhiro YOKOTA, Keisuke YOSHIHARA, Makoto YOSHIKAWA, Kent YOSHIKAWA, Masaki FUJIMOTO, Sei-ichiro WATANABE, Yuichi TSUDA
    Proceedings of the Japan Academy, Series B, 98(6) 227-282, Jun 10, 2022  Peer-reviewed
  • Shota Kikuchi, Sei-ichiro Watanabe, Koji Wada, Takanao Saiki, Hikaru Yabuta, Seiji Sugita, Masanao Abe, Masahiko Arakawa, Yuichiro Cho, Masahiko Hayakawa, Naoyuki Hirata, Naru Hirata, Chikatoshi Honda, Rie Honda, Ko Ishibashi, Yoshiaki Ishihara, Takahiro Iwata, Toshihiko Kadono, Shingo Kameda, Kohei Kitazato, Toru Kouyama, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Yuya Mimasu, Akira Miura, Tomokatsu Morota, Tomoki Nakamura, Satoru Nakazawa, Noriyuki Namiki, Rina Noguchi, Kazunori Ogawa, Naoko Ogawa, Tatsuaki Okada, Go Ono, Naoya Sakatani, Hirotaka Sawada, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Shogo Tachibana, Yuto Takei, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Manabu Yamada, Yukio Yamamoto, Yasuhiro Yokota, Kent Yoshikawa, Makoto Yoshikawa, Yuichi Tsuda
    Planetary and Space Science, 219 105519-105519, Jun, 2022  
  • Naofumi Takaki, Yuichiro Cho, Tomokatsu Morota, Eri Tatsumi, Rie Honda, Shingo Kameda, Yasuhiro Yokota, Naoya Sakatani, Toru Kouyama, Masahiko Hayakawa, Moe Matsuoka, Manabu Yamada, Chikatoshi Honda, Hidehiko Suzuki, Kazuo Yoshioka, Kazunori Ogawa, Hirotaka Sawada, Patrick Michel, Seiji Sugita
    Icarus, 377 114911-114911, May 1, 2022  Peer-reviewed
    Understanding the geological modification processes on asteroids is fundamental for elucidating their surface evolution. Images of small asteroids from spacecrafts show a depletion in smaller craters. Seismic shaking was considered to be responsible for erasing such small craters and the main driver modifying the geology of asteroids. However, a recent artificial impact experiment on asteroid Ryugu conducted by the Japanese Hayabusa2 spacecraft revealed minimal seismic efficiency on the asteroid. To investigate whether a standard seismic shaking model can reproduce the observed crater record, we analyzed the crater distributions on four asteroids, i.e., Eros, Itokawa, Ryugu, and Bennu, using crater production functions under cohesionless conditions. Crater retention ages were estimated as a function of crater diameter for the four asteroids using the crater size-frequency distribution and crater production function estimated for each asteroid. We obtained the relation between a crater retention age t and crater diameter D in the form of power-law function (t ∝ Da).We found that the power-law indices a are inconsistent with diffusion processes (e.g., seismic shaking, where a = 2). This result suggests that seismic shaking models based on a linear diffusion equation cannot explain the crater distribution on the small asteroids. Alternative crater obliteration processes include surface flows suggested by geomorphological and spectral features of Ryugu. Using the crater statistics, we also show that the vertical mixing of the Ryugu material at the depths shallower than 1 m occurs in 103–105 yr by cratering. This rapid resurfacing and replacement of the surface layer in the short timescale would account for the decrease in space weathering rate suggested by previous studies. Furthermore, the timescale required for vertically transporting Ryugu materials to the depths of 2–4 m (104–106 yr), where cosmic rays would not reach, can be compared with the cosmic-ray exposure ages of returned samples. This comparison can be used to constrain the distribution of impactors that collide with Ryugu.
  • Tatsuhiro Michikami, Axel Hagermann, Tomokatsu Morota, Yasuhiro Yokota, Seitaro Urakawa, Hiroyuki Okamura, Naoya Tanabe, Koki Yumoto, Tatsuki Ebihara, Yuichiro Cho, Carolyn M. Ernst, Masahiko Hayakawa, Masatoshi Hirabayashi, Naru Hirata, Chikatoshi Honda, Rie Honda, Shingo Kameda, Masanori Kanamaru, Hiroshi Kikuchi, Shota Kikuchi, Toru Kouyama, Moe Matsuoka, Hideaki Miyamoto, Takaaki Noguchi, Rina Noguchi, Kazunori Ogawa, Tatsuaki Okada, Naoya Sakatani, Sho Sasaki, Hirotaka Sawada, Chiho Sugimoto, Hidehiko Suzuki, Satoshi Tanaka, Eri Tatsumi, Akira Tsuchiyama, Yuichi Tsuda, Sei-ichiro Watanabe, Manabu Yamada, Makoto Yoshikawa, Kazuo Yoshioka, Seiji Sugita
    Icarus, 381 115007-115007, Mar 25, 2022  Peer-reviewed
    Over a broad size range, the shapes of impact fragments from catastrophic disruptions are distributed around the mean axial ratio 2: √2: 1, irrespective of experimental conditions and target materials. Although most blocks on asteroids are likely to be impact fragments, there is not enough quantitative data for reliable statistics on their three-axial lengths and/or ratios because it is difficult to precisely estimate the heights of the blocks. In this study, we evaluate the heights of blocks on asteroid Ryugu by measuring their shadows. The three-axial ratios of ~4100 small blocks with diameters from 5.0 cm to 7.6 m in Ryugu's equatorial region are investigated using eight close-up images of narrower localities taken at altitudes below 500 m, i.e. at <5.4 cm/pixel resolution, obtained immediately before the second touch-down of the Hayabusa2 spacecraft. The purpose of this study is to investigate the block shape distribution, which is important for understanding the geological history of asteroid Ryugu. Specifically, the shape distribution is compared to laboratory impact fragments. Our observations indicate that the shape distributions of blocks smaller than 1 m on Ryugu are consistent with laboratory impact fragment shape distributions, implying that the dominant shape-determining process for blocks on Ryugu was impact fragmentation. Blocks several meters in size in the equatorial region seem to be slightly flatter than the rest, suggesting that some blocks are partly buried in a bed of regolith. In conclusion, the shape distributions of blocks from several-cm to several-m in the equatorial region of asteroid Ryugu suggest that these are mainly fragments originating from the catastrophic disruption of their parent body and/or from a later impact.
  • S. Tachibana, H. Sawada, R. Okazaki, Y. Takano, K. Sakamoto, Y. N. Miura, C. Okamoto, H. Yano, S. Yamanouchi, P. Michel, Y. Zhang, S. Schwartz, F. Thuillet, H. Yurimoto, T. Nakamura, T. Noguchi, H. Yabuta, H. Naraoka, A. Tsuchiyama, N. Imae, K. Kurosawa, A. M. Nakamura, K. Ogawa, S. Sugita, T. Morota, R. Honda, S. Kameda, E. Tatsumi, Y. Cho, K. Yoshioka, Y. Yokota, M. Hayakawa, M. Matsuoka, N. Sakatani, M. Yamada, T. Kouyama, H. Suzuki, C. Honda, T. Yoshimitsu, T. Kubota, H. Demura, T. Yada, M. Nishimura, K. Yogata, A. Nakato, M. Yoshitake, A. I. Suzuki, S. Furuya, K. Hatakeda, A. Miyazaki, K. Kumagai, T. Okada, M. Abe, T. Usui, T. R. Ireland, M. Fujimoto, T. Yamada, M. Arakawa, H. C. Connolly, A. Fujii, S. Hasegawa, N. Hirata, N. Hirata, C. Hirose, S. Hosoda, Y. Iijima, H. Ikeda, M. Ishiguro, Y. Ishihara, T. Iwata, S. Kikuchi, K. Kitazato, D. S. Lauretta, G. Libourel, B. Marty, K. Matsumoto, T. Michikami, Y. Mimasu, A. Miura, O. Mori, K. Nakamura-Messenger, N. Namiki, A. N. Nguyen, L. R. Nittler, H. Noda, R. Noguchi, N. Ogawa, G. Ono, M. Ozaki, H. Senshu, T. Shimada, Y. Shimaki, K. Shirai, S. Soldini, T. Takahashi, Y. Takei, H. Takeuchi, R. Tsukizaki, K. Wada, Y. Yamamoto, K. Yoshikawa, K. Yumoto, M. E. Zolensky, S. Nakazawa, F. Terui, S. Tanaka, T. Saiki, M. Yoshikawa, S. Watanabe, Y. Tsuda
    Science, 375(6584) 1011-1016, Mar 4, 2022  Peer-reviewed
    The Hayabusa2 spacecraft investigated the C-type (carbonaceous) asteroid (162173) Ryugu. The mission performed two landing operations to collect samples of surface and subsurface material, the latter exposed by an artificial impact. We present images of the second touchdown site, finding that ejecta from the impact crater was present at the sample location. Surface pebbles at both landing sites show morphological variations ranging from rugged to smooth, similar to Ryugu’s boulders, and shapes from quasi-spherical to flattened. The samples were returned to Earth on 6 December 2020. We describe the morphology of &gt;5 grams of returned pebbles and sand. Their diverse color, shape, and structure are consistent with the observed materials of Ryugu; we conclude that they are a representative sample of the asteroid.
  • Eri Tatsumi, Naoya Sakatani, Lucie Riu, Moe Matsuoka, Rie Honda, Tomokatsu Morota, Shingo Kameda, Tomoki Nakamura, Michael Zolensky, Rosario Brunetto, Takahiro Hiroi, Sho Sasaki, Sei’ichiro Watanabe, Satoshi Tanaka, Jun Takita, Cédric Pilorget, Julia de León, Marcel Popescu, Juan Luis Rizos, Javier Licandro, Ernesto Palomba, Deborah Domingue, Faith Vilas, Humberto Campins, Yuichiro Cho, Kazuo Yoshioka, Hirotaka Sawada, Yasuhiro Yokota, Masahiko Hayakawa, Manabu Yamada, Toru Kouyama, Hidehiko Suzuki, Chikatoshi Honda, Kazunori Ogawa, Kohei Kitazato, Naru Hirata, Naoyuki Hirata, Yuichi Tsuda, Makoto Yoshikawa, Takanao Saiki, Fuyuto Terui, Satoru Nakazawa, Yuto Takei, Hiroshi Takeuchi, Yukio Yamamoto, Tatsuaki Okada, Yuri Shimaki, Kei Shirai, Seiji Sugita
    Nature Communications, 12(1) 5837-5837, Dec, 2021  Peer-reviewed
    <title>Abstract</title>Ryugu is a carbonaceous rubble-pile asteroid visited by the Hayabusa2 spacecraft. Small rubble pile asteroids record the thermal evolution of their much larger parent bodies. However, recent space weathering and/or solar heating create ambiguities between the uppermost layer observable by remote-sensing and the pristine material from the parent body. Hayabusa2 remote-sensing observations find that on the asteroid (162173) Ryugu both north and south pole regions preserve the material least processed by space weathering, which is spectrally blue carbonaceous chondritic material with a 0–3% deep 0.7-µm band absorption, indicative of Fe-bearing phyllosilicates. Here we report that spectrally blue Ryugu’s parent body experienced intensive aqueous alteration and subsequent thermal metamorphism at 570–670 K (300–400 °C), suggesting that Ryugu’s parent body was heated by radioactive decay of short-lived radionuclides possibly because of its early formation 2–2.5 Ma. The samples being brought to Earth by Hayabusa2 will give us our first insights into this epoch in solar system history.
  • Yasuhiro Yokota, Rie Honda, Eri Tatsumi, Deborah Domingue, Stefan Schröder, Moe Matsuoka, Tomokatsu Morota, Naoya Sakatani, Shingo Kameda, Toru Kouyama, Manabu Yamada, Chikatoshi Honda, Masahiko Hayakawa, Yuichiro Cho, Tatsuhiro Michikami, Hidehiko Suzuki, Kazuo Yoshioka, Hirotaka Sawada, Kazunori Ogawa, Kouki Yumoto, Seiji Sugita
    The Planetary Science Journal, 2(5) 177-177, Oct 1, 2021  Peer-reviewed
    <title>Abstract</title> On 2019 January 8, the Telescopic Optical Navigation Camera (ONC-T) on board the Hayabusa2 spacecraft observed the Cb-type asteroid 162173 Ryugu under near-opposition illumination and viewing conditions from approximately 20 km in distance. Although opposition observations have never been used for mapping purposes of a planetary body, we found three advantages for mapping under these conditions: (1) images are free of topographic shadows, (2) the reflectance is nearly independent of the orientation of the surface, and (3) spurious color artifacts that may appear near shadowed terrain are avoided. We present normal albedo maps, one for each of the seven filters (0.40–0.95 <italic>μ</italic>m), using an empirical photometric correction. Global coverage of Ryugu is 99.4%. The 0.55 <italic>μ</italic>m band average normal albedo is 4.06% ± 0.10%. Various spectral variations are derived from these maps. Spectral features of regions and boulders are quantified by examining the normal albedo-derived spectral slope and UV index (spectral slope from visible to ultraviolet wavelength) value. In terms of space weathering, three spectral characteristics are observed over the majority of Ryugu: (1) reddening, (2) increases in reflectance at ultraviolet wavelengths compared to visible, and (3) darkening. By contrast, the bright boulders (“type 3”) show a different trend, with wide variations in the 0.95 <italic>μ</italic>m albedo and UV index. Finally, principal component analysis (PCA) comparisons with other asteroids strongly suggest that the main components of Ryugu belong to the B-Cb-type populations. The PCA feature of the fresh material on Ryugu is close to the Eulalia family.
  • Naoya Tanabe, Yuichiro Cho, Eri Tatsumi, Tatsuki Ebihara, Koki Yumoto, Tatsuhiro Michikami, Hideaki Miyamoto, Tomokatsu Morota, Chikatoshi Honda, Patrick Michel, Katharina Otto, Olivier Barnouin, Kazuo Yoshioka, Hirotaka Sawada, Yasuhiro Yokota, Naoya Sakatani, Masahiro Hayakawa, Rie Honda, Shingo Kameda, Moe Matsuoka, Manabu Yamada, Toru Kouyama, Hidehiko Suzuki, Kazunori Ogawa, Seiji Sugita
    Planetary and Space Science, 204 105249-105249, Sep, 2021  Peer-reviewed
    Recent asteroid missions have revealed that many sub-kilometer asteroids are rubble piles. Large parts of their surfaces are covered with boulders larger than tens of centimeters. An evaluation of the abundance and size distribution of boulders provides clues to understand surface processes on boulder-covered asteroids. Here we report a new method that automatically measures the abundance of small boulders (sub-pixel to a few pixels), whose boundaries cannot be recognized with visual inspection, by quantifying the surface radiance variation that occurs during the spinning of the asteroid. After validating our approach with previous boulder counting data, we apply this method to images of the asteroids Ryugu and Itokawa, which were visited by JAXA's Hayabusa and Hayabusa2, and obtain a global distribution of the boulders larger than 0.75–3 ​m, which corresponds to 1.5–6 pixels. We find that the boulder number density of this size range is smaller (1) on the western bulge than on the eastern hemisphere and (2) on the equatorial ridge than on the higher latitudes, both of which exceed the number density of boulders ​> ​5 ​m by an order of magnitude. The boulder size distribution at 1.25–20 ​m shows that the boulders smaller than 1 ​m are more abundant at the equator than at mid-latitudes, while those larger than 1 ​m in diameter are more abundant at mid-latitudes than at the equator. This contrast suggests size-dependent migration of boulders in the latitudinal direction. We also find that the typical boulder size (the size reaching the cumulative areal coverage of 50%) is 1.9 ​m at the equatorial region (10°S-10°N) while it is 2.6 ​m at mid-latitudes (40°S-50°S, 40°N-50°N). The typical boulder size is also smaller in the western bulge (2.0–2.2 ​m). We construct global maps of the power-law index of the size frequency distribution of boulders and find minor variations over the entire surface of Ryugu (−2.53 ​± ​0.03) for boulders larger than 1.25 ​m. This small variation suggests homogeneous size sorting processes on Ryugu. Surface roughness does not show a significant correlation with the v-band albedo but shows a high anti-correlation (R ​= ​−0.73) with the current geological slope on the eastern hemisphere. Our method is useful enhancement of smooth area detection and boulder distribution characterization that will be applicable to other planetary explorations in the future, including those of Phobos and other asteroids.
  • Rie Honda, Masahiko Arakawa, Yuri Shimaki, Kei Shirai, Yasuhiro Yokota, Toshihiko Kadono, Koji Wada, Kazunori Ogawa, Ko Ishibashi, Naoya Sakatani, Satoru Nakazawa, Minami Yasui, Tomokatsu Morota, Shingo Kameda, Eri Tatsumi, Manabu Yamada, Toru Kouyama, Yuichiro Cho, Moe Matsuoka, Hidehiko Suzuki, Chikatoshi Honda, Masahiko Hayakawa, Kazuo Yoshioka, Naru Hirata, Naoyuki Hirata, Hirotaka Sawada, Seiji Sugita, Takanao Saiki, Hiroshi Imamura, Yasuhiko Takagi, Hajime Yano, Chisato Okamoto, Yuichi Tsuda, Yu-ichi Iijima
    Icarus, 366 114530-114530, Sep, 2021  Peer-reviewed
    The resurfacing process on Ryugu accompanying the artificial impact crater formation by Hayabusa2's Small Carry-on Impactor (SCI) was studied by comparing pre- and post-impact images of this region captured by an optical navigation camera. Three different aspects of the resurfacing process were examined: the crater rim profiles, the motion of boulders and the appearance of new boulders, and the motion vectors of Ryugu's surface around the SCI crater. The averaged crater rim height, h, was derived as follows: h = hr exp [−(r/Rrim − 1)/λrim], where Rrim is the SCI crater rim radius of 8.8 m, the fitted parameter, hr, is 0.475 m, and the λrim is 0.245. The ejecta blanket thickness of the SCI crater was thinner than that estimated from both the observation of natural craters and the crater formation theory. However, this discrepancy of the ejecta blanket thickness was resolved by taking into account the new boulders appearing in the post-impact images in the volume. The motion of the discovered boulders could be classified by its mechanisms as follows: a dragging motion created by excavation flow during the crater formation, a pushing motion created by falling-back ejecta, a dragging motion created by the slight motion of the Okamoto boulder, and a motion caused by seismic shaking induced by the SCI impact itself. The seismic shaking caused boulders to move farther than 3 cm from the original site in most of the region within 15 m distance from the SCI crater center, where the maximum acceleration of the impact induced seismic waves 7 times larger than the surface gravity of Ryugu based on the laboratory experiments (Matsue et al. [2020] Icarus, 338, 113520), and the evidence of the seismic shaking for boulders with a movement of >3 cm was detected in about 10% of the boulders in the region between 15 m and 30 m from the crater center, which region was inferred to experience acceleration larger than the Ryugu's surface gravity based on previous laboratory experiments (Matsue et al. [2020] Icarus, 338, 113520).
  • Tatsumi E., Sugita S., Honda R., Morota T., Kameda S., Cho Y., Sawada H., Yokota Y., Sakatani N., Hayakawa M., Matsuoka M., Yamada M., Kouyama T., Suzuki H., Honda C., Yoshioka K., Ogawa K., Yumoto K.
    Planetary People - The Japanese Society for Planetary Sciences, 30(2) 64-71, Jun 25, 2021  
  • Chiho Sugimoto, Eri Tatsumi, Yuichiro Cho, Tomokatsu Morota, Rie Honda, Shingo Kameda, Yosuhiro Yokota, Koki Yumoto, Minami Aoki, Daniella N. DellaGiustina, Tatsuhiro Michikami, Takahiro Hiroi, Deborah L. Domingue, Patrick Michel, Stefan E. Schröder, Tomoki Nakamura, Manabu Yamada, Naoya Sakatani, Toru Kouyama, Chikatoshi Honda, Masahiko Hayakawa, Moe Matsuoka, Hidehiko Suzuki, Kazuo Yoshioka, Kazunori Ogawa, Hirotaka Sawada, Masahiko Arakawa, Takanao Saiki, Hiroshi Imamura, Yasuhiko Takagi, Hajime Yano, Kei Shirai, Chisato Okamoto, Yuichi Tsuda, Satoru Nakazawa, Yuichi Iijima, Seiji Sugita
    Icarus, 114591-114591, Jun, 2021  
  • N. Sakatani, S. Tanaka, T. Okada, T. Fukuhara, L. Riu, S. Sugita, R. Honda, T. Morota, S. Kameda, Y. Yokota, E. Tatsumi, K. Yumoto, N. Hirata, A. Miura, T. Kouyama, H. Senshu, Y. Shimaki, T. Arai, J. Takita, H. Demura, T. Sekiguchi, T. G. Müller, A. Hagermann, J. Biele, M. Grott, M. Hamm, M. Delbo, W. Neumann, M. Taguchi, Y. Ogawa, T. Matsunaga, T. Wada, S. Hasegawa, J. Helbert, N. Hirata, R. Noguchi, M. Yamada, H. Suzuki, C. Honda, K. Ogawa, M. Hayakawa, K. Yoshioka, M. Matsuoka, Y. Cho, H. Sawada, K. Kitazato, T. Iwata, M. Abe, M. Ohtake, S. Matsuura, K. Matsumoto, H. Noda, Y. Ishihara, K. Yamamoto, A. Higuchi, N. Namiki, G. Ono, T. Saiki, H. Imamura, Y. Takagi, H. Yano, K. Shirai, C. Okamoto, S. Nakazawa, Y. Iijima, M. Arakawa, K. Wada, T. Kadono, K. Ishibashi, F. Terui, S. Kikuchi, T. Yamaguchi, N. Ogawa, Y. Mimasu, K. Yoshikawa, T. Takahashi, Y. Takei, A. Fujii, H. Takeuchi, Y. Yamamoto, C. Hirose, S. Hosoda, O. Mori, T. Shimada, S. Soldini, R. Tsukizaki, M. Ozaki, S. Tachibana, H. Ikeda, M. Ishiguro, H. Yabuta, M. Yoshikawa, S. Watanabe, Y. Tsuda
    Nature Astronomy, 5(8) 766-774, May 24, 2021  Peer-reviewed
    Planetesimals—the initial stage of the planetary formation process—are considered to be initially very porous aggregates of dusts1,2, and subsequent thermal and compaction processes reduce their porosity3. The Hayabusa2 spacecraft found that boulders on the surface of asteroid (162173) Ryugu have an average porosity of 30–50% (refs. 4–6), higher than meteorites but lower than cometary nuclei7, which are considered to be remnants of the original planetesimals8. Here, using high-resolution thermal and optical imaging of Ryugu’s surface, we discovered, on the floor of fresh small craters (<20 m in diameter), boulders with reflectance (~0.015) lower than the Ryugu average6 and porosity >70%, which is as high as in cometary bodies. The artificial crater formed by Hayabusa2’s impact experiment9 is similar to these craters in size but does not have such high-porosity boulders. Thus, we argue that the observed high porosity is intrinsic and not created by subsequent impact comminution and/or cracking. We propose that these boulders are the least processed material on Ryugu and represent remnants of porous planetesimals that did not undergo a high degree of heating and compaction3. Our multi-instrumental analysis suggests that fragments of the highly porous boulders are mixed within the surface regolith globally, implying that they might be captured within collected samples by touch-down operations10,11.
  • Chiho Sugimoto, Eri Tatsumi, Yuichiro Cho, Tomokatsu Morota, Rie Honda, Shingo Kameda, Yosuhiro Yokota, Koki Yumoto, Minami Aoki, Daniella N. DellaGiustina, Tatsuhiro Michikami, Takahiro Hiroi, Deborah L. Domingue, Patrick Michel, Stefan E. Schröder, Tomoki Nakamura, Manabu Yamada, Naoya Sakatani, Toru Kouyama, Chikatoshi Honda, Masahiko Hayakawa, Moe Matsuoka, Hidehiko Suzuki, Kazuo Yoshioka, Kazunori Ogawa, Hirotaka Sawada, Masahiko Arakawa, Takanao Saiki, Hiroshi Imamura, Yasuhiko Takagi, Hajime Yano, Kei Shirai, Chisato Okamoto, Yuichi Tsuda, Satoru Nakazawa, Yuichi Iijima, Seiji Sugita
    Icarus, 369 114529-114529, May, 2021  Peer-reviewed
  • Toru Kouyama, Eri Tatsumi, Yasuhiro Yokota, Koki Yumoto, Manabu Yamada, Rie Honda, Shingo Kameda, Hidehiko Suzuki, Naoya Sakatani, Masahiko Hayakawa, Tomokatsu Morota, Moe Matsuoka, Yuichiro Cho, Chikatoshi Honda, Hirotaka Sawada, Kazuo Yoshioka, Seiji Sugita
    Icarus, 360 114353-114353, May, 2021  
    © 2021 Elsevier Inc. Accurate measurements of the surface brightness and its spectrophotometric properties are essential for obtaining reliable observations of the physical and material properties of planetary bodies. To measure the surface brightness of Ryugu accurately, we calibrated the optical navigation cameras (ONCs) of Hayabusa2 using both standard stars and Ryugu itself during the rendezvous phase including two touchdown operations for sampling. These calibration results showed that the nadir-viewing telescopic camera (ONC-T) and nadir-viewing wide-angle camera (ONC-W1) experienced substantial variation in sensitivity. In particular, ONC-W1 showed significant sensitivity degradation (~60%) after the first touchdown operation. We estimated the degradations to be caused by front lens contamination by fine-grain materials lifted from the Ryugu surface due to thruster gas for ascent back maneuver and sampler projectile impact upon touchdown. While ONC-T is located very close to W1 on the spacecraft, its degradation in sensitivity was only ~15% over the entire rendezvous phase. If in fact dust is really the main cause for the degradation, this lighter damage likely resulted from dust protection by the long hood attached to ONC-T. However, because large variations in the absolute sensitivity occurred after the touchdown events, which should be due to dust effect, uncertainty for the absolute sensitivity was rather large (3–4%). On the other hand, the change in relative spectral responsivity (i.e., 0.55-μm-band normalized responsivity) of ONC-T was small (1%). The variation in relative responsivity during the proximity phase has been well calibrated to have only a small uncertainty (< 1%). Furthermore, the degradation (i.e., increase) in the full width at half maximum of the point spread function of ONC-T and W1 was almost negligible, although the blurring effect due to dust scattering was confirmed in W1. These optical degradations due to the touchdown events were carefully monitored as a function of time along with other time-related deteriorations, such as the dark current level and hot pixels. We also conducted a new calibration of the flat-field change as a function of the detector temperature by observing the onboard flat-field lamp and validating with Ryugu's disk images. The results of these calibrations showed that ONC-T and W1 maintained their scientific performance by updating the calibration parameters.
  • Shingo Kameda, Yasuhiro Yokota, Toru Kouyama, Eri Tatsumi, Marika Ishida, Tomokatsu Morota, Rie Honda, Naoya Sakatani, Manabu Yamada, Moe Matsuoka, Hidehiko Suzuki, Yuichiro Cho, Masahiko Hayakawa, Chikatoshi Honda, Hirotaka Sawada, Kazuo Yoshioka, Kazunori Ogawa, Seiji Sugita
    Icarus, 360 114348-114348, May, 2021  
    © 2021 Elsevier Inc. Global multiband images of the C-type asteroid (162173) Ryugu were obtained by the optical navigation camera telescope (ONC-T) onboard Hayabusa2. The 0.7-μm absorption depth of the surface reflectance spectrum, which indicates the presence of hydrous minerals, was not clearly seen on Ryugu using flat field correction data obtained in the preflight measurement. The flat field correction data were obtained in the preflight calibration test only at room temperatures (24‐–28 °C), whereas most observations around Ryugu were performed at a charge-coupled device (CCD) temperature of approximately ‐−30 °C. To obtain higher accuracy measurements, we used a new flat field correction method using the Ryugu surface reflection data. We confirmed that the flat-field patterns are different in high and low temperature conditions. The 0.7-μm absorption map generated by the new method shows that the 0.7-μm absorption near the equator (5°N–5°S) is stronger than that from 30°N to 30°S. We found that the excess of the absorption depth at low latitudes was 0.072%, corresponding to 2.7σ. The spectral analysis also shows that the Ryugu surface at low latitudes is bluer than that at high latitudes and bluer materials tend to show stronger 0.7-μm absorption than redder materials, suggesting that this region has been subjected to less space weathering and less solar heating.
  • Yuichiro Cho, Tomokatsu Morota, Masanori Kanamaru, Naofumi Takaki, Koki Yumoto, Carolyn M. Ernst, Masatoshi Hirabayashi, Olivier S. Barnouin, Eri Tatsumi, Katharina A. Otto, Nicole Schmitz, Roland J Wagner, Ralf Jaumann, Hideaki Miyamoto, Hiroshi Kikuchi, Ryodo Hemmi, Rie Honda, Shingo Kameda, Yasuhiro Yokota, Toru Kouyama, Hidehiko Suzuki, Manabu Yamada, Naoya Sakatani, Chikatoshi Honda, Masahiko Hayakawa, Kazuo Yoshioka, Moe Matsuoka, Tatsuhiro Michikami, Naru Hirata, Hirotaka Sawada, Kazunori Ogawa, Seiji Sugita
    EESOAr, Apr 19, 2021  
  • K. Wada, K. Ishibashi, H. Kimura, M. Arakawa, H. Sawada, K. Ogawa, K. Shirai, R. Honda, Y. Iijima, T. Kadono, N. Sakatani, Y. Mimasu, T. Toda, Y. Shimaki, S. Nakazawa, H. Hayakawa, T. Saiki, Y. Takagi, H. Imamura, C. Okamoto, M. Hayakawa, N. Hirata, H. Yano
    Astronomy & Astrophysics, 647 A43-A43, Mar, 2021  
    A projectile accelerated by the Hayabusa2 Small Carry-on Impactor successfully produced an artificial impact crater with a final apparent diameter of 14.5 ± 0.8 m on the surface of the near-Earth asteroid 162173 Ryugu on April 5, 2019. At the time of cratering, Deployable Camera 3 took clear time-lapse images of the ejecta curtain, an assemblage of ejected particles forming a curtain-like structure emerging from the crater. Focusing on the optical depth of the ejecta curtain and comparing it with a theoretical model, we infer the size of the ejecta particles. As a result, the typical size of the ejecta particles is estimated to be several centimeters to decimeters, although it slightly depends on the assumed size distribution. Since the ejecta particles are expected to come from a depth down to ~1 m, our result suggests that the subsurface layer of Ryugu is composed of relatively small particles compared to the uppermost layer on which we observe many meter-sized boulders. Our result also suggests a deficit of particles of less than ~1 mm in the subsurface layer. These findings will play a key role in revealing the formation and surface evolution process of Ryugu and other small Solar System bodies.
  • G. Nishiyama, T. Kawamura, N. Namiki, B. Fernando, K. Leng, K. Onodera, S. Sugita, T. Saiki, H. Imamura, Y. Takagi, H. Yano, M. Hayakawa, C. Okamoto, H. Sawada, Y. Tsuda, K. Ogawa, S. Nakazawa, Y. Iijima
    Journal of Geophysical Research: Planets, 126(2), Feb, 2021  
    Seismic shaking has been regarded as an essential source of resurfacing on asteroids. The Small Carry-on Impactor (SCI) operation on Hayabusa2 has been expected to be a unique opportunity for testing in situ seismic shaking whose energy is sufficiently large to excite observable surface modification. However, no obvious regolith hopping was identified even immediately outside of the crater formed by the SCI impact. To understand this discrepancy from the expectation, we simulate seismic wave propagation on Ryugu with a wide range of surface material properties and evaluate maximum acceleration on the surface. Numerical results reveal that low-quality factor or low seismic efficiency is required to explain the lack of geomorphological change after the SCI experiment. Considering that scattering under anhydrous conditions cannot efficiently dissipate energy, such a low-quality factor is not plausible. The weak yield strength in porous materials can efficiently decrease seismic wave energies, making the apparent seismic efficiency extremely low. Based on this hypothesis, we propose a formulation of surface mobility on asteroids that considers the physical properties of regolith. We consistently estimate the occurrence of seismic shaking with the existence of unstable boulders on Ryugu.
  • Hirotomo Noda, Hiroki Senshu, Koji Matsumoto, Noriyuki Namiki, Takahide Mizuno, Seiji Sugita, Shinsuke Abe, Hiroshi Araki, Kazuyoshi Asari, Yuichiro Cho, Atsushi Fujii, Masahiko Hayakawa, Arika Higuchi, Naoyuki Hirata, Naru Hirata, Chikatoshi Honda, Rie Honda, Yoshiaki Ishihara, Shingo Kameda, Shota Kikuchi, Toru Kouyama, Moe Matsuoka, Yuya Mimasu, Tomokatsu Morota, Satoru Nakazawa, Kazunori Ogawa, Naoko Ogawa, Go Ono, Shoko Oshigami, Takanao Saiki, Naoya Sakatani, Sho Sasaki, Hirotaka Sawada, Makoto Shizugami, Hidehiko Suzuki, Tadateru Takahashi, Yuto Takei, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Yuichi Tsuda, Seiitsu Tsuruta, Sei-ichiro Watanabe, Manabu Yamada, Ryuhei Yamada, Tomohiro Yamaguchi, Keiko Yamamoto, Yasuhiro Yokota, Fumi Yoshida, Kent Yoshikawa, Makoto Yoshikawa, Kazuo Yoshioka
    Earth, Planets and Space, 73(1), Jan 20, 2021  Peer-reviewed
    <title>Abstract</title>In this study, we determined the alignment of the laser altimeter aboard Hayabusa2 with respect to the spacecraft using in-flight data. Since the laser altimeter data were used to estimate the trajectory of the Hayabusa2 spacecraft, the pointing direction of the altimeter needed to be accurately determined. The boresight direction of the receiving telescope was estimated by comparing elevations of the laser altimeter data and camera images, and was confirmed by identifying prominent terrains of other datasets. The estimated boresight direction obtained by the laser link experiment in the winter of 2015, during the Earth’s gravity assist operation period, differed from the direction estimated in this study, which fell on another part of the candidate direction; this was not selected in a previous study. Assuming that the uncertainty of alignment determination of the laser altimeter boresight was 4.6 pixels in the camera image, the trajectory error of the spacecraft in the cross- and/or along-track directions was determined to be 0.4, 2.1, or 8.6 m for altitudes of 1, 5, or 20 km, respectively.
  • Rina Noguchi, Naoyuki Hirata, Naru Hirata, Yuri Shimaki, Naoki Nishikawa, Sayuri Tanaka, Takaaki Sugiyama, Tomokatsu Morota, Seiji Sugita, Yuichiro Cho, Rie Honda, Shingo Kameda, Eri Tatsumi, Kazuo Yoshioka, Hirotaka Sawada, Yasuhiro Yokota, Naoya Sakatani, Masahiko Hayakawa, Moe Matsuoka, Manabu Yamada, Toru Kouyama, Hidehiko Suzuki, Chikatoshi Honda, Kazunori Ogawa, Masanori Kanamaru, Sei-ichiro Watanabe
    Icarus, 354 114016-114016, Jan 15, 2021  Peer-reviewed
    © 2020 Elsevier Inc. The near-Earth asteroid 162173 Ryugu, the target of the Hayabusa2 mission, is noted to be a spinning top-shaped rubble-pile. Craters are among the most prominent surface features on Ryugu. Their shapes, particularly their depth-to-diameter ratio (d/D), can provide an important proxy for probing both the internal structure and surface processes of planetary bodies. Here, we report d/D of every impact crater on Ryugu using a shape model derived from stereo-photoclinometry. We found that the average, standard deviation, and observed range of d/D for the entire set of craters are 0.09, 0.02, and 0.03–0.15, respectively. Except for possible pit craters, the maximum d/D of large craters on Ryugu (D > 50 m) is close to 0.13, which is comparable with those of fresh simple craters on rocky asteroids, such as Gaspra and Ida. Conversely, the d/D of small craters (D < 50 m) increases with the crater diameter. This behavior implies that a smaller crater on Ryugu is formed as a shallower crater. As on Itokawa, the surface environment on Ryugu likely inhibits craters becoming deep. This especially affects smaller craters, as their normal small depth decreases in the Ryugu environment and they become still more shallow. As a result, small craters rapidly degrade beyond the point where they can be identified as candidate craters. This is likely responsible for the apparent lack of small craters. The d/D has no reliable relationship with the types of crater classification in Hirata et al. (2020). Examination of latitudinal and longitudinal variation in d/D of craters on Ryugu revealed no statistically significant trends.
  • K. Kitazato, R. E. Milliken, T. Iwata, M. Abe, M. Ohtake, S. Matsuura, Y. Takagi, T. Nakamura, T. Hiroi, M. Matsuoka, L. Riu, Y. Nakauchi, K. Tsumura, T. Arai, H. Senshu, N. Hirata, M. A. Barucci, R. Brunetto, C. Pilorget, F. Poulet, J.-P. Bibring, D. L. Domingue, F. Vilas, D. Takir, E. Palomba, A. Galiano, D. Perna, T. Osawa, M. Komatsu, A. Nakato, T. Arai, N. Takato, T. Matsunaga, M. Arakawa, T. Saiki, K. Wada, T. Kadono, H. Imamura, H. Yano, K. Shirai, M. Hayakawa, C. Okamoto, H. Sawada, K. Ogawa, Y. Iijima, S. Sugita, R. Honda, T. Morota, S. Kameda, E. Tatsumi, Y. Cho, K. Yoshioka, Y. Yokota, N. Sakatani, M. Yamada, T. Kouyama, H. Suzuki, C. Honda, N. Namiki, T. Mizuno, K. Matsumoto, H. Noda, Y. Ishihara, R. Yamada, K. Yamamoto, F. Yoshida, S. Abe, A. Higuchi, Y. Yamamoto, T. Okada, Y. Shimaki, R. Noguchi, A. Miura, N. Hirata, S. Tachibana, H. Yabuta, M. Ishiguro, H. Ikeda, H. Takeuchi, T. Shimada, O. Mori, S. Hosoda, R. Tsukizaki, S. Soldini, M. Ozaki, F. Terui, N. Ogawa, Y. Mimasu, G. Ono, K. Yoshikawa, C. Hirose, A. Fujii, T. Takahashi, S. Kikuchi, Y. Takei, T. Yamaguchi, S. Nakazawa, S. Tanaka, M. Yoshikawa, S. Watanabe, Y. Tsuda
    Nature Astronomy, 5(3) 246-250, Jan 4, 2021  Peer-reviewed
  • E. Tatsumi, C. Sugimoto, L. Riu, S. Sugita, T. Nakamura, T. Hiroi, T. Morota, M. Popescu, T. Michikami, K. Kitazato, M. Matsuoka, S. Kameda, R. Honda, M. Yamada, N. Sakatani, T. Kouyama, Y. Yokota, C. Honda, H. Suzuki, Y. Cho, K. Ogawa, M. Hayakawa, H. Sawada, K. Yoshioka, C. Pilorget, M. Ishida, D. Domingue, N. Hirata, S. Sasaki, J. de León, M. A. Barucci, P. Michel, M. Suemitsu, T. Saiki, S. Tanaka, F. Terui, S. Nakazawa, S. Kikuchi, T. Yamaguchi, N. Ogawa, G. Ono, Y. Mimasu, K. Yoshikawa, T. Takahashi, Y. Takei, A. Fujii, Y. Yamamoto, T. Okada, C. Hirose, S. Hosoda, O. Mori, T. Shimada, S. Soldini, R. Tsukizaki, T. Mizuno, T. Iwata, H. Yano, M. Ozaki, M. Abe, M. Ohtake, N. Namiki, S. Tachibana, M. Arakawa, H. Ikeda, M. Ishiguro, K. Wada, H. Yabuta, H. Takeuchi, Y. Shimaki, K. Shirai, N. Hirata, Y. Iijima, Y. Tsuda, S. Watanabe, M. Yoshikawa
    Nature Astronomy, 5(1) 39-45, Jan, 2021  Peer-reviewed
    The asteroid (162173) Ryugu and other rubble-pile asteroids are likely re-accumulated fragments of much larger parent bodies that were disrupted by impacts. However, the collisional and orbital pathways from the original parent bodies to subkilometre rubble-pile asteroids are not yet well understood1–3. Here we use Hayabusa2 observations to show that some of the bright boulders on the dark, carbonaceous (C-type) asteroid Ryugu4 are remnants of an impactor with a different composition as well as an anomalous portion of its parent body. The bright boulders on Ryugu can be classified into two spectral groups: most are featureless and similar to Ryugu’s average spectrum4,5, while others show distinct compositional signatures consistent with ordinary chondrites—a class of meteorites that originate from anhydrous silicate-rich asteroids6. The observed anhydrous silicate-like material is likely the result of collisional mixing between Ryugu’s parent body and one or multiple anhydrous silicate-rich asteroid(s) before and during Ryugu’s formation. In addition, the bright boulders with featureless spectra and less ultraviolet upturn are consistent with thermal metamorphism of carbonaceous meteorites7,8. They might sample different thermal-metamorphosed regions, which the returned sample will allow us to verify. Hence, the bright boulders on Ryugu provide new insights into the collisional evolution and accumulation of subkilometre rubble-pile asteroids.
  • Motoo Ito, Yoshinori Takano, Yoko Kebukawa, Takuji Ohigashi, Moe Matsuoka, Kento Kiryu, Masayuki Uesugi, Tomoki Nakamura, Hayato Yuzawa, Keita Yamada, Hiroshi Naraoka, Toru Yada, Masanao Abe, Masahiko Hayakawa, Takanao Saiki, Shogo Tachibana
    GEOCHEMICAL JOURNAL, 55(4) 223-239, 2021  Peer-reviewed
    We have analyzed the carbonaceous materials generated by the explosion of an High-melting explosive mixture in an Ar atmosphere in a laboratory simulation of the small carry-on impactor experiment. We used both non-destructive and destructive analytical techniques to identify the chemical nature of the materials. From SEM-EDS, we found the materials to be composed mainly of carbon, nitrogen, and oxygen, with a detectable amount of metals. Suitable parameters for identifying these materials are a FTIR peak at 1520 cm(-1), low reflectance and gentle red slope of FTIR spectrum compared with the Murchison CM2 chondrite, the Raman D and G bands, and the hydrogen, carbon, and nitrogen isotopic compositions and their spatial distributions. The scanning transmission X-ray microscopy (STXM)-XANES results provided information about the molecular nature of these highly aromatic materials, which was supported by results from TD-GC/MS. These results suggest that it is possible to distinguish Ryugu samples from SCI potential contaminants in a sample container by using proper combinations of analytical techniques. This assessment provides information that will be useful for the analysis of the Ryugu asteroidal samples.
  • Yuto Takei, Takanao Saiki, Yukio Yamamoto, Yuya Mimasu, Hiroshi Takeuchi, Hitoshi Ikeda, Naoko Ogawa, Fuyuto Terui, Go Ono, Kent Yoshikawa, Tadateru Takahashi, Hirotaka Sawada, Chikako Hirose, Shota Kikuchi, Atsushi Fujii, Takahiro Iwata, Satoru Nakazawa, Masahiko Hayakawa, Ryudo Tsukizaki, Satoshi Tanaka, Masanori Matsushita, Osamu Mori, Daiki Koda, Takanobu Shimada, Masanobu Ozaki, Masanao Abe, Satoshi Hosoda, Tatsuaki Okada, Hajime Yano, Takaaki Kato, Seiji Yasuda, Kota Matsushima, Tetsuya Masuda, Makoto Yoshikawa, Yuichi Tsuda
    Astrodynamics, 4(4) 349-375, Dec, 2020  
  • K A Otto, K-D Matz, S E Schröder, R Parekh, K Krohn, R Honda, S Kameda, R Jaumann, N Schmitz, K Stephan, S Sugita, E Tatsumi, T-M Ho, A Koncz, F Trauthan, Y Cho, M Hayakawa, C Honda, T Kouyama, M Matsuoka, T Morota, S Mottola, K Ogawa, F Preusker, N Sakatani, H Sawada, F Scholten, H Suzuki, M Yamada, Y Yokota, K Yoshioka
    Monthly Notices of the Royal Astronomical Society, 500(3) 3178-3193, Dec 1, 2020  Peer-reviewed
    <title>ABSTRACT</title> Alteration processes on asteroid and comet surfaces, such as thermal fracturing, (micrometeorite) impacts or volatile outgassing, are complex mechanisms that form diverse surface morphologies and roughness on various scales. These mechanisms and their interaction may differ on the surfaces of different bodies. Asteroid Ryugu and comet 67P/Churyumov–Gerasimenko, both, have been visited by landers that imaged the surfaces in high spatial resolution. We investigate the surface morphology and roughness of Ryugu and 67P/Churyumov–Gerasimenko based on high-resolution in situ images of 0.2 and 0.8 mm pixel resolution over an approximately 25 and 80 cm wide scene, respectively. To maintain comparability and reproducibility, we introduce a method to extract surface roughness descriptors (fractal dimension, Hurst exponent, joint roughness coefficient, root-mean-square slope, hemispherical crater density, small-scale roughness parameter, and Hapke mean slope angle) from in situ planetary images illuminated by LEDs. We validate our method and choose adequate parameters for an analysis of the roughness of the surfaces. We also derive the roughness descriptors from 3D shape models of Ryugu and orbiter camera images and show that the higher spatially resolved images result in a higher roughness. We find that 67P/Churyumov–Gerasimenko is up to 6 per cent rougher than Ryugu depending on the descriptor used and attribute this difference to the different intrinsic properties of the materials imaged and the erosive processes altering them. On 67P/Churyumov–Gerasimenko sublimation appears to be the main cause for roughness, while on Ryugu micrometeoroid bombardment as well as thermal fatigue and solar weathering may play a significant role in shaping the surface.
  • Shota Kikuchi, Sei-ichiro Watanabe, Takanao Saiki, Hikaru Yabuta, Seiji Sugita, Tomokatsu Morota, Naru Hirata, Naoyuki Hirata, Tatsuhiro Michikami, Chikatoshi Honda, Yashuhiro Yokota, Rie Honda, Naoya Sakatani, Tatsuaki Okada, Yuri Shimaki, Koji Matsumoto, Rina Noguchi, Yuto Takei, Fuyuto Terui, Naoko Ogawa, Kent Yoshikawa, Go Ono, Yuya Mimasu, Hirotaka Sawada, Hitoshi Ikeda, Chikako Hirose, Tadateru Takahashi, Atsushi Fujii, Tomohiro Yamaguchi, Yoshiaki Ishihara, Tomoki Nakamura, Kohei Kitazato, Koji Wada, Shogo Tachibana, Eri Tatsumi, Moe Matsuoka, Hiroki Senshu, Shingo Kameda, Toru Kouyama, Manabu Yamada, Kei Shirai, Yuichiro Cho, Kazunori Ogawa, Yukio Yamamoto, Akira Miura, Takahiro Iwata, Noriyuki Namiki, Masahiko Hayakawa, Masanao Abe, Satoshi Tanaka, Makoto Yoshikawa, Satoru Nakazawa, Yuichi Tsuda
    Space Science Reviews, 216(7), Oct 15, 2020  Peer-reviewed
    One of the primary goals of Hayabusa2 is to land on the asteroid Ryugu to collect its surface materials. The key for a successful touchdown is to find a promising landing site that meets both scientific and engineering requirements. Due to the limited availability of pre-arrival information about Ryugu, the landing site selection (LSS) must be conducted based on proximity observations over a limited length of time. In addition, Ryugu was discovered to possess an unexpectedly high abundance of boulders with an absence of wide and flat areas, further complicating the LSS. To resolve these problems, we developed a systematic and stepwise LSS process with a focus on the surface topography of Ryugu and the associated touchdown safety. The proposed LSS scheme consists of two phases: Phase-I LSS, a comprehensive survey of potential landing areas at the 100-m scale based on the global mapping of Ryugu, and Phase-II LSS, a narrowing-down process of the candidate landing sites at the 10-m scale using high-resolution images and a local terrain model. To verify the feasibility of a precision landing at the target site, we also investigated the landing dispersion via a Monte Carlo simulation, which incorporates the effect of the irregular surface gravity field. One of the major characteristics of the Hayabusa2 LSS developed in this study is the iterative feedback between LSS analyses on the ground and actual spacecraft operations near the target asteroid. Using the newly developed method, we chose a landing site with a radius of 3 m, and Hayabusa2 successfully conducted its first touchdown on February 21, 2019. This paper reports the methodology and results of the stepwise iterative LSS for the first Hayabusa2 touchdown. The touchdown operation results reconstructed from flight data are also provided, demonstrating the validity of the adopted LSS strategy.
  • E. Tatsumi, D. Domingue, S. Schröder, Y. Yokota, D. Kuroda, M. Ishiguro, S. Hasegawa, T. Hiroi, R. Honda, R. Hemmi, L. Le Corre, N. Sakatani, T. Morota, M. Yamada, S. Kameda, T. Koyama, H. Suzuki, Y. Cho, K. Yoshioka, M. Matsuoka, C. Honda, M. Hayakawa, N. Hirata, N. Hirata, Y. Yamamoto, F. Vilas, N. Takato, M. Yoshikawa, M. Abe, S. Sugita
    Astronomy & Astrophysics, 639 A83-A83, Jul 13, 2020  Peer-reviewed
    <italic>Context.</italic> The Hayabusa2 spacecraft launched by Japan Aerospace Exploration Agency has been conducting observations of the asteroid (162173) Ryugu since June 2018. The Telescopic Optical Navigation Camera (ONC-T) onboard Hayabusa2 has obtained thousands of images under a variety of illumination and viewing conditions. <italic>Aims.</italic> Our objective is to examine and validate the camera calibration, derive a photometric correction for creating global albedo maps, and to interpret the photometric modeling results to characterize the surface of Ryugu. <italic>Methods.</italic> We observed (162173) Ryugu with the Gemini-South telescope, and combined these measurements with other published ground-based observations of the asteroid. The ground-based observations were compared with the data obtained by ONC-T in order to validate the radiometric calibration mutually. We used a combination of the Hapke disk-integrated and disk-resolved model equations to simultaneously analyze the combined ground- and spacecraft-based data. <italic>Results.</italic> The average spectrum of Ryugu was classified as Cb-type following the SMASSII taxonomy and C/F-type following the Tholen taxonomy based on spacecraft observations. We derived Hapke model parameters for all seven color filters, which allowed us to photometrically correct images to within an error of &lt;10% for ~80% of the image pixels used in the modeling effort. Using this model, we derived a geometric albedo of 4.0 ± 0.5% (<italic>v</italic> band) for Ryugu. The average reflectance factor at the standard illumination condition was 1.87 ± 0.14% in the <italic>v</italic> band. Moreover we measured a phase reddening of (2.0 ± 0.7) × 10−3 <italic>μ</italic>m−1 deg−1 for Ryugu, similar to that observed for the asteroid (101955) Bennu. <italic>Conclusions.</italic> The global color map showed that the general trend was for darker regions to also be redder regions, however there were some distinct exceptions to this trend. For example, Otohime Saxum was bright and red while Kibidango crater was dark and blue. The darkness and flatness of Ryugu’s reflectance might be caused by a high abundance of organic materials.
  • T. Morota, S. Sugita, Y. Cho, M. Kanamaru, E. Tatsumi, N. Sakatani, R. Honda, N. Hirata, H. Kikuchi, M. Yamada, Y. Yokota, S. Kameda, M. Matsuoka, H. Sawada, C. Honda, T. Kouyama, K. Ogawa, H. Suzuki, K. Yoshioka, M. Hayakawa, N. Hirata, M. Hirabayashi, H. Miyamoto, T. Michikami, T. Hiroi, R. Hemmi, O. S. Barnouin, C. M. Ernst, K. Kitazato, T. Nakamura, L. Riu, H. Senshu, H. Kobayashi, S. Sasaki, G. Komatsu, N. Tanabe, Y. Fujii, T. Irie, M. Suemitsu, N. Takaki, C. Sugimoto, K. Yumoto, M. Ishida, H. Kato, K. Moroi, D. Domingue, P. Michel, C. Pilorget, T. Iwata, M. Abe, M. Ohtake, Y. Nakauchi, K. Tsumura, H. Yabuta, Y. Ishihara, R. Noguchi, K. Matsumoto, A. Miura, N. Namiki, S. Tachibana, M. Arakawa, H. Ikeda, K. Wada, T. Mizuno, C. Hirose, S. Hosoda, O. Mori, T. Shimada, S. Soldini, R. Tsukizaki, H. Yano, M. Ozaki, H. Takeuchi, Y. Yamamoto, T. Okada, Y. Shimaki, K. Shirai, Y. Iijima, H. Noda, S. Kikuchi, T. Yamaguchi, N. Ogawa, G. Ono, Y. Mimasu, K. Yoshikawa, T. Takahashi, Y. Takei, A. Fujii, S. Nakazawa, F. Terui, S. Tanaka, M. Yoshikawa, T. Saiki, S. Watanabe, Y. Tsuda
    Science, 368(6491) 654-659, May 8, 2020  Peer-reviewed
    The near-Earth asteroid (162173) Ryugu is thought to be a primitive carbonaceous object that contains hydrated minerals and organic molecules. We report sample collection from Ryugu’s surface by the Hayabusa2 spacecraft on 21 February 2019. Touchdown images and global observations of surface colors are used to investigate the stratigraphy of the surface around the sample location and across Ryugu. Latitudinal color variations suggest the reddening of exposed surface material by solar heating and/or space weathering. Immediately after touchdown, Hayabusa2’s thrusters disturbed dark, fine grains that originate from the redder materials. The stratigraphic relationship between identified craters and the redder material indicates that surface reddening occurred over a short period of time. We suggest that Ryugu previously experienced an orbital excursion near the Sun.
  • M. Arakawa, T. Saiki, K. Wada, K. Ogawa, T. Kadono, K. Shirai, H. Sawada, K. Ishibashi, R. Honda, N. Sakatani, Y. Iijima, C. Okamoto, H. Yano, Y. Takagi, M. Hayakawa, P. Michel, M. Jutzi, Y. Shimaki, S. Kimura, Y. Mimasu, T. Toda, H. Imamura, S. Nakazawa, H. Hayakawa, S. Sugita, T. Morota, S. Kameda, E. Tatsumi, Y. Cho, K. Yoshioka, Y. Yokota, M. Matsuoka, M. Yamada, T. Kouyama, C. Honda, Y. Tsuda, S. Watanabe, M. Yoshikawa, S. Tanaka, F. Terui, S. Kikuchi, T. Yamaguchi, N. Ogawa, G. Ono, K. Yoshikawa, T. Takahashi, Y. Takei, A. Fujii, H. Takeuchi, Y. Yamamoto, T. Okada, C. Hirose, S. Hosoda, O. Mori, T. Shimada, S. Soldini, R. Tsukizaki, T. Iwata, M. Ozaki, M. Abe, N. Namiki, K. Kitazato, S. Tachibana, H. Ikeda, N. Hirata, N. Hirata, R. Noguchi, A. Miura
    Science, 368(6486) 67-71, Apr 3, 2020  Peer-reviewed
    The Hayabusa2 spacecraft investigated the small asteroid Ryugu, which has a rubble-pile structure. We describe an impact experiment on Ryugu using Hayabusa2’s Small Carry-on Impactor. The impact produced an artificial crater with a diameter &gt;10 meters, which has a semicircular shape, an elevated rim, and a central pit. Images of the impact and resulting ejecta were recorded by the Deployable CAMera 3 for &gt;8 minutes, showing the growth of an ejecta curtain (the outer edge of the ejecta) and deposition of ejecta onto the surface. The ejecta curtain was asymmetric and heterogeneous and it never fully detached from the surface. The crater formed in the gravity-dominated regime; in other words, crater growth was limited by gravity not surface strength. We discuss implications for Ryugu’s surface age.
  • Tatsuaki Okada, Tetsuya Fukuhara, Satoshi Tanaka, Makoto Taguchi, Takehiko Arai, Hiroki Senshu, Naoya Sakatani, Yuri Shimaki, Hirohide Demura, Yoshiko Ogawa, Kentaro Suko, Tomohiko Sekiguchi, Toru Kouyama, Jun Takita, Tsuneo Matsunaga, Takeshi Imamura, Takehiko Wada, Sunao Hasegawa, Jörn Helbert, Thomas G. Müller, Axel Hagermann, Jens Biele, Matthias Grott, Maximilian Hamm, Marco Delbo, Naru Hirata, Naoyuki Hirata, Yukio Yamamoto, Seiji Sugita, Noriyuki Namiki, Kohei Kitazato, Masahiko Arakawa, Shogo Tachibana, Hitoshi Ikeda, Masateru Ishiguro, Koji Wada, Chikatoshi Honda, Rie Honda, Yoshiaki Ishihara, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Akira Miura, Tomokatsu Morota, Hirotomo Noda, Rina Noguchi, Kazunori Ogawa, Kei Shirai, Eri Tatsumi, Hikaru Yabuta, Yasuhiro Yokota, Manabu Yamada, Masanao Abe, Masahiko Hayakawa, Takahiro Iwata, Masanobu Ozaki, Hajime Yano, Satoshi Hosoda, Osamu Mori, Hirotaka Sawada, Takanobu Shimada, Hiroshi Takeuchi, Ryudo Tsukizaki, Atsushi Fujii, Chikako Hirose, Shota Kikuchi, Yuya Mimasu, Naoko Ogawa, Go Ono, Tadateru Takahashi, Yuto Takei, Tomohiro Yamaguchi, Kent Yoshikawa, Fuyuto Terui, Takanao Saiki, Satoru Nakazawa, Makoto Yoshikawa, Seiichiro Watanabe, Yuichi Tsuda
    Nature, 579(7800) 518-522, Mar, 2020  Peer-reviewed
    Carbonaceous (C-type) asteroids1 are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites2,3 and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth's atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR)4 onboard the spacecraft Hayabusa25, indicating that the asteroid's boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m-2 s-0.5 K-1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites6 and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect7,8. We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites6. These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity9 of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies10.
  • Naoyuki Hirata, Tomokatsu Morota, Yuichiro Cho, Masanori Kanamaru, Sei-ichiro Watanabe, Seiji Sugita, Naru Hirata, Yukio Yamamoto, Rina Noguchi, Yuri Shimaki, Eri Tatsumi, Kazuo Yoshioka, Hirotaka Sawada, Yasuhiro Yokota, Naoya Sakatani, Masahiko Hayakawa, Moe Matsuoka, Rie Honda, Shingo Kameda, Manabu Yamada, Toru Kouyama, Hidehiko Suzuki, Chikatoshi Honda, Kazunori Ogawa, Yuichi Tsuda, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Shota Kikuchi, Tomohiro Yamaguchi, Naoko Ogawa, Go Ono, Yuya Mimasu, Kent Yoshikawa, Tadateru Takahashi, Yuto Takei, Atsushi Fujii, Hiroshi Takeuchi, Tatsuaki Okada, Kei Shirai, Yu-ichi Iijima
    Icarus, 338 113527-113527, Mar, 2020  Peer-reviewed
    Asteroid 162173 Ryugu has numerous craters. The initial measurement of impact craters on Ryugu, by Sugita et al. (2019), is based on Hayabusa2 ONC images obtained during the first month after the arrival of Hayabusa2 in June 2018. Utilizing new images taken until February 2019, we constructed a global impact crater catalogue of Ryugu, which includes all craters larger than 20 m in diameter on the surface of Ryugu. As a result, we identified 77 craters on the surface of Ryugu. Ryugu shows variation in crater density which cannot be explained by the randomness of cratering; there are more craters at lower latitudes and fewer at higher latitudes, and fewer craters in the western bulge (160 degrees E - 290 degrees E) than in the region around the meridian (300 degrees E - 30 degrees E). This variation implies a complicated geologic history for Ryugu. It seems that the variation in crater density indicates that the equatorial ridge located in the western hemisphere is relatively young, while that located in the eastern hemisphere is a fossil structure formed during the short rotational period in the distant past.
  • F. Preusker, F. Scholten, S. Elgner, K. D. Matz, S. Kameda, T. Roatsch, R. Jaumann, S. Sugita, R. Honda, T. Morota, E. Tatsumi, Y. Cho, K. Yoshioka, H. Sawada, Y. Yokota, N. Sakatani, M. Hayakawa, M. Matsuoka, M. Yamada, T. Kouyama, H. Suzuki, C. Honda, K. Ogawa
    Astronomy and Astrophysics, 632, Dec 1, 2019  
    A high-resolution 3D surface model, map-projected to a digital terrain model (DTM), and precisely ortho-rectified context images (orthoimages) of MASCOT landing site area are important data sets for the scientific analysis of relevant data that have been acquired with MASCOT's image camera system MASCam and other instruments (e.g., the radiometer MARA and the magnetometer MASMag). We performed a stereo-photogrammetric (SPG) analysis of 1050 images acquired from the Hayabusa2 Optical Navigation Camera system (ONC) during the asteroid characterization phase and the MASCOT release phase in early October 2018 to construct a photogrammetric control point network of asteroid (162173) Ryugu. We validated existing rotational parameters for Ryugu and improved the camera orientation (position and pointing) of the ONC images to decimeter accuracy using SPG bundle block adjustment. We produced a high-resolution DTM of the entire MASCOT landing site area. Finally, based on this DTM, a set of orthoimages from the highest-resolution ONC images around MASCOT's final rest position complements the results of this analysis.
  • F. Scholten, F. Preusker, S. Elgner, K. D. Matz, R. Jaumann, J. Biele, D. Hercik, H. U. Auster, M. Hamm, M. Grott, C. Grimm, T. M. Ho, A. Koncz, N. Schmitz, F. Trauthan, S. Kameda, S. Sugita, R. Honda, T. Morota, E. Tatsumi, Y. Cho, K. Yoshioka, H. Sawada, Y. Yokota, N. Sakatani, M. Hayakawa, M. Matsuoka, M. Yamada, T. Kouyama, H. Suzuki, C. Honda, K. Ogawa
    Astronomy and Astrophysics, 632, Dec 1, 2019  
    Images from the Optical Navigation Camera system (ONC) onboard the Hayabusa2 spacecraft show the MASCOT lander during its descent to the surface of asteroid (162173) Ryugu. We used results from a previous stereo-photogrammetric analysis that provided precise ONC image orientation data (camera position and pointing), ONC orthoimages, and an ONC-based 3D surface model to combine them with the visibilities of MASCOT itself and its shadow on-ground within the ONC images. We integrated additional information from instruments onboard MASCOT (MASMag, MARA, MASCam) and derived MASCOT's release position and modeled its free-fall descent path and its velocity over 350 s from its release at ∼41 m altitude above ground until its first contact with the surface of Ryugu. After first contact, MASCOT bounced over the surface of Ryugu for 663 s and came to rest at its first settlement point after four intermediate surface contacts. We again used ONC images that show MASCOT and partly its shadow and reconstructed the bouncing path and the respective velocities of MASCOT. The achieved accuracy for the entire descent and bouncing path is ∼0.1 m (1σ).
  • Tatsuhiro Michikami, Chikatoshi Honda, Hideaki Miyamoto, Masatoshi Hirabayashi, Axel Hagermann, Terunori Irie, Keita Nomura, Carolyn M. Ernst, Masaki Kawamura, Kiichi Sugimoto, Eri Tatsumi, Tomokatsu Morota, Naru Hirata, Takaaki Noguchi, Yuichiro Cho, Shingo Kameda, Toru Kouyama, Yasuhiro Yokota, Rina Noguchi, Masahiko Hayakawa, Naoyuki Hirata, Rie Honda, Moe Matsuoka, Naoya Sakatani, Hidehiko Suzuki, Manabu Yamada, Kazuo Yoshioka, Hirotaka Sawada, Ryodo Hemmi, Hiroshi Kikuchi, Kazunori Ogawa, Sei-ichiro Watanabe, Satoshi Tanaka, Makoto Yoshikawa, Yuichi Tsuda, Seiji Sugita
    Icarus, 331 179-191, Oct, 2019  Peer-reviewed
    In 2018, the Japanese spacecraft Hayabusa2, arrived at the small asteroid Ryugu. The surface of this C-type asteroid is covered with numerous boulders whose size and shape distributions are investigated in this study. Using a few hundred Optical Navigation Camera (ONC) images with a pixel scale of approximately 0.65 m, we focus on boulders greater than 5 m in diameter. Smaller boulders are also considered using five arbitrarily chosen ONC close-up images with pixel scales ranging from 0.7 to 6 cm. Across the entire surface area (~2.7 km ) of Ryugu, nearly 4400 boulders larger than 5 m were identified. Boulders appear to be uniformly distributed across the entire surface, with some slight differences in latitude and longitude. At ~50 km , the number density of boulders larger than 20 m is twice as large as on asteroid Itokawa (or Bennu). The apparent shapes of Ryugu's boulders resemble laboratory impact fragments, with larger boulders being more elongated. The ratio of the total volume of boulders larger than 5 m to the total excavated volume of craters larger than 20 m on Ryugu can be estimated to be ~94%, which is comparatively high. These observations strongly support the hypothesis that most boulders found on Ryugu resulted from the catastrophic disruption of Ryugu's larger parent body, as described in previous papers (Watanabe et al., 2019; Sugita et al., 2019). The cumulative size distribution of boulders larger than 5 m has a power-index of −2.65 ± 0.05, which is comparatively shallow compared with other asteroids visited by spacecraft. For boulders smaller than 4 m, the power-index is even shallower and ranges from −1.65 ± 0.05 to −2.01 ± 0.06. This particularly shallow power-index implies that some boulders are buried in Ryugu's regolith. Based on our observations, we suggest that boulders near the equator might have been buried by the migration of finer material and, as a result, the number density of boulders larger than 5 m in the equatorial region is lower than at higher latitudes. 2 −2
  • M. A. Barucci, P. H. Hasselmann, M. Fulchignoni, R. Honda, Y. Yokota, S. Sugita, K. Kitazato, J. D. P. Deshapriya, D. Perna, E. Tatsumi, D. Domingue, T. Morota, S. Kameda, T. Iwata, M. Abe, M. Ohtake, S. Matsuura, M. Matsuoka, T. Hiroi, T. Nakamura, T. Kouyama, H. Suzuki, M. Yamada, N. Sakatani, C. Honda, K. Ogawa, M. Hayakawa, K. Yoshioka, Y. Cho, H. Sawada, D. Takir, F. Vilas, N. Hirata, N. Hirata, S. Tanaka, Y. Yamamoto, M. Yoshikawa, S. Watanabe, Y. Tsuda
    Astronomy & Astrophysics, 629 A13-A13, Sep, 2019  Peer-reviewed
    <italic>Context.</italic> Starting from late June 2018, the JAXA asteroid sample return mission Hayabusa2 acquired a large quantity of resolved images and spectra of the surface of the asteroid (162173) Ryugu. <italic>Aims.</italic> By studying the visible and near-infrared spectral behavior across the surface of Ryugu using a statistical analysis, we aim to distinguish spectral homogeneous groups and to detect the small heterogeneities. This allows us to better constrain the surface composition variations. <italic>Methods.</italic> In order to isolate and interpret the difference in the asteroid surface spectral behavior, we applied the <italic>G</italic>-mode multivariate statistical analysis to a set of pixels containing information of (i) the visible ONC-T spectrophotometry, and (ii) the near-infrared NIRS3 spectra thereby obtaining automatic statistical clustering at different confidence levels. <italic>Results.</italic> The analysis of both ONC-T and NIRS3 data allows us to highlight small spectral variations on the Ryugu surface. At a 3<italic>σ</italic> confidence level, only two groups are evident, while going down to 2<italic>σ</italic> more groups are obtained with differences in spectral slope and band depth. <italic>Conclusions.</italic> The identified groups have been associated with main morphological surface features. The spectral slope variations that characterize the small groups obtained by ONC-T data analysis, are interpreted as a consequence of space weathering with the presence of more or less fresh material and/or the different grain sizes of the regolith. The variations found analyzing the NIRS3 data are attributed to slightly different contents of hydrated material and different regolith sizes. The distribution on the Ryugu surface of the groups obtained by the analysis of the two instruments indicates a clear spectral dichotomy both between the east and west, and the north and south hemispheres. Small sized regolith grains associated to the redder spectra seem concentrated in the southwestern part of the body.
  • Eri Tatsumi, Toru Kouyama, Hidehiko Suzuki, Manabu Yamada, Naoya Sakatani, Shingo Kameda, Yasuhiro Yokota, Rie Honda, Tomokatsu Morota, Keiichi Moroi, Naoya Tanabe, Hiroaki Kamiyoshihara, Marika Ishida, Kazuo Yoshioka, Hiroyuki Sato, Chikatoshi Honda, Masahiko Hayakawa, Kohei Kitazato, Hirotaka Sawada, Seiji Sugita
    Icarus, 325 153-195, Jun, 2019  Peer-reviewed
    The Optical Navigation Cameras (ONC-T, ONC-W1, ONC-W2) onboard Hayabusa2 are also being used for scientific observations of the mission target, C-complex asteroid 162173 Ryugu. Science observations and analyses require rigorous instrument calibrations. In order to meet this requirement, we have conducted extensive inflight observations during the 3.5 years of cruise after the launch of Hayabusa2 on 3 December 2014. In addition to the first inflight calibrations by Suzuki et al. (2018), we conducted an additional series of calibrations, including read-out smear, electronic-interference noise, bias, dark current, hot pixels, sensitivity, linearity, flat-field, and stray light measurements for the ONC. Moreover, the calibrations, especially flat-fields and sensitivities, of ONC-W1 and -W2 are updated for the analysis of the low-altitude (i.e., high-resolution) observations, such as the gravity measurement, touchdowns, and the descents for MASCOT and MINERVA-II payload releases. The radiometric calibration for ONC-T is also updated in this study based on star and Moon observations. Our updated inflight sensitivity measurements suggest the accuracy of the absolute radiometric calibration contains <1.8% error for the ul-, b-, v-, Na-, w-, and x-bands based on star calibration observations and ~5% for the p-band based on lunar calibration observations. The radiance spectra of the Moon, Jupiter, and Saturn from the ONC-T show good agreement with the spacecraft-based observations of the Moon from SP/SELENE and WAC/LROC and with ground-based telescopic observations for Jupiter and Saturn. Our calibration results suggest that the 0.7-μm absorption band typically observed on Ch and Cgh asteroids at the ~3–4% level can be detected with the ONC's signal-to-noise ratio (SNR) of ~2. We also demonstrate a decrease in SNR due to CCD temperature increases caused by radiant heat when the spacecraft is close to the surface, as the SNR is measured to be 150 at a CCD temperature of 20 °C (the worst case scenario). Since Ryugu may possess a significant amount of internal volatiles, a sodium atmosphere around Ryugu is considered to be highly plausible. We evaluated the upper limit of detectability of a sodium atmosphere around Jupiter using the Na-filter as 100 R with 100 images. This implies that the ONC-T can detect a sodium atmosphere of several 10s kR based on a single image set of v- and Na-bands and of several 100 s R based on 100 image sets. Finally, we report the first inflight observation of Ryugu by ONC-T from 1.3 × 10 6 km away on 26 February 2018. The ONC-T v-band photometric observation displays consistency with ground-based observation, which confirms the capability of ONC-T.
  • Masatoshi Hirabayashi, Eri Tatsumi, Hideaki Miyamoto, Goro Komatsu, Seiji Sugita, Sei-ichiro Watanabe, Daniel J. Scheeres, Olivier S. Barnouin, Patrick Michel, Chikatoshi Honda, Tatsuhiro Michikami, Yuichiro Cho, Tomokatsu Morota, Naru Hirata, Naoyuki Hirata, Naoya Sakatani, Stephen R. Schwartz, Rie Honda, Yasuhiro Yokota, Shingo Kameda, Hidehiko Suzuki, Toru Kouyama, Masahiko Hayakawa, Moe Matsuoka, Kazuo Yoshioka, Kazunori Ogawa, Hirotaka Sawada, Makoto Yoshikawa, Yuichi Tsuda
    The Astrophysical Journal, 874(1) L10-L10, Mar 26, 2019  Peer-reviewed
    162173 Ryugu, the target of Hayabusa2, has a round shape with an equatorial ridge, which is known as a spinning top shape. A strong centrifugal force is a likely contributor to Ryugu's top-shaped features. Observations by the Optical Navigation Camera on board Hayabusa2 show a unique longitudinal variation in geomorphology; the western side of this asteroid, later called the western bulge, has a smooth surface and a sharp equatorial ridge, compared to the other side. Here, we propose a structural deformation process that generated the western bulge. Applying the mission-derived shape model, we employ a finite element model technique to analyze the locations that experience structural failure within the present shape. Assuming that materials are uniformly distributed, our model shows the longitudinal variation in structurally failed regions when the spin period is shorter than ∼3.75 hr. Ryugu is structurally intact in the subsurface region of the western bulge while other regions are sensitive to structural failure. We infer that this variation is indicative of the deformation process that occurred in the past, and the western bulge is more relaxed structurally than the other region. Our analysis also shows that this deformation process might occur at a spin period between ∼3.5 and ∼3.0 hr, providing the cohesive strength ranging between ∼4 and ∼10 Pa.

Misc.

 55
  • 津村耕司, 松浦周二, 佐野圭, 岩田隆浩, 岩田隆浩, 矢野創, 矢野創, 北里宏平, 瀧本幸司, 山田学, 諸田智克, 神山徹, 早川雅彦, 横田康弘, 巽瑛理, 松岡萌, 坂谷尚哉, 本田理恵, 亀田真吾, 鈴木秀彦, 長勇一郎, 吉岡和夫, 小川和律, 白井慶, 澤田弘崇, 杉田精司, 杉田精司
    日本惑星科学会秋季講演会予稿集(Web), 2023, 2023  
  • 佐々木晶, 神田志穂, 菊地紘, 道上達広, 諸田智克, 本田親寿, 宮本英昭, 逸見良道, 杉田精司, 巽瑛理, 渡邊誠一郎, 竝木則行, 平林正稔, 平田成, 中村智樹, 野口高明, 廣井孝弘, 松本晃治, 野田寛大, 坂谷尚哉, 亀田真吾, 神山徹, 鈴木秀彦, 山田学, 本田理恵, 横田康弘, 長勇一郎, 吉岡和夫, 早川雅彦, 松岡萌, 金丸仁明, 澤田弘崇, 吉川真
    日本惑星科学会秋季講演会予稿集(Web), 2020, 2020  
  • 嶌生有理, 荒川政彦, 佐伯孝尚, 門野敏彦, 高木靖彦, 和田浩二, 飯島祐一, 今村裕志, 岡本千里, 白井慶, 中澤暁, 早川雅彦, 平田成, 矢野創
    衝撃波シンポジウム講演論文集(CD-ROM), 2019, 2020  
  • 和田浩二, 石橋高, 木村宏, 荒川政彦, 澤田弘崇, 小川和律, 白井慶, 本田理恵, 飯島祐一, 門野敏彦, 坂谷尚哉, 三桝裕也, 戸田知朗, 嶌生有理, 中澤暁, 早川基, 佐伯孝尚, 高木靖彦, 今村裕志, 岡本千里, 早川雅彦, 平田成, 矢野創
    日本惑星科学会秋季講演会予稿集(Web), 2019, 2019  
  • 荒川政彦, 佐伯孝尚, 門野敏彦, 高木靖彦, 和田浩二, 飯島祐一, 今村裕志, 岡本千里, 嶌生有理, 白井慶, 中澤暁, 早川雅彦, 平田成, 矢野創, 澤田弘崇, 小川和律, 石橋高, 木村宏, 小林正規, 坂谷尚哉, 早川基, 本田理恵, 杉田精司, 諸田智克, 亀田真吾, 巽瑛理, 本田親寿, 横田康弘, 神山徹, 山田学, 鈴木秀彦, 吉岡和夫, 長勇一郎, 松岡萌
    日本惑星科学会秋季講演会予稿集(Web), 2019, 2019  

Books and Other Publications

 2

Presentations

 217

Professional Memberships

 3

Research Projects

 10