研究者業績

牧 謙一郎

マキ ケンイチロウ  (Ken-ichiro MAKI)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙機応用工学研究系 助教
宇宙機応用工学研究系
学位
修士(工学)(東京電機大学)
博士(工学)(東京大学)

J-GLOBAL ID
200901003622736036
researchmap会員ID
1000367993

外部リンク

論文

 17
  • Yasuhiro Kawakatsu, Kiyoshi Kuramoto, Tomohiro Usui, Hitoshi Ikeda, Kent Yoshikawa, Hirotaka Sawada, Naoya Ozaki, Takane Imada, Hisashi Otake, Kenichiro Maki, Masatsugu Otsuki, Robert Muller, Kris Zacny, Yasutaka Satoh, Stephane Mary, Markus Grebenstein, Ayumu Tokaji, Liang Yuying, Ferran Gonzalez Franquesa, Nishanth Pushparaj, Takuya Chikazawa
    Proceedings of the International Astronautical Congress, IAC 2020-October 2020年  査読有り
    Martian Moons eXploration (MMX) is a mission to Martian moons under development in JAXA with international partners to be launched in 2024. This paper introduces the system definition and the latest status of MMX program. “How was water delivered to rocky planets and enabled the habitability of the solar system?” This is the key question to which MMX is going to answer in the context of our minor body exploration strategy preceded by Hayabusa and Hayabusa2. Solar system formation theories suggest that small bodies as comets and asteroids were delivery capsules of water, volatiles, organic compounds etc. from outside of the snow line to entitle the rocky planet region to be habitable. Mars was at the gateway position to witness the process, which naturally leads us to explore two Martian moons, Phobos and Deimos, to answer to the key question. The goal of MMX is to reveal the origin of the Martian moons, and then to make a progress in our understanding of planetary system formation and of primordial material transport around the border between the inner- and the outer-part of the early solar system. The mission is to survey two Martian moons, and return samples from one of them, Phobos. In view of the launch in 2024, the phase-A study was completed in February, 2020. The mission definition, mission scenario, system definition, critical technologies and programmatic framework are introduced int this paper.
  • Susumu Sasaki, Koji Tanaka, Ken-ichiro Maki
    PROCEEDINGS OF THE IEEE 101(6) 1438-1447 2013年6月  査読有り
    A solar power satellite (SPS) is a renewable energy system that converts the sun's energy into electricity in space and transmits it to Earth using microwaves. The SPS concept, first proposed in 1968 in the United States, has recently started attracting increased public attention as a promising energy system that can be used to resolve global environmental and energy problems. One of the most challenging technologies for the SPS is microwave power transmission from the geostationary orbit to the ground. The technologies for microwave power transmission have been studied for more than 40 years since the initial demonstrations in the 1960s; however, for SPS application, considerable research, especially on high-efficiency power conversion between direct current (dc) and radio frequency (RF) and on high-accuracy microwave beam control over a long range, is still needed. This paper introduces the concept of SPS and presents the technologies and issues associated with microwave power transmission from space to ground. Current research status and the future development prospects for microwave power transmission toward commercial SPS use are also described.
  • Koji Tanaka, Kenichiro Maki, Susumu Sasaki
    Proceedings of the International Astronautical Congress, IAC 9 6644-6648 2013年  
    We are developing a phased-array antenna system as a bread board model (BBM) for space experiments using a small scientific satellite toward the solar power satellite (SPS). The purposes of the space experiments are to demonstrate a precise directional control of wireless power transmission (WPT) technology from space to the ground and to clarify the propagation characteristics of the microwave power in the ionosphere. A phased-array antenna possesses a potential for precise beam directional control and beam forming by controlling an amplitude and phase of the microwave from each antenna element. We designed and fabricated the BBM in order to evaluate an effect of amplitude and phase error of the microwave circuits produced at the time of the manufacturing and generated by temperature fluctuation on the microwave beam control. Copyright © 2013 by the International Astronautical Federation. All rights reserved.
  • Susumu Sasaki, Koji Tanaka, Kenichiro Maki
    Proceedings of the International Astronautical Congress, IAC 9 6614-6618 2013年  
    The commercial life of Solar Power Satellite (SPS) is usually considered to be 30-40 years. However the disposal plan after expiration of its life has not been well studied so far. This paper describes the life analysis of SPS by evaluating the radiation and debris (meteoroid) environment, and proposes a replacement scenario at the end of life to prevent generating space junk. The SPS basic model (tethered-SPS) is used for this study. If we set an allowable degradation level at 15-20 % for the commercial life 5-10 % by radiation degradation, 5 % by hyper-velocity impact loss, and 5% by spontaneous electrical failure, 40 years life is expected in the following assumptions (1) photovoltaic cells with high radiation-resistance (5-10 % degradation at 2.5 × 1015/cm2 (1 MeV electron equivalent fluences)), (2) redundant tether wires (tape tether) of more than 15 mm wide, and (3) modularized structure for the power generation/transmission panel with a module size of 0.5m × 0.5m, beyond that the impact damage does not propagate. In the end of life scenario, new units of SPS are transported to the geostationary orbit from the ground and are exchanged for degraded units, and then the degraded units are transported to the ground for refurbishment. The replacement operation starts near the end of life and is completed in a year in the same way as the initial construction. The replacement operation does not generate any junk in the orbit. This scenario is heavily dependent on the space transportation system between the ground and the orbit, consisting of reusable launch vehicle (RLV) and orbit transfer vehicle (OTV). Copyright © 2013 by the International Astronautical Federation. All rights reserved.
  • Koji Uematsu, Ken-ichiro Maki, Chiko Otani
    OPTICS EXPRESS 20(20) 22914-22921 2012年9月  査読有り
    A terahertz (THz) beam steering method is demonstrated by applying the characteristic of grating lobe (GL) radiation from a linear array antenna and the interference of femtosecond optical pulses. A photoconductive device is illuminated by two femtosecond laser beams combined at an angle of less than 0.5 degrees. Considering the interference pattern as a THz point source array, THz GL radiation is generated through the superposition of radiation emitted from all point sources and steered by varying the interval of the interference pattern. The THz beam direction could be changed by 20 degrees at 0.93THz by varying the relative incidence angle of the pump beams by 0.033 degrees. (C) 2012 Optical Society of America

MISC

 26
  • Ken-Ichiro Maki, Masashi Takahashi, Kengo Miyashiro, Koji Tanaka, Susumu Sasaki, Kousuke Kawahara, Yukio Kamata, Kimiya Komurasaki
    2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, IMWS-IWPT 2012 - Proceedings 131-134 2012年  査読有り
    Toward the orbital demonstration of a solar power satellite (SPS), a breadboard model of the SPS has been developed for preliminary experiments including wireless power transmission. The model forms a thin panel structure with a thickness of 6 cm, and the panel consists of three layers being functionally assigned to a transmission antenna, microwave amplification and control, and thermal radiation, respectively. Microwave amplified up to 160 W is emitted from a large-scale phased array antenna with 256 microstrip elements. In order to evaluate the effect of multiply arranged antennas to the emission, the measurement of the radiation pattern is conducted for different relative positions of the antenna panels. Additionally, the steering of the transmission beam is achieved as an initial demonstration for retrodirective control. © 2012 IEEE.
  • Koji Tanaka, Maki Kenichiro, Masashi Takahashi, Tadashi Ishii, Susumu Sasaki
    2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, IMWS-IWPT 2012 - Proceedings 191-194 2012年  査読有り
    We are developing a bread board model for a microwave wireless power transmission (WPT) from a satellite in orbit to the ground. WPT using microwaves is one of the critical and important technologies toward a solar power satellite (SPS). We have carried out a conceptual design and proposed a space experiment using a scientific small satellite which has been developing by JAXA. The purposes of the space experiments are to demonstrate a precise directional control of WPT technology for SPS, which includes the direct detection of rectenna sites, and the microwave beam control skill with high angular precision, and to clarify the propagation characteristics of the microwave power in the ionosphere. Performances of the breadboard were measured and evaluated. Thermal transient characteristics of the breadboard model were simulated. © 2012 IEEE.
  • 牧 謙一郎, 大谷 知行, 澁谷 孝幸, 水津 光司, 川瀬 晃道
    電子情報通信学会総合大会講演論文集 2009(1) "S-54"-"S-55" 2009年3月4日  
  • Ken-ichiro Maki, Takayuki Shibuya, Chiko Otani, Koji Suizu, Kodo Kawase
    APPLIED PHYSICS EXPRESS 2(2) 022301 2009年2月  
    Terahertz (THz) beam steering is demonstrated based on the phased-array antenna principle without using actual phase shifters. A periodically-poled lithium niobate crystal is pumped with infrared radiation generated from a dual-wavelength optical parametric oscillator. The THz radiation is generated from the crystal via difference-frequency mixing and the emission angle could be varied by tilting one of the incident pump beams. This effect is equivalent to using a phase-shifter array for tilting the phase front of the THz radiation. This technique has the advantage of high speed, wide angular range, and compactness compared to conventional beam steering methods. (C) 2009 The Japan Society of Applied Physics
  • Ken-ichiro Maki, Takayuki Shibuya, Chiko Otani, Koji Suizu, Kodo Kawase
    APPLIED PHYSICS EXPRESS 2(2) 022301 2009年2月  
    Terahertz (THz) beam steering is demonstrated based on the phased-array antenna principle without using actual phase shifters. A periodically-poled lithium niobate crystal is pumped with infrared radiation generated from a dual-wavelength optical parametric oscillator. The THz radiation is generated from the crystal via difference-frequency mixing and the emission angle could be varied by tilting one of the incident pump beams. This effect is equivalent to using a phase-shifter array for tilting the phase front of the THz radiation. This technique has the advantage of high speed, wide angular range, and compactness compared to conventional beam steering methods. (C) 2009 The Japan Society of Applied Physics
  • M. Theuer, D. Molter, K. Maki, C. Otani, J. A. L'huillier, R. Beigang
    APPLIED PHYSICS LETTERS 93(4) 041119 2008年7月  
    We report on terahertz generation by Cherenkov-type optical rectification in lithium niobate using an actively controlled femtosecond pumped enhancement cavity. In this way a much higher pump power is available inside the cavity and an increased terahertz output power is obtained. The advantages of terahertz generation in the Cherenkov geometry are verified by comparing it with other types of emitters by means of electro-optical detection as well as by bolometer measurements. (C) 2008 American Institute of Physics.
  • Ken-ichiro Maki, Chiko Otani
    OPTICS EXPRESS 16(14) 10158-10169 2008年7月  
    We demonstrate a terahertz (THz) beam steering method using difference frequency generation that is based on the principle of phased array antennas. A strip-line photoconductive antenna was illuminated by two spatially dispersed beams produced from an ultrafast laser. THz radiation with a bandwidth of 65 GHz was generated from the overlapping area of the two beams, between which the frequency difference was approximately constant. We confirmed that the THz beam can be steered by tilting one of the incident pump beams so as to change their relative phase relation. The steering range of the THz beam was 29 degrees when the angle between the incident pump beams was only varied within a range of 0.155 degrees, that is, 187 times less. In addition, by laterally shifting one of the pump beams, the frequency of the THz radiation could be tuned from 0.3 to 1.7 THz. This technique can be applied to high-speed terahertz imaging and spectroscopy systems. (C) 2008 Optical Society of America.
  • M. Theuer, D. Molter, K. Maki, C. Otani, J. A. L'huillier, R. Beigang
    APPLIED PHYSICS LETTERS 93(4) 041119 2008年7月  
    We report on terahertz generation by Cherenkov-type optical rectification in lithium niobate using an actively controlled femtosecond pumped enhancement cavity. In this way a much higher pump power is available inside the cavity and an increased terahertz output power is obtained. The advantages of terahertz generation in the Cherenkov geometry are verified by comparing it with other types of emitters by means of electro-optical detection as well as by bolometer measurements. (C) 2008 American Institute of Physics.
  • Ken-ichiro Maki, Chiko Otani
    OPTICS EXPRESS 16(14) 10158-10169 2008年7月  
    We demonstrate a terahertz (THz) beam steering method using difference frequency generation that is based on the principle of phased array antennas. A strip-line photoconductive antenna was illuminated by two spatially dispersed beams produced from an ultrafast laser. THz radiation with a bandwidth of 65 GHz was generated from the overlapping area of the two beams, between which the frequency difference was approximately constant. We confirmed that the THz beam can be steered by tilting one of the incident pump beams so as to change their relative phase relation. The steering range of the THz beam was 29 degrees when the angle between the incident pump beams was only varied within a range of 0.155 degrees, that is, 187 times less. In addition, by laterally shifting one of the pump beams, the frequency of the THz radiation could be tuned from 0.3 to 1.7 THz. This technique can be applied to high-speed terahertz imaging and spectroscopy systems. (C) 2008 Optical Society of America.
  • 相馬 央令子, 牧 謙一郎, 高野 忠, 佐野 雅敏
    日本航空宇宙学会論文集 56(650) 105-109 2008年  
    Microwave emissions due to hypervelocity impacts have been detected by heterodyne receivers in the ground experiments using an accelerator. We aim to establish the detection system of space debris impacts on a space structure via microwave. The emitted powers at several frequencies due to the impact velocity of 10km/sec are estimated from the characteristics at the experimental impact velocity. Considering the emitted power, the receiving antennas and the microwave frequencies, the maximum distances for detecting the microwave emission are 85m at 2GHz-band and 24m at 22GHz-band. The type and location of receiving antennas which can detect the impact on all habitation and experiment modules on the International Space Station are discussed. It is concluded that the impact can be sufficiently detected via a low gain antenna at 2GHz band.
  • H. Ohnishi, S. Chiba, E. Soma, K. Ishii, K. Maki, T. Takano, S. Hasegawa
    JOURNAL OF APPLIED PHYSICS 101(12) 124901 2007年6月  
    It was formerly confirmed by experiment that hypervelocity impacts on aluminum plates cause microwave emission. In this study, we have carried out experiments in order to clarify the mechanism of the emission. The microwave is detected by heterodyne detection scheme at 22 and 2 GHz with an intermediate frequency bandwidth of 500 and 120 MHz, respectively. A nylon projectile is accelerated using a light-gas gun to impact a target. First, aluminum plates with ten different thicknesses ranging from 1 to 40 mm were used as a target, and microwave signals were detected. The experimental results are statistically analyzed assuming a Gaussian distribution of the emitted power. The standard deviation of pulse voltage is calculated to show the existence of two kinds of signals: sharp pulse and thermal noise. It is shown that the emitted energy and the dispersion have a relation with the extent of the target destruction. Next, nylon projectiles are impacted on different metals such as aluminum, iron, and copper. These results suggest that microcracks are essential to microwave emission. Finally, in order to clarify the mechanism of charging and discharging across the microcracks, the experimental results are compared with this model for the following factors: (1) the thermally excited electrons and the emitted power, and (2) the bond dissociation energy of target material and emitted power. The analytical results suggest that electrons are excited thermally and by transition from a crystalline state to an atomic state. (c) 2007 American Institute of Physics.
  • H. Ohnishi, S. Chiba, E. Soma, K. Ishii, K. Maki, T. Takano, S. Hasegawa
    JOURNAL OF APPLIED PHYSICS 101(12) 124901 2007年6月  
    It was formerly confirmed by experiment that hypervelocity impacts on aluminum plates cause microwave emission. In this study, we have carried out experiments in order to clarify the mechanism of the emission. The microwave is detected by heterodyne detection scheme at 22 and 2 GHz with an intermediate frequency bandwidth of 500 and 120 MHz, respectively. A nylon projectile is accelerated using a light-gas gun to impact a target. First, aluminum plates with ten different thicknesses ranging from 1 to 40 mm were used as a target, and microwave signals were detected. The experimental results are statistically analyzed assuming a Gaussian distribution of the emitted power. The standard deviation of pulse voltage is calculated to show the existence of two kinds of signals: sharp pulse and thermal noise. It is shown that the emitted energy and the dispersion have a relation with the extent of the target destruction. Next, nylon projectiles are impacted on different metals such as aluminum, iron, and copper. These results suggest that microcracks are essential to microwave emission. Finally, in order to clarify the mechanism of charging and discharging across the microcracks, the experimental results are compared with this model for the following factors: (1) the thermally excited electrons and the emitted power, and (2) the bond dissociation energy of target material and emitted power. The analytical results suggest that electrons are excited thermally and by transition from a crystalline state to an atomic state. (c) 2007 American Institute of Physics.
  • M Theuer, G Torosyan, C Rau, R Beigang, K Maki, C Otani, K Kawase
    APPLIED PHYSICS LETTERS 88(7) 071122 2006年2月  
    We report on the generation of broadband terahertz (THz) pulses using Cherenkov-type generation in magnesium oxide-doped lithium niobate (MgO:LN). The efficiency of the output coupling process of THz radiation at higher frequencies into free space is considerably increased by the use of a properly cut silicon prism. The achieved spectrum is broader compared to the normal Cherenkov-cut geometry. Due to a considerably reduced propagation length in the absorbing MgO:LN, the effective application of longer crystals is possible. Thus, the measured spectral intensity is much higher and the spectrum broader.
  • M Theuer, G Torosyan, C Rau, R Beigang, K Maki, C Otani, K Kawase
    APPLIED PHYSICS LETTERS 88(7) 071122 2006年2月  
    We report on the generation of broadband terahertz (THz) pulses using Cherenkov-type generation in magnesium oxide-doped lithium niobate (MgO:LN). The efficiency of the output coupling process of THz radiation at higher frequencies into free space is considerably increased by the use of a properly cut silicon prism. The achieved spectrum is broader compared to the normal Cherenkov-cut geometry. Due to a considerably reduced propagation length in the absorbing MgO:LN, the effective application of longer crystals is possible. Thus, the measured spectral intensity is much higher and the spectrum broader.
  • 高野 忠, 牧 謙一郎, 相馬 央令子, 千葉 茂生, 前田 崇, 藤原 顕, 吉田 真吾
    物理探査 59(6) 561-573 2006年  
    超高速な衝突や静的な圧力で物質を破壊する時,マイクロ波が発生することが見出された。本論文では,この現象を観測するための実験系,得られた内容・事実,そして物理探査に応用する可能性について述べる。この分野は多くの読者にこれまで余りなじみがないと思われ,かつ瞬発マイクロ波の受信・計測という特殊な技術を用いるので,全体的な記述に重きを置き詳細は省く。受信系では、まずマイクロ波信号を低雑音増幅器で増幅した後,観測する周波数にたいし十分高い標本化周波数でディジタル化して,データを取り込む。観測周波数としては,22GHz,2GHz,300MHz,1MHzを選んだ。データが多すぎて蓄積容量が足りない時は(22GHzと2GHz),ヘテロダイン受信で周波数を落としてからデータとする。<br> 衝突実験における速度は最高約7km/secである。衝突標的の材料はアルミニウム,鉄などの金属,セラミック,煉瓦,ゴムなどを用いた。静的な圧力での破壊実験には,4種の岩石をコンプレッサで加圧した。得られたマイクロ波は,いずれの破壊モード・材料においても,断続的な極めて狭いパルス状である。岩石の静的圧力での破壊では,22GHzは硅石でのみ観測された。このようにして得られた波形は,パルス内でほぼ正弦波状なので,受信系を通して電力校正が可能である。その結果平均発生電力は2GHzにおいて,超高速衝突の実験で 2.7×10-5mW,静的圧力の実験で2.7×10-8mWであった。マイクロ波発生原因として原子あるいは分子間の結合が切れることが推定されるが,未だ確定するには至っていない。本現象は,次のような分野の物理探査に応用することを考えている。<br> (1)物質の性質探求:天体衝突現象,材料科学,宇宙デブリ問題<br> (2)地下構造の変動:岩石の破壊<br> (3)地震の探査<br>
  • 牧 謙一郎, 高野 忠, 相馬央令子, 石井健太郎, 吉田真吾, 中谷正生
    地震 58(4) 375-384 2006年  
  • K Maki, E Soma, T Takano, A Fujiwara, A Yamori
    JOURNAL OF APPLIED PHYSICS 97(10) 104911 2005年5月  
    Microwave emissions due to hypervelocity impacts and their dependence on the target material are described. Microwave signals were measured for four kinds of target materials: aluminum, alumina ceramic, red brick, and polyurethane rubber. The signals were composed of two kinds of wave form: intermittent sharp pulses and white noise. The pulse signals were emitted strongly, especially with the aluminum target. The energy emitted from each target was estimated from the signal detected after calibrating the measuring system. The energy of the pulses was greater for conductors than for insulators. We hypothesized that the microwaves were emitted from a discharge along a microcrack in the target. The signals detected in the experiment agreed well with theoretical results. (c) 2005 American Institute of Physics.
  • K Maki, E Soma, T Takano, A Fujiwara, A Yamori
    JOURNAL OF APPLIED PHYSICS 97(10) 104911 2005年5月  
    Microwave emissions due to hypervelocity impacts and their dependence on the target material are described. Microwave signals were measured for four kinds of target materials: aluminum, alumina ceramic, red brick, and polyurethane rubber. The signals were composed of two kinds of wave form: intermittent sharp pulses and white noise. The pulse signals were emitted strongly, especially with the aluminum target. The energy emitted from each target was estimated from the signal detected after calibrating the measuring system. The energy of the pulses was greater for conductors than for insulators. We hypothesized that the microwaves were emitted from a discharge along a microcrack in the target. The signals detected in the experiment agreed well with theoretical results. (c) 2005 American Institute of Physics.
  • 大西裕子, 牧謙一郎, 相馬央令子, 石井健太郎, 千葉茂生, 高野忠, 長谷川直
    宇宙科学技術連合講演会講演集(CD-ROM) 49th 2005年  
  • K Maki, T Takano, A Fujiwara, A Yamori
    SPACE DEBRIS 34(5) 1085-1089 2004年  
    A hypervelocity impact causes the emission of radio-waves in the microwave frequency range. In order to understand the features of the phenomena and eventually to clarify the mechanism of the radio-wave generation, two kinds of experiments were carried out. The first one is the simultaneous observation of the phenomena by the micro-wave detection and the optical imaging method. The second one is to investigate the microwave emission in relation to the speed of a projectile. This paper describes the experimental results, and compares the microwave and optical methods from the viewpoints of impact detection. (C) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • K Maki, T Takano, A Fujiwara, A Yamori
    SPACE DEBRIS 34(5) 1085-1089 2004年  
    A hypervelocity impact causes the emission of radio-waves in the microwave frequency range. In order to understand the features of the phenomena and eventually to clarify the mechanism of the radio-wave generation, two kinds of experiments were carried out. The first one is the simultaneous observation of the phenomena by the micro-wave detection and the optical imaging method. The second one is to investigate the microwave emission in relation to the speed of a projectile. This paper describes the experimental results, and compares the microwave and optical methods from the viewpoints of impact detection. (C) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • 牧 謙一郎, 相馬 央令子, 十枝内 愛, 高野 忠, 矢守 章
    電子情報通信学会総合大会講演論文集 2003(1) 16-16 2003年3月3日  
  • T Takano, Y Murotani, K Maki, T Toda, A Fujiwara, S Hasegawa, A Yamori, H Yano
    JOURNAL OF APPLIED PHYSICS 92(9) 5550-5554 2002年11月  
    Microwave emission due to hypervelocity impacts on metallic plates has been found. The targets used in the experiment are aluminum plates with various thicknesses. The projectile, a nylon cylinder with metal screw of 0.21 gm, was accelerated up to the velocity of 4 km/s; a heterodyne receiver detected the microwave at 22 GHz. The emission is a random sequence of pulses with several nanosecond width, which lasts more than 10 mus. The phenomenon seems to be dependent on the extent of target destruction through the formation of impact craters or penetration. If so, we could use the characteristics of the phenomena to better understand the mechanical destruction process. We propose several models for the cause of this microwave generation and study them on the basis of timing relation of observed events. (C) 2002 American Institute of Physics.
  • T Takano, Y Murotani, K Maki, T Toda, A Fujiwara, S Hasegawa, A Yamori, H Yano
    JOURNAL OF APPLIED PHYSICS 92(9) 5550-5554 2002年11月  
    Microwave emission due to hypervelocity impacts on metallic plates has been found. The targets used in the experiment are aluminum plates with various thicknesses. The projectile, a nylon cylinder with metal screw of 0.21 gm, was accelerated up to the velocity of 4 km/s; a heterodyne receiver detected the microwave at 22 GHz. The emission is a random sequence of pulses with several nanosecond width, which lasts more than 10 mus. The phenomenon seems to be dependent on the extent of target destruction through the formation of impact craters or penetration. If so, we could use the characteristics of the phenomena to better understand the mechanical destruction process. We propose several models for the cause of this microwave generation and study them on the basis of timing relation of observed events. (C) 2002 American Institute of Physics.

講演・口頭発表等

 2

共同研究・競争的資金等の研究課題

 19