基本情報
研究分野
1経歴
5-
2022年2月 - 現在
-
2017年2月 - 2022年1月
-
2003年10月 - 2017年1月
-
2002年 - 2003年
-
2001年 - 2002年
学歴
1-
- 2001年
論文
169-
Cryogenics 131 103652-103652 2023年4月
-
IEEE Transactions on Applied Superconductivity 32(6) 1-5 2022年 査読有りThe critical heat flux in liquid hydrogen is ten times higher than that in liquid helium and is approximately half of that in liquid nitrogen. Since the resistivity of pure metal such as copper or silver at 20 K is less than one-hundredth of that at 300 K, HTS magnets immersed in liquid hydrogen are expected to satisfy the fully cyostable condition or to be stable against high resistive heat generation enough for quench detection at a practical current density. In order to examine cryostability of HTS magnets in liquid hydrogen, a pool-cooled Bi2223 magnet with a 5 T magnetic field at 20 K has been designed, fabricated and tested in liquid nitrogen prior to excitation tests in liquid hydrogen. The magnet consists of six outer double pancake coils with the inner diameter of 0.20 m and four inner double pancake coils with the outer diameter of 0.16 m. The resistive voltage to initiate thermal runaway in the coil as-sembly in liquid nitrogen was higher than 1 V that is sufficient high for quench detection.
MISC
168-
流体工学部門講演会講演論文集 2015 "0325-1"-"0325-4" 2015年11月7日Capacitance type void fraction sensors for cryogenic fluid has been developed by our research group. The sensors are roughly categorized into three types; arc type, small-sized arc type, and asymmetric type. In this paper, the three type sensors are compared, and each sensor's merits and demerits are indicated. The arc type sensor was first developed. The sensor is simple, but S/N ration is low and influence of "temperature drift" is large. The small-sized arc type sensor was developed for the sounding rocket S310 test No.43, so the sensor was needed to make as small as possible. The sensor succeeded to measure the void fraction of the liquid nitrogen flow even under microgravity. The asymmetric type sensor was deviced to improve the measurement accuracy. Inaccuracy of the sensor between true void fraction and measured void fraction was only 3% for stratified flow, whereas that of the arc type sensor 30%.
-
平成26年度宇宙輸送シンポジウム: 講演集録 = Proceedings of Space Transportation Symposium FY2014 2015年平成26年度宇宙輸送シンポジウム(2015年1月15日-16日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)), 相模原市, 神奈川県資料番号: SA6000036020レポート番号: STCP-2014-020
-
International Journal of Microgravity Science and Application (Web) 32(2) 2015年
-
大気球シンポジウム: 平成26年度 = Balloon Symposium: 2014 2014年11月大気球シンポジウム 平成26年度(2014年11月6-7日. 宇宙航空研究開発機構宇宙科学研究所 (JAXA)(ISAS)), 相模原市, 神奈川県 Balloon Symposium 2014 (November 6-7, 2014. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA)(ISAS)), Sagamihara, Kanagawa Japan 著者人数: 18名 資料番号: SA6000021014 レポート番号: isas14-sbs-014
-
大気球シンポジウム: 平成26年度 = Balloon Symposium: 2014 2014年11月大気球シンポジウム 平成26年度(2014年11月6-7日. 宇宙航空研究開発機構宇宙科学研究所 (JAXA)(ISAS)), 相模原市, 神奈川県資料番号: SA6000021011レポート番号: isas14-sbs-011
-
第57回宇宙科学技術連合講演会講演集 = Proceedings of 57th Space Sciences and Technology Conference 2013年10月第57回宇宙科学技術連合講演会(2013年10月9日-11日. 米子コンベンションセンター(BiG SHiP)), 米子市, 鳥取県資料番号: AC1400031000レポート番号: JSASS-2013-4163
-
空気調和・冷凍に関する連合講演会講演論文集 (47) 119-122 2013年4月15日
-
平成24年度宇宙輸送シンポジウム: 講演集録 = Proceedings of Space Transportation Symposium: FY2012 2013年1月平成24年度宇宙輸送シンポジウム (2013年1月17日-1月18日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)), 相模原市, 神奈川県 Space Transportation FY2012 (January 17-18, 2013. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA)(ISAS)), Sagamihara, Kanagawa Japan 形態: カラー図版あり 形態: PDF 著者人数: 11名 Physical characteristics: Original contains color illustrations Physical characteristics: PDF Number of authors: 11 資料番号: AA0061856027 レポート番号: STCP-2012-027
-
平成24年度宇宙輸送シンポジウム: 講演集録 = Proceedings of Space Transportation Symposium: FY2012 1-4 2013年1月平成24年度宇宙輸送シンポジウム (2013年1月17日-1月18日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)), 相模原市, 神奈川県 Space Transportation FY2012 (January 17-18, 2013. Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (JAXA)(ISAS)), Sagamihara, Kanagawa Japan 形態: カラー図版あり 形態: PDF Physical characteristics: Original contains color illustrations Physical characteristics: PDF 資料番号: AA0061856022 レポート番号: STCP-2012-022
-
平成24年度宇宙輸送シンポジウム: 講演集録 = Proceedings of Space Transportation Symposium: FY2012 2013年1月平成24年度宇宙輸送シンポジウム (2013年1月17日-1月18日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)), 相模原市, 神奈川県形態: カラー図版あり形態: PDF資料番号: AA0061856060レポート番号: STCP-2012-060
-
平成24年度宇宙輸送シンポジウム: 講演集録 = Proceedings of Space Transportation Symposium: FY2012 2013年1月平成24年度宇宙輸送シンポジウム (2013年1月17日-1月18日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)), 相模原市, 神奈川県形態: カラー図版あり形態: PDF著者人数: 12名資料番号: AA0061856048レポート番号: STCP-2012-048
-
FSST NEWS (Forum of Superconductivity Science and Technology News) (132) 2012年
講演・口頭発表等
64-
年次大会 2018年<p>A loading system plays a role of loading and unloading liquid hydrogen between a carrier ship and a ground storage facility in hydrogen supply chain in which hydrogen in the form of liquid phase is transported by the carrier ship from a resource-rich country to a consuming country. An emergency release system (ERS), which is one of components of the loading system, is installed in the middle of transfer pipe of the loading system, and has function of separating and plugging the pipe at an abnormality during loading so as to prevent a large amount of cryogenic fluid from scattering. We have conducted R & D study of the ERS for liquid hydrogen based on an existing one for liquid natural gas (LNG). Whole system function of the ERS including separation behavior was verified conducting a field experiment with the ERS test model and liquid hydrogen. Through several tests, the separation mechanism and behavior were verified, and also, soundness of the seal mechanism was evaluated. While, auto-ignition phenomena were observed on the separation surface of the ERS after the separation, of which causes have not been identified yet. Characteristics of dispersion behavior of hydrogen that was released at the separation could be investigated measuring distribution of temperature and hydrogen concentration around the ERS test model.</p>
-
年次大会 2018年<p>To improve safety regulations for fuel cell vehicles and hydrogen infrastructure, experiments of cryo-compressed hydrogen leakage diffusion were conducted. The experimental apparatus can supply 90 MPa hydrogen of various temperature conditions. Measurement items were hydrogen concentration distribution, blast pressure, flame length, and radiant heat. In addition, high speed camera observation was carried out to investigate the near-field of cryogenic hydrogen jet at supercritical pressure. The experimental apparatus can supply 90 MPa hydrogen at various temperature conditions (50 K–300 K) at a maximum flow rate of 100 kg/h. The hydrogen leakage flow rate was measured using pinhole nozzles with different outlet diameters (0.2 mm, 0.4 mm, 0.7 mm, and 1 mm). It was confirmed that the hydrogen leakage flow rate increases as the supply temperature decreases. The hydrogen concentration distribution was measured by injecting high-pressure hydrogen from the 0.2-mm pinhole for 10 min under a constant pressure/temperature condition. As the hydrogen injection temperature decreased, it was found that the hydrogen concentration increased, and an empirical formula of the 1% concentration distance for the cryogenic hydrogen system was newly presented.</p>
-
年次大会 2017年<p>JAXA has constructed an experimental facility to pressurize and supply liquid hydrogen at a maximum pressure of 90 MPa to conduct experimental research on the injection of high pressure liquid hydrogen into the atmosphere. Liquid hydrogen has a property that its density greatly changes depending on pressure despite being a liquid phase. In addition, the high pressure hydrogen gas is in a supercritical state and has an intermediate property between a gas and a liquid. Therefore, it is a difficult question whether to treat the injection of high pressure liquid hydrogen as a gas phase phenomena or as a liquid phase phenomena. As a result of the experiment, it was found good to apply the liquid orifice equation to predict the discharge flow rate of high pressure liquid hydrogen.</p>
共同研究・競争的資金等の研究課題
13-
日本学術振興会 科学研究費助成事業 2023年4月 - 2027年3月
-
日本学術振興会 科学研究費助成事業 2020年4月 - 2023年3月
-
日本学術振興会 科学研究費助成事業 2019年4月 - 2022年3月
-
日本学術振興会 科学研究費助成事業 2015年4月 - 2018年3月
-
日本学術振興会 科学研究費助成事業 2013年5月 - 2018年3月