研究者業績

安部 正真

アベ マサナオ  (Masanao Abe)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 太陽系科学研究系 准教授

研究者番号
00270439
ORCID ID
 https://orcid.org/0000-0003-4780-800X
J-GLOBAL ID
200901004756228297
researchmap会員ID
5000050882

論文

 157
  • Daisuke Nakashima, Tomoki Nakamura, Mingming Zhang, Noriko Kita, Takashi Mikouchi, Hideto Yoshida, Yuma Enokido, Tomoyo Morita, Mizuha Kikuiri, Kana Amano, Eiichi Kagawa, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Satoru Nakazawa, Fuyuto Terui, Hisayoshi Yurimoto, Takaaki Noguchi, Hikaru Yabuta, Hiroshi Naraoka, Ryuji Okazaki, Kanako Sakamoto, Sei-ichiro Watanabe, Shogo Tachibana, Yuichi Tsuda
    2022年8月29日  
    Abstract Chondrule-like objects and Ca-Al-rich inclusions (CAIs) are discovered in the retuned samples from asteroid Ryugu. Three chondrule-like objects, which are 16O-rich and -poor with D17O (= d17O – 0.52 × d18O) values of ~ − 23‰ and ~ − 3‰, are dominated by Mg-rich olivine, resembling what proposed as earlier generations of chondrules. The 16O-rich objects are likely to be melted amoeboid olivine aggregates that escaped from incorporation into 16O-poor chondrule precursor dust. Two CAIs composed of spinel, hibonite, and perovskite are 16O-rich with D17O of ~ − 23‰ and possibly as old as the oldest CAIs. The chondrule-like objects and CAIs (< 30 µm) are as small as those from comets, suggesting radial transport favoring smaller objects from the inner solar nebula to the formation location of the Ryugu original parent body, which is farther from the Sun and scarce in chondrules. The transported objects may have been mostly destroyed during aqueous alteration.
  • Kentaro Hatakeda, Toru Yada, Masanao Abe, Tatsuaki Okada, Aiko Nakato, Kasumi Yogata, Akiko Miyazaki, Kazuya Kumagai, Masahiro Nishimura, Yuya Hitomi, Hiromichi Soejima, Kana Nagashima, Miwa Yoshitake, Ayako Iwamae, Shizuho Furuya, Tomohiro Usui, Kohei Kitazato
    Earth, Planets and Space 75 46 2022年8月26日  
  • Jens Barosch, Larry R. Nittler, Jianhua Wang, Conel M. O'D. Alexander, Bradley T. De Gregorio, Cécile Engrand, Yoko Kebukawa, Kazuhide Nagashima, Rhonda M. Stroud, Hikaru Yabuta, Yoshinari Abe, Jérôme Aléon, Sachiko Amari, Yuri Amelin, Ken-ichi Bajo, Laure Bejach, Martin Bizzarro, Lydie Bonal, Audrey Bouvier, Richard W. Carlson, Marc Chaussidon, Byeon-Gak Choi, George D. Cody, Emmanuel Dartois, Nicolas Dauphas, Andrew M. Davis, Alexandre Dazzi, Ariane Deniset-Besseau, Tommaso Di Rocco, Jean Duprat, Wataru Fujiya, Ryota Fukai, Ikshu Gautam, Makiko K. Haba, Minako Hashiguchi, Yuki Hibiya, Hiroshi Hidaka, Hisashi Homma, Peter Hoppe, Gary R. Huss, Kiyohiro Ichida, Tsuyoshi Iizuka, Trevor R. Ireland, Akira Ishikawa, Motoo Ito, Shoichi Itoh, Kanami Kamide, Noriyuki Kawasaki, A. L. David Kilcoyne, Noriko T. Kita, Kouki Kitajima, Thorsten Kleine, Shintaro Komatani, Mutsumi Komatsu, Alexander N. Krot, Ming-Chang Liu, Zita Martins, Yuki Masuda, Jérémie Mathurin, Kevin D. McKeegan, Gilles Montagnac, Mayu Morita, Smail Mostefaoui, Kazuko Motomura, Frédéric Moynier, Izumi Nakai, Ann N. Nguyen, Takuji Ohigashi, Taiga Okumura, Morihiko Onose, Andreas Pack, Changkun Park, Laurette Piani, Liping Qin, Eric Quirico, Laurent Remusat, Sara S. Russell, Naoya Sakamoto, Scott A. Sandford, Maria Schönbächler, Miho Shigenaka, Hiroki Suga, Lauren Tafla, Yoshio Takahashi, Yasuo Takeichi, Yusuke Tamenori, Haolan Tang, Kentaro Terada, Yasuko Terada, Tomohiro Usui, Maximilien Verdier-Paoletti, Sohei Wada, Meenakshi Wadhwa, Daisuke Wakabayashi, Richard J. Walker, Katsuyuki Yamashita, Shohei Yamashita, Qing-Zhu Yin, Tetsuya Yokoyama, Shigekazu Yoneda, Edward D. Young, Hiroharu Yui, Ai-Cheng Zhang, Masanao Abe, Akiko Miyazaki, Aiko Nakato, Satoru Nakazawa, Masahiro Nishimura, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Yuichi Tsuda, Sei-ichiro Watanabe, Toru Yada, Kasumi Yogata, Makoto Yoshikawa, Tomoki Nakamura, Hiroshi Naraoka, Takaaki Noguchi, Ryuji Okazaki, Kanako Sakamoto, Shogo Tachibana, Hisayoshi Yurimoto
    The Astrophysical Journal Letters 935(1) L3-L3 2022年8月16日  
    We have conducted a NanoSIMS-based search for presolar material in samples recently returned from C-type asteroid Ryugu as part of JAXA's Hayabusa2 mission. We report the detection of all major presolar grain types with O- and C-anomalous isotopic compositions typically identified in carbonaceous chondrite meteorites: 1 silicate, 1 oxide, 1 O-anomalous supernova grain of ambiguous phase, 38 SiC, and 16 carbonaceous grains. At least two of the carbonaceous grains are presolar graphites, whereas several grains with moderate C isotopic anomalies are probably organics. The presolar silicate was located in a clast with a less altered lithology than the typical extensively aqueously altered Ryugu matrix. The matrix-normalized presolar grain abundances in Ryugu are 4.8$^{+4.7}_{-2.6}$ ppm for O-anomalous grains, 25$^{+6}_{-5}$ ppm for SiC grains and 11$^{+5}_{-3}$ ppm for carbonaceous grains. Ryugu is isotopically and petrologically similar to carbonaceous Ivuna-type (CI) chondrites. To compare the in situ presolar grain abundances of Ryugu with CI chondrites, we also mapped Ivuna and Orgueil samples and found a total of SiC grains and 6 carbonaceous grains. No O-anomalous grains were detected. The matrix-normalized presolar grain abundances in the CI chondrites are similar to those in Ryugu: 23 $^{+7}_{-6}$ ppm SiC and 9.0$^{+5.3}_{-4.6}$ ppm carbonaceous grains. Thus, our results provide further evidence in support of the Ryugu-CI connection. They also reveal intriguing hints of small-scale heterogeneities in the Ryugu samples, such as locally distinct degrees of alteration that allowed the preservation of delicate presolar material.
  • Aiko Nakato, Toru Yada, Masahiro Nishimura, Kasumi Yogata, Akiko Miyazaki, Kana Nagashima, Kentaro Hatakeda, Kazuya Kumagai, Yuya Hitomi, Hiromichi Soejima, Jean-Pierre Bibring, Cedric Pilorge, Vincent Hamm, Rosario Brunetto, Lucie Riu, Lionel Louri, Damien Loizeau, Tania Le Pive, Jolive, Guillaume Lequertier, Aurelie Moussi-Soffys, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Satoru Nakazawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Makoto Yoshikawa, Sei-ichiro Watanabe, Yuichi Tsuda
    Earth, Planets and Space 75 45 2022年8月3日  
  • A. Galiano, E. Palomba, F. Dirri, A. Longobardo, K. Kitazato, T. Iwata, M. Matsuoka, T. Hiroi, D. Takir, T. Nakamura, M. Abe, M. Ohtake, S. Matsuura, S. Watanabe, M. Yoshikawa, T. Saiki, S. Tanaka, T. Okada, Y. Yamamoto, Y. Takei, K. Shirai, N. Hirata, K. Matsumoto, Y. Tsuda
    Monthly Notices of the Royal Astronomical Society 514(4) 6173-6182 2022年8月1日  
    The JAXA Hayabusa2 mission accomplished the formation of an artificial crater on the asteroid Ryugu. The aim of this work is to analyse the area surrounding the artificial crater and reveal spectral variability compared to the same region before the crater formation, to mineralogically and physically characterize the subsurface exposed material. The crater's investigation focused on the analysis of two regions corresponding to the inner part of crater (the pit and the crater wall/floor), two areas related to ejecta deposited close to the crater, two areas of ejecta moved far from the crater, and two external areas. Each area was investigated both before and after the crater formation, by the study of the photometrically corrected spectral parameters: the 1.9 μm reflectance, the near-infrared spectral slope, and the depth of the bands at 2.7 and 2.8 μm. The subsurface material of the post-crater areas shows deeper absorption bands, a decrease in reflectance, and a reddening in spectral slope with respect to the surface material of pre-crater areas. The subsurface regolith could have experienced a lower OH devolatilization due to space weathering and/or could be composed of finer dark grains than the surface layer. The ejecta reached distances of ~20 m from the impact point, mainly moving in the northern direction; nevertheless, a few ejecta also reached the south-eastern part of crater.
  • Eizo NAKAMURA, Katsura KOBAYASHI, Ryoji TANAKA, Tak KUNIHIRO, Hiroshi KITAGAWA, Christian POTISZIL, Tsutomu OTA, Chie SAKAGUCHI, Masahiro YAMANAKA, Dilan M. RATNAYAKE, Havishk TRIPATHI, Rahul KUMAR, Maya-Liliana AVRAMESCU, Hidehisa TSUCHIDA, Yusuke YACHI, Hitoshi MIURA, Masanao ABE, Ryota FUKAI, Shizuho FURUYA, Kentaro HATAKEDA, Tasuku HAYASHI, Yuya HITOMI, Kazuya KUMAGAI, Akiko MIYAZAKI, Aiko NAKATO, Masahiro NISHIMURA, Tatsuaki OKADA, Hiromichi SOEJIMA, Seiji SUGITA, Ayako SUZUKI, Tomohiro USUI, Toru YADA, Daiki YAMAMOTO, Kasumi YOGATA, Miwa YOSHITAKE, Masahiko ARAKAWA, Atsushi FUJII, Masahiko HAYAKAWA, Naoyuki HIRATA, Naru HIRATA, Rie HONDA, Chikatoshi HONDA, Satoshi HOSODA, Yu-ichi IIJIMA, Hitoshi IKEDA, Masateru ISHIGURO, Yoshiaki ISHIHARA, Takahiro IWATA, Kosuke KAWAHARA, Shota KIKUCHI, Kohei KITAZATO, Koji MATSUMOTO, Moe MATSUOKA, Tatsuhiro MICHIKAMI, Yuya MIMASU, Akira MIURA, Tomokatsu MOROTA, Satoru NAKAZAWA, Noriyuki NAMIKI, Hirotomo NODA, Rina NOGUCHI, Naoko OGAWA, Kazunori OGAWA, Chisato OKAMOTO, Go ONO, Masanobu OZAKI, Takanao SAIKI, Naoya SAKATANI, Hirotaka SAWADA, Hiroki SENSHU, Yuri SHIMAKI, Kei SHIRAI, Yuto TAKEI, Hiroshi TAKEUCHI, Satoshi TANAKA, Eri TATSUMI, Fuyuto TERUI, Ryudo TSUKIZAKI, Koji WADA, Manabu YAMADA, Tetsuya YAMADA, Yukio YAMAMOTO, Hajime YANO, Yasuhiro YOKOTA, Keisuke YOSHIHARA, Makoto YOSHIKAWA, Kent YOSHIKAWA, Masaki FUJIMOTO, Sei-ichiro WATANABE, Yuichi TSUDA
    Proceedings of the Japan Academy, Series B 98(6) 227-282 2022年6月10日  査読有り
    Presented here are the observations and interpretations from a comprehensive analysis of 16 representative particles returned from the C-type asteroid Ryugu by the Hayabusa2 mission. On average Ryugu particles consist of 50% phyllosilicate matrix, 41% porosity and 9% minor phases, including organic matter. The abundances of 70 elements from the particles are in close agreement with those of CI chondrites. Bulk Ryugu particles show higher δ18O, Δ17O, and ε54Cr values than CI chondrites. As such, Ryugu sampled the most primitive and least-thermally processed protosolar nebula reservoirs. Such a finding is consistent with multi-scale H-C-N isotopic compositions that are compatible with an origin for Ryugu organic matter within both the protosolar nebula and the interstellar medium. The analytical data obtained here, suggests that complex soluble organic matter formed during aqueous alteration on the Ryugu progenitor planetesimal (several 10's of km), <2.6 Myr after CAI formation. Subsequently, the Ryugu progenitor planetesimal was fragmented and evolved into the current asteroid Ryugu through sublimation.
  • Kaitlyn McCain, Nozomi Matsuda, Ming-Chang Liu, Kevin McKeegan, Akira Yamaguchi, Makoto Kimura, Naotaka Tomioka, Motoo Ito, Naoya Imae, Masayuki Uesugi, Naoki Shirai, Takuji Ohigashi, Richard Greenwood, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yu Kodama, Kaori Hirahara, Ikuya Sakurai, Ikuo Okada, Yuzuru Karouji, Satoru Nakazawa, Tatsuaki Okada, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Makoto Yoshikawa, Akiko Miyazaki, Masahiro Nishimura, Toru Yada, Masanao Abe, Tomohiro Usui, Sei-ichiro Watanabe, Yuichi Tsuda
    2022年6月8日  
  • Kanako Sakamoto, Yoshinori Takano, Hirotaka Sawada, Ryuji Okazaki, Takaaki Noguchi, Masayuki Uesugi, Hajime Yano, Toru Yada, Masanao Abe, Shogo Tachibana
    EARTH PLANETS AND SPACE 74(1) doi: 10.1186/s40623-022-01628-z. 2022年6月  査読有り
    We report ground-based environmental assessments performed during development of the sampler system until the launch of the Hayabusa2 spacecraft. We conducted static monitoring of potential contaminants to assess the environmental cleanliness during (1) laboratory work performed throughout the development and manufacturing processes of the sampler devices, (2) installation of the sampler system on the spacecraft, and (3) transportation to the launch site at the Japan Aerospace Exploration Agency’s (JAXA’s) Tanegashima Space Center. Major elements and ions detected in our inorganic analyses were sodium (Na), potassium (K), and ionized chloride (Cl–); those elements and ions were positively correlated with the total organic content and with exposure duration in the range from 101 to 103 nanograms per monitor coupon within an ~ 30-mm diameter scale. We confirmed that total deposits on the coupon were below the microgram-scale order during manufacturing, installation, and transportation in the prelaunch phase. The present assessment yields a nominal safety declaration for analysis of the pristine sample (> 5.4 g) returned from asteroid (162173) Ryugu combined with a highly clean environmental background level. We expect that the sample returned from Ryugu by Hayabusa2 will be free of severe and/or unknown contamination and will allow us to provide native profiles recorded for the carbonaceous asteroid history. Graphical Abstract: [Figure not available: see fulltext.].
  • Shota Kikuchi, Sei-ichiro Watanabe, Koji Wada, Takanao Saiki, Hikaru Yabuta, Seiji Sugita, Masanao Abe, Masahiko Arakawa, Yuichiro Cho, Masahiko Hayakawa, Naoyuki Hirata, Naru Hirata, Chikatoshi Honda, Rie Honda, Ko Ishibashi, Yoshiaki Ishihara, Takahiro Iwata, Toshihiko Kadono, Shingo Kameda, Kohei Kitazato, Toru Kouyama, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Yuya Mimasu, Akira Miura, Tomokatsu Morota, Tomoki Nakamura, Satoru Nakazawa, Noriyuki Namiki, Rina Noguchi, Kazunori Ogawa, Naoko Ogawa, Tatsuaki Okada, Go Ono, Naoya Sakatani, Hirotaka Sawada, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Shogo Tachibana, Yuto Takei, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Manabu Yamada, Yukio Yamamoto, Yasuhiro Yokota, Kent Yoshikawa, Makoto Yoshikawa, Yuichi Tsuda
    Planetary and Space Science 219 105519-105519 2022年6月  
  • S. Tachibana, H. Sawada, R. Okazaki, Y. Takano, K. Sakamoto, Y. N. Miura, C. Okamoto, H. Yano, S. Yamanouchi, P. Michel, Y. Zhang, S. Schwartz, F. Thuillet, H. Yurimoto, T. Nakamura, T. Noguchi, H. Yabuta, H. Naraoka, A. Tsuchiyama, N. Imae, K. Kurosawa, A. M. Nakamura, K. Ogawa, S. Sugita, T. Morota, R. Honda, S. Kameda, E. Tatsumi, Y. Cho, K. Yoshioka, Y. Yokota, M. Hayakawa, M. Matsuoka, N. Sakatani, M. Yamada, T. Kouyama, H. Suzuki, C. Honda, T. Yoshimitsu, T. Kubota, H. Demura, T. Yada, M. Nishimura, K. Yogata, A. Nakato, M. Yoshitake, A. I. Suzuki, S. Furuya, K. Hatakeda, A. Miyazaki, K. Kumagai, T. Okada, M. Abe, T. Usui, T. R. Ireland, M. Fujimoto, T. Yamada, M. Arakawa, H. C. Connolly, A. Fujii, S. Hasegawa, N. Hirata, N. Hirata, C. Hirose, S. Hosoda, Y. Iijima, H. Ikeda, M. Ishiguro, Y. Ishihara, T. Iwata, S. Kikuchi, K. Kitazato, D. S. Lauretta, G. Libourel, B. Marty, K. Matsumoto, T. Michikami, Y. Mimasu, A. Miura, O. Mori, K. Nakamura-Messenger, N. Namiki, A. N. Nguyen, L. R. Nittler, H. Noda, R. Noguchi, N. Ogawa, G. Ono, M. Ozaki, H. Senshu, T. Shimada, Y. Shimaki, K. Shirai, S. Soldini, T. Takahashi, Y. Takei, H. Takeuchi, R. Tsukizaki, K. Wada, Y. Yamamoto, K. Yoshikawa, K. Yumoto, M. E. Zolensky, S. Nakazawa, F. Terui, S. Tanaka, T. Saiki, M. Yoshikawa, S. Watanabe, Y. Tsuda
    Science 375(6584) 1011-1016 2022年3月4日  
    The Hayabusa2 spacecraft investigated the C-type (carbonaceous) asteroid (162173) Ryugu. The mission performed two landing operations to collect samples of surface and subsurface material, the latter exposed by an artificial impact. We present images of the second touchdown site, finding that ejecta from the impact crater was present at the sample location. Surface pebbles at both landing sites show morphological variations ranging from rugged to smooth, similar to Ryugu’s boulders, and shapes from quasi-spherical to flattened. The samples were returned to Earth on 6 December 2020. We describe the morphology of &gt;5 grams of returned pebbles and sand. Their diverse color, shape, and structure are consistent with the observed materials of Ryugu; we conclude that they are a representative sample of the asteroid.
  • C. Pilorget, T. Okada, V. Hamm, R. Brunetto, T. Yada, D. Loizeau, L. Riu, T. Usui, A. Moussi-Soffys, K. Hatakeda, A. Nakato, K. Yogata, M. Abe, A. Aléon-Toppani, J. Carter, M. Chaigneau, B. Crane, B. Gondet, K. Kumagai, Y. Langevin, C. Lantz, T. Le Pivert-Jolivet, G. Lequertier, L. Lourit, A. Miyazaki, M. Nishimura, F. Poulet, M. Arakawa, N. Hirata, K. Kitazato, S. Nakazawa, N. Namiki, T. Saiki, S. Sugita, S. Tachibana, S. Tanaka, M. Yoshikawa, Y. Tsuda, S. Watanabe, J.-P. Bibring
    Nature Astronomy 6(2) 221-225 2022年2月  
  • Toru Yada, Masanao Abe, Tatsuaki Okada, Aiko Nakato, Kasumi Yogata, Akiko Miyazaki, Kentaro Hatakeda, Kazuya Kumagai, Masahiro Nishimura, Yuya Hitomi, Hiromichi Soejima, Miwa Yoshitake, Ayako Iwamae, Shizuho Furuya, Masayuki Uesugi, Yuzuru Karouji, Tomohiro Usui, Tasuku Hayashi, Daiki Yamamoto, Ryota Fukai, Seiji Sugita, Yuichiro Cho, Koki Yumoto, Yuna Yabe, Jean-Pierre Bibring, Cedric Pilorget, Vincent Hamm, Rosario Brunetto, Lucie Riu, Lionel Lourit, Damien Loizeau, Guillaume Lequertier, Aurelie Moussi-Soffys, Shogo Tachibana, Hirotaka Sawada, Ryuji Okazaki, Yoshinori Takano, Kanako Sakamoto, Yayoi N. Miura, Hajime Yano, Trevor R. Ireland, Tetsuya Yamada, Masaki Fujimoto, Kohei Kitazato, Noriyuki Namiki, Masahiko Arakawa, Naru Hirata, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Hikaru Yabuta, Hiroshi Naraoka, Motoo Ito, Eizo Nakamura, Kentaro Uesugi, Katsura Kobayashi, Tatsuhiro Michikami, Hiroshi Kikuchi, Naoyuki Hirata, Yoshiaki Ishihara, Koji Matsumoto, Hirotomo Noda, Rina Noguchi, Yuri Shimaki, Kei Shirai, Kazunori Ogawa, Koji Wada, Hiroki Senshu, Yukio Yamamoto, Tomokatsu Morota, Rie Honda, Chikatoshi Honda, Yasuhiro Yokota, Moe Matsuoka, Naoya Sakatani, Eri Tatsumi, Akira Miura, Manabu Yamada, Atsushi Fujii, Chikako Hirose, Satoshi Hosoda, Hitoshi Ikeda, Takahiro Iwata, Shota Kikuchi, Yuya Mimasu, Osamu Mori, Naoko Ogawa, Go Ono, Takanobu Shimada, Stefania Soldini, Tadateru Takahashi, Yuto Takei, Hiroshi Takeuchi, Ryudo Tsukizaki, Kent Yoshikawa, Fuyuto Terui, Satoru Nakazawa, Satoshi Tanaka, Takanao Saiki, Makoto Yoshikawa, Sei-ichiro Watanabe, Yuichi Tsuda
    NATURE ASTRONOMY 6(2) 214-+ 2022年2月  
    Abstract C-type asteroids1 are considered to be primitive small Solar System bodies enriched in water and organics, providing clues to the origin and evolution of the Solar System and the building blocks of life. C-type asteroid 162173 Ryugu has been characterized by remote sensing2–7 and on-asteroid measurements8,9 with Hayabusa2 (ref. 10). However, the ground truth provided by laboratory analysis of returned samples is invaluable to determine the fine properties of asteroids and other planetary bodies. We report preliminary results of analyses on returned samples from Ryugu of the particle size distribution, density and porosity, spectral properties and textural properties, and the results of a search for Ca–Al-rich inclusions (CAIs) and chondrules. The bulk sample mainly consists of rugged and smooth particles of millimetre to submillimetre size, confirming that the physical and chemical properties were not altered during the return from the asteroid. The power index of its size distribution is shallower than that of the surface boulder observed on Ryugu11, indicating differences in the returned Ryugu samples. The average of the estimated bulk densities of Ryugu sample particles is 1,282 ± 231 kg m−3, which is lower than that of meteorites12, suggesting a high microporosity down to the millimetre scale, extending centimetre-scale estimates from thermal measurements5,9. The extremely dark optical to near-infrared reflectance and spectral profile with weak absorptions at 2.7 and 3.4 μm imply a carbonaceous composition with indigenous aqueous alteration, matching the global average of Ryugu3,4 and confirming that the sample is representative of the asteroid. Together with the absence of submillimetre CAIs and chondrules, these features indicate that Ryugu is most similar to CI chondrites but has lower albedo, higher porosity and more fragile characteristics.
  • Ito, M., Tomioka, N., Uesugi, M., Yamaguchi, A., Imae, N., Shirai, N., Ohigashi, T., Kimura, M., Liu, M-C, Greenwood, R. C., Uesugi, K., Nakato, A., Yogata, K., Yuzawa, H., Kodama, Y., Tsuchiyama, A., Yasutake, M., Findlay, R., Franchi, I. A., Malley, J. A., McCain, K. A., Matsuda, N., McKeegan, K. D., Hirahara, K., Takeuchi, A., Sekimoto, S., Sakurai, I., Okada, I., Karouji, Y., Yada, T., Abe, M., Usui, T., Watanabe, S., Tsuda, Y.
    Meteoritics & Planetary Science 2022年  
  • A. Longobardo, E. Palomba, A. Galiano, F. Dirri, A. Zinzi, M. D'Amore, D. Domingue, K. Kitazato, Y. Yokota, S. E. Schroeder, T. Iwata, M. Matsuoka, T. Hiroi, D. Takir, T. Nakamura, M. Abe, M. Ohtake, S. Matsuura, S. Watanabe, M. Yoshikawa, T. Saiki, S. Tanaka, T. Okada, Y. Yamamoto, Y. Takei, K. Shirai, N. Hirata, N. Hirata, K. Matsumoto, Y. Tsuda
    Astronomy and Astrophysics 666 2022年  
    Context. JAXA's Hayabusa2 mission rendezvoused the Ryugu asteroid for 1.5 years to clarify the carbonaceous asteroids' record for Solar System origin and evolution. Aims. We studied the photometric behavior of the spectral parameters characterizing the near-infrared (NIR) spectra of Ryugu provided by the Hayabusa2/NIRS3 instrument, that is to say 1.9 µm reflectance, 2.7 and 2.8 µm band depths (ascribed to phyllosilicates), and NIR slope. Methods. For each parameter, we applied the following empirical approach: (1) retrieval of the equigonal albedo by applying the Akimov disk function (this step was only performed for the reflectance photometric correction); (2) retrieval of the median spectral parameter value at each phase angle bin; and (3) retrieval of the phase function by a linear fit. Results. Ryugu's phase function shows a steepness similar to Ceres, according to the same taxonomy of the two asteroids. Band depths decrease with increasing phase angle: this trend is opposite to that observed on other asteroids explored by space missions and is ascribed to the very dark albedo. NIR and visible phase reddening are similar, contrary to other asteroids, where visible phase reddening is larger: this could be due to surface darkness or to particle smoothness. Albedo and band depths are globally uncorrelated, but locally anticorrelated. A correlation between darkening and reddening is observed.
  • McCain, K. A., Matsuda, N., Liu, M. -C., McKeegan, K. D., Yamaguchi, A., Kimura, M., Tomioka, N., Ito, M., Imae, N., Uesugi, M., Shirai, N., Ohigashi, T., Greenwood, R. C., Uesugi, K., Nakato, A., Yogata, K., Yu-Zawa, H., Kodama, Y., Hirahara, K., Sakurai, I., Okada, I., Karouji, Y., Nakazawa, S., Okada, T., Saiki, T., Tanaka, S., Terui, F., Yoshikawa, M., Miyazaki, A., Nishimura, M., Yada, T., Abe, M., Usui, T., Watanabe, S., Tsuda, Y.
    Meteoritics & Planetary Science 2022年  
  • Aiko Nakato, Shiori Inada, Shizuho Furuya, Masahiro Nishimura, Toru Yada, Masanao Abe, Tomohiro Usui, Hideto Yoshida, Takashi Mikouchi, Kanako Sakamoto, Hajime Yano, Yayoi N. Miura, Yoshinori Takano, Shinji Yamanouchi, Ryuji Okazaki, Hirotaka Sawada, Shogo Tachibana
    GEOCHEMICAL JOURNAL 2022年  
  • Motoo Ito, Naotaka Tomioka, Masayuki Uesugi, Akira Yamaguchi, Naoki Shirai, Takuji Ohigashi, Ming Chang Liu, Richard C. Greenwood, Makoto Kimura, Naoya Imae, Kentaro Uesugi, Aiko Nakato, Kasumi Yogata, Hayato Yuzawa, Yu Kodama, Akira Tsuchiyama, Masahiro Yasutake, Ross Findlay, Ian A. Franchi, James A. Malley, Kaitlyn A. McCain, Nozomi Matsuda, Kevin D. McKeegan, Kaori Hirahara, Akihisa Takeuchi, Shun Sekimoto, Ikuya Sakurai, Ikuo Okada, Yuzuru Karouji, Masahiko Arakawa, Atsushi Fujii, Masaki Fujimoto, Masahiko Hayakawa, Naoyuki Hirata, Naru Hirata, Rie Honda, Chikatoshi Honda, Satoshi Hosoda, Yu ichi Iijima, Hitoshi Ikeda, Masateru Ishiguro, Yoshiaki Ishihara, Takahiro Iwata, Kosuke Kawahara, Shota Kikuchi, Kohei Kitazato, Koji Matsumoto, Moe Matsuoka, Tatsuhiro Michikami, Yuya Mimasu, Akira Miura, Osamu Mori, Tomokatsu Morota, Satoru Nakazawa, Noriyuki Namiki, Hirotomo Noda, Rina Noguchi, Naoko Ogawa, Kazunori Ogawa, Tatsuaki Okada, Chisato Okamoto, Go Ono, Masanobu Ozaki, Takanao Saiki, Naoya Sakatani, Hirotaka Sawada, Hiroki Senshu, Yuri Shimaki, Kei Shirai, Seiji Sugita, Yuto Takei, Hiroshi Takeuchi, Satoshi Tanaka, Eri Tatsumi, Fuyuto Terui, Ryudo Tsukizaki, Koji Wada, Manabu Yamada, Tetsuya Yamada, Yukio Yamamoto, Hajime Yano, Yasuhiro Yokota, Keisuke Yoshihara, Makoto Yoshikawa, Kent Yoshikawa, Ryota Fukai, Shizuho Furuya, Kentaro Hatakeda, Tasuku Hayashi, Yuya Hitomi, Kazuya Kumagai, Akiko Miyazaki, Masahiro Nishimura, Hiromichi Soejima, Ayako Iwamae, Daiki Yamamoto, Miwa Yoshitake, Toru Yada, Masanao Abe, Tomohiro Usui
    Nature Astronomy 6(10) 1163-1171 2022年  
    Volatile and organic-rich C-type asteroids may have been one of the main sources of Earth’s water. Our best insight into their chemistry is currently provided by carbonaceous chondritic meteorites, but the meteorite record is biased: only the strongest types survive atmospheric entry and are then modified by interaction with the terrestrial environment. Here we present the results of a detailed bulk and microanalytical study of pristine Ryugu particles, brought to Earth by the Hayabusa2 spacecraft. Ryugu particles display a close compositional match with the chemically unfractionated, but aqueously altered, CI (Ivuna-type) chondrites, which are widely used as a proxy for the bulk Solar System composition. The sample shows an intricate spatial relationship between aliphatic-rich organics and phyllosilicates and indicates maximum temperatures of ~30 °C during aqueous alteration. We find that heavy hydrogen and nitrogen abundances are consistent with an outer Solar System origin. Ryugu particles are the most uncontaminated and unfractionated extraterrestrial materials studied so far, and provide the best available match to the bulk Solar System composition.
  • Yuichi Tsuda, Satoru Nakazawa, Makoto Yoshikawa, Takanao Saiki, Fuyuto Terui, Masahiko Arakawa, Masanao Abe, Kohei Kitazato, Seiji Sugita, Shogo Tachibana, Noriyuki Namiki, Satoshi Tanaka, Tatsuaki Okada, Hitoshi Ikeda, Sei-ichiro Watanabe
    Hayabusa2 Asteroid Sample Return Mission 5-23 2022年  
  • Deborah Domingue, Kohei Kitazato, Moe Matsuoka, Yasuhiro Yokota, Eri Tatsumi, Takahiro Iwata, Masanao Abe, Makiko Ohtake, Shuji Matsuura, Stefan Schröder, Faith Vilas, Antonella Barucci, Rosario Brunetto, Driss Takir, Lucille Le Corre, Nicholas Moskovitz
    The Planetary Science Journal 2(5) 178-178 2021年10月1日  
    Examination of the opposition geometry properties show that Ryugu’s surface regolith is commensurate with laboratory studies of the photometric behavior of powdered carbonaceous chondrites. The regolith is consistent with a broad grain size distribution that contains a fine-grained component.
  • Toru Yada, Masanao Abe, Tatsuaki Okada, Aiko Nakato, Kasumi Yogata, Akiko Miyazaki, Kentaro Hatakeda, Kazuya Kumagai, Masahiro Nishimura, Yuya Hitomi, Hiromichi Soejima, Miwa Yoshitake, Ayako Iwamae, Shizuho Furuya, Masayuki Uesugi, Yuzuru Karouji, Tomohiro Usui, Tasuku Hayashi, Daiki Yamamoto, Ryota Fukai, Seiji Sugita, Yuichiro Cho, Koki Yumoto, Yuna Yabe, Jean-Pierre Bibring, Cedric Pilorget, Vincent Hamm, Rosario Brunetto, Lucie Riu, Lionel Lourit, Damien Loizeau, Guillaume Lequertier, Aurelie Moussi-Soffys, Shogo Tachibana, Hirotaka Sawada, Ryuji Okazaki, Yoshinori Takano, Kanako Sakamoto, Yayoi Miura, Hajime Yano, Trevor Ireland, Tetsuya Yamada, Masaki Fujimoto, Kohei Kitazato, Noriyuki Namiki, Masahiko Arakawa, Naru Hirata, Hisayoshi Yurimoto, Tomoki Nakamura, Takaaki Noguchi, Hikaru Yabuta, Hiroshi Naraoka, Motoo Ito, Eizo Nakamura, Kentaro Uesugi, Katsura Kobayashi, Tatsuhiro Michikami, Hiroshi Kikuchi, Naoyuki Hirata, Yoshiaki Ishihara, Koji Matsumoto, Hirotomo Noda, Rina Noguchi, Yuri Shimaki, Kazunori Ogawa, Kei Shirai, Koji Wada, Hiroki Senshu, Yukio Yamamoto, Tomokatsu Morota, Rie Honda, Chikatoshi Honda, Yasuhiro Yokota, Moe Matsuoka, Naoya Sakatani, Eri Tatsumi, Akira Miura, Manabu Yamada, Atsushi Fujii, Chikako Hirose, Satoshi Hosoda, Hitoshi Ikeda, Takahiro Iwata, Shota Kikuchi, Yuya Mimasu, Osamu Mori, Naoko Ogawa, Go Ono, Takanobu Shimada, Stefania Soldini, Tadateru Takahashi, Yuto Takei, Hiroshi Takeuchi, Ryudo Tsukizaki, Kent Yoshikawa, Fuyuto Terui, Satoru Nakazawa, Satoshi Tanaka, Takanao Saiki, Makoto Yoshikawa, Sei-ichiro Watanabe, Yuichi Tsuda
    2021年6月21日  
    <title>Abstract</title> C-type asteroids are considered to be primitive small Solar-System bodies enriched in water and organics, providing clues for understanding the origin and evolution of the Solar System and the building blocks of life. C-type asteroid 162173 Ryugu has been characterized by remote sensing and on-asteroid measurements with Hayabusa2, but further studies are expected by direct analyses of returned samples. Here we describe the bulk sample mainly consisting of rugged and smooth particles of millimeter to submillimeter size, preserving physical and chemical properties as they were on the asteroid. The particle size distribution is found steeper than that of surface boulders11. Estimated grain densities of the samples have a peak around 1350 kg m-3, which is lower than that of meteorites suggests a high micro-porosity down to millimeter-scale, as estimated at centimeter-scale by thermal measurements. The extremely dark optical to near-infrared reflectance and the spectral profile with weak absorptions at 2.7 and 3.4 microns implying carbonaceous composition with indigenous aqueous alteration, respectively, match the global average of Ryugu, confirming the sample’s representativeness. Together with the absence of chondrule and Ca-Al-rich inclusion of larger than sub-mm, these features indicate Ryugu is most similar to CI chondrites but with darker, more porous and fragile characteristics.
  • K. Kitazato, R. E. Milliken, T. Iwata, M. Abe, M. Ohtake, S. Matsuura, Y. Takagi, T. Nakamura, T. Hiroi, M. Matsuoka, L. Riu, Y. Nakauchi, K. Tsumura, T. Arai, H. Senshu, N. Hirata, M. A. Barucci, R. Brunetto, C. Pilorget, F. Poulet, J.-P. Bibring, D. L. Domingue, F. Vilas, D. Takir, E. Palomba, A. Galiano, D. Perna, T. Osawa, M. Komatsu, A. Nakato, T. Arai, N. Takato, T. Matsunaga, M. Arakawa, T. Saiki, K. Wada, T. Kadono, H. Imamura, H. Yano, K. Shirai, M. Hayakawa, C. Okamoto, H. Sawada, K. Ogawa, Y. Iijima, S. Sugita, R. Honda, T. Morota, S. Kameda, E. Tatsumi, Y. Cho, K. Yoshioka, Y. Yokota, N. Sakatani, M. Yamada, T. Kouyama, H. Suzuki, C. Honda, N. Namiki, T. Mizuno, K. Matsumoto, H. Noda, Y. Ishihara, R. Yamada, K. Yamamoto, F. Yoshida, S. Abe, A. Higuchi, Y. Yamamoto, T. Okada, Y. Shimaki, R. Noguchi, A. Miura, N. Hirata, S. Tachibana, H. Yabuta, M. Ishiguro, H. Ikeda, H. Takeuchi, T. Shimada, O. Mori, S. Hosoda, R. Tsukizaki, S. Soldini, M. Ozaki, F. Terui, N. Ogawa, Y. Mimasu, G. Ono, K. Yoshikawa, C. Hirose, A. Fujii, T. Takahashi, S. Kikuchi, Y. Takei, T. Yamaguchi, S. Nakazawa, S. Tanaka, M. Yoshikawa, S. Watanabe, Y. Tsuda
    Nature Astronomy 5(3) 246-250 2021年3月  
  • Lucie Riu, Cedric Pilorget, Ralph Milliken, Kohei Kitazato, Tomoki Nakamura, Yuichiro Cho, Moe Matsuoka, Seiji Sugita, Masanao Abe, Shuji Matsuura, Makiko Ohtake, Shingo Kameda, Naoya Sakatani, Eri Tatsumi, Yasuhiro Yokota, Takahiro Iwata
    ICARUS 357 2021年3月15日  
    © 2020 Elsevier Inc. C-type rubble pile asteroid (162173) Ryugu was observed and characterized up close for a year and a half by the instruments on-board the Japanese Aerospace eXploration Agency (JAXA) Hayabusa2 spacecraft. The asteroid exhibits relatively homogeneous spectral characteristics at near-infrared wavelengths (~1.8–3.2 μm), including a very low reflectance factor, a slight positive (“red”) slope towards longer wavelengths, and a narrow absorption feature centered at 2.72 μm that is attributed to the presence of OH− in phyllosilicate minerals. Numerous craters have been identified at the surface that provide good candidates for identifying and studying younger and/or more recently exposed near-surface material to further assess potential spectral/compositional heterogeneities. We present here the results of a spectral survey of all previously identified and referenced craters (Hirata et al. 2020) based on reflectance data acquired by the NIRS3 spectrometer, with an emphasis on the spectral characteristics between different craters as well as with their surrounding terrain. At a global scale, the spectral properties inside and outside of craters are found to be very similar, indicating that subsurface material is either compositionally similar to material at the surface that has a longer exposure age or that material at Ryugu's optical surface is spectrally altered over relatively short timescales by external factors such as space weathering. Although, the imaging data from ONC camera suites show more morphological and color diversity in craters at a smaller scale than the resolution provided by the NIRS3 instrument, which could indicate a wider compositional diversity on Ryugu than that observed in the near-infrared and discussed in this paper. The 2.72 μm band depth exhibit a slight anti-correlation with the reflectance factor selected at 2 μm, which could indicate different surface properties (e.g., grain size and/or porosity) or different alteration processes (e.g., space weathering, shock metamorphism and/or solar heating). Four different spectral classes were identified based on their reflectance factor at 2 μm and 2.72 μm absorption strength. The most commonly spectral behavior associated with crater floors, is defined by a slightly lower reflectance at 2 μm and deeper band depth. These spectral characteristics are similar to those of subsurface material excavated by the Hayabusa2 small carry-on impactor (SCI) experiment, suggesting these spectral characteristics may represent materials with a younger surface exposure age. Alternatively, these materials may have experienced significant solar heating and desiccation to form finer grains that subsequently migrated towards and preferentially accumulated in areas of low geopotential, such as craters floors. It is believed that the Hayabusa2 mission successfully collected typical surface material as well as darker material excavated by the SCI experiment, and detailed analyses of those samples upon their return will allow for further testing of these formation and alteration hypotheses.
  • Yusuke Nakauchi, Masanao Abe, Makiko Ohtake, Toru Matsumoto, Akira Tsuchiyama, Kohei Kitazato, Keisuke Yasuda, Kohtaku Suzuki, Yoshinori Nakata
    Icarus 355 114140-114140 2021年2月  
  • Motoo Ito, Yoshinori Takano, Yoko Kebukawa, Takuji Ohigashi, Moe Matsuoka, Kento Kiryu, Masayuki Uesugi, Tomoki Nakamura, Hayato Yuzawa, Keita Yamada, Hiroshi Naraoka, Toru Yada, Masanao Abe, Masahiko Hayakawa, Takanao Saiki, Shogo Tachibana
    GEOCHEMICAL JOURNAL 55(4) 223-239 2021年  
    We have analyzed the carbonaceous materials generated by the explosion of an High-melting explosive mixture in an Ar atmosphere in a laboratory simulation of the small carry-on impactor experiment. We used both non-destructive and destructive analytical techniques to identify the chemical nature of the materials. From SEM-EDS, we found the materials to be composed mainly of carbon, nitrogen, and oxygen, with a detectable amount of metals. Suitable parameters for identifying these materials are a FTIR peak at 1520 cm(-1), low reflectance and gentle red slope of FTIR spectrum compared with the Murchison CM2 chondrite, the Raman D and G bands, and the hydrogen, carbon, and nitrogen isotopic compositions and their spatial distributions. The scanning transmission X-ray microscopy (STXM)-XANES results provided information about the molecular nature of these highly aromatic materials, which was supported by results from TD-GC/MS. These results suggest that it is possible to distinguish Ryugu samples from SCI potential contaminants in a sample container by using proper combinations of analytical techniques. This assessment provides information that will be useful for the analysis of the Ryugu asteroidal samples.
  • Yuto Takei, Takanao Saiki, Yukio Yamamoto, Yuya Mimasu, Hiroshi Takeuchi, Hitoshi Ikeda, Naoko Ogawa, Fuyuto Terui, Go Ono, Kent Yoshikawa, Tadateru Takahashi, Hirotaka Sawada, Chikako Hirose, Shota Kikuchi, Atsushi Fujii, Takahiro Iwata, Satoru Nakazawa, Masahiko Hayakawa, Ryudo Tsukizaki, Satoshi Tanaka, Masanori Matsushita, Osamu Mori, Daiki Koda, Takanobu Shimada, Masanobu Ozaki, Masanao Abe, Satoshi Hosoda, Tatsuaki Okada, Hajime Yano, Takaaki Kato, Seiji Yasuda, Kota Matsushima, Tetsuya Masuda, Makoto Yoshikawa, Yuichi Tsuda
    ASTRODYNAMICS 4(4) 349-375 2020年12月  
    The Japanese interplanetary probe Hayabusa2 was launched on December 3, 2014 and the probe arrived at the vicinity of asteroid 162173 Ryugu on June 27, 2018. During its 1.4 years of asteroid proximity phase, the probe successfully accomplished numbers of record-breaking achievements including two touchdowns and one artificial cratering experiment, which are highly expected to have secured surface and subsurface samples from the asteroid inside its sample container for the first time in history. The Hayabusa2 spacecraft was designed not to orbit but to hover above the asteroid along the sub-Earth line. This orbital and geometrical configuration allows the spacecraft to utilize its high-gain antennas for telecommunication with the ground station on Earth while pointing its scientific observation and navigation sensors at the asteroid. This paper focuses on the regular station-keeping operation of Hayabusa2, which is called "home position" (HP)-keeping operation. First, together with the spacecraft design, an operation scheme called HP navigation (HPNAV), which includes a daily trajectory control and scientific observations as regular activities, is introduced. Following the description on the guidance, navigation, and control design as well as the framework of optical and radiometric navigation, the results of the HP-keeping operation including trajectory estimation and delta-V planning during the entire asteroid proximity phase are summarized and evaluated as a first report. Consequently, this paper states that the HP-keeping operation in the framework of HPNAV had succeeded without critical incidents, and the number of trajectory control delta-V was planned efficiently throughout the period.
  • A. Galiano, E. Palomba, M. D'Amore, A. Zinzi, F. Dirri, A. Longobardo, K. Kitazato, T. Iwata, M. Matsuoka, T. Hiroi, D. Takir, T. Nakamura, M. Abe, M. Ohtake, S. Matsuura, S. Watanabe, M. Yoshikawa, T. Saiki, S. Tanaka, T. Okada, Y. Yamamoto, Y. Takei, K. Shirai, N. Hirata, K. Matsumoto, Y. Tsuda
    Icarus 351 2020年11月15日  査読有り
    © 2020 Elsevier Inc. The Near-Earth Asteroid 162173 Ryugu (1999 JU3) was investigated by the JAXA Hayabusa2 mission from June 2018 to November 2019. The data acquired by NIRS3 spectrometer revealed a dark surface with a positive near-infrared spectral slope. In this work we investigated the spectral slope variations across the Ryugu surface, providing information about physical/chemical properties of the surface. We analysed the calibrated, thermally and photometrically corrected NIRS3 data, and we evaluated the spectral slope between 1.9 μm and 2.5 μm, whose values extend from 0.11 to 0.28 and the mean value corresponds to 0.163±0.022. Starting from the mean value of slope and moving in step of 1 standard deviation (0.022), we defined 9 “slope families”, the Low-Red-Slope families (LR1, LR2 and LR3) and the High-Red-Sloped families (HR1, HR2, HR3, HR4, HR5, HR6). The mean values of some spectral parameters were estimated for each family, such as the reflectance factor at 1.9 μm, the spectral slope, the depth of bands at 2.7 μm and at 2.8 μm. A progressive spectral reddening, darkening and weakening/narrowing of OH bands is observed moving from the LR families to the HR families. We concluded that the spectral variability observed among families is the result of the thermal metamorphism experienced by Ryugu after the catastrophic disruption of its parent body and space weathering processes that occurred on airless bodies as Ryugu, such as impact cratering and solar wind irradiation. As a consequence, the HR1, LR1, LR2 and LR3 families, corresponding to equatorial ridge and crater rims, are the less altered regions on Ryugu surface, which experienced the minor alteration and OH devolatilization; the HR2, HR3, HR4, HR5 families, coincident with floors and walls of impact craters, are the most altered areas, result of the three processes occurring on Ryugu. The strong reddening of the HR6 family (coincident with Ejima Saxum) is likely due to the fine-sized material covering the large boulder.
  • Shota Kikuchi, Sei-ichiro Watanabe, Takanao Saiki, Hikaru Yabuta, Seiji Sugita, Tomokatsu Morota, Naru Hirata, Naoyuki Hirata, Tatsuhiro Michikami, Chikatoshi Honda, Yashuhiro Yokota, Rie Honda, Naoya Sakatani, Tatsuaki Okada, Yuri Shimaki, Koji Matsumoto, Rina Noguchi, Yuto Takei, Fuyuto Terui, Naoko Ogawa, Kent Yoshikawa, Go Ono, Yuya Mimasu, Hirotaka Sawada, Hitoshi Ikeda, Chikako Hirose, Tadateru Takahashi, Atsushi Fujii, Tomohiro Yamaguchi, Yoshiaki Ishihara, Tomoki Nakamura, Kohei Kitazato, Koji Wada, Shogo Tachibana, Eri Tatsumi, Moe Matsuoka, Hiroki Senshu, Shingo Kameda, Toru Kouyama, Manabu Yamada, Kei Shirai, Yuichiro Cho, Kazunori Ogawa, Yukio Yamamoto, Akira Miura, Takahiro Iwata, Noriyuki Namiki, Masahiko Hayakawa, Masanao Abe, Satoshi Tanaka, Makoto Yoshikawa, Satoru Nakazawa, Yuichi Tsuda
    Space Science Reviews 216(7) 2020年10月  
  • Motoo Ito, Naotaka Tomioka, Kentaro Uesugi, Masayuki Uesugi, Yu Kodama, Ikuya Sakurai, Ikuo Okada, Takuji Ohigashi, Hayato Yuzawa, Akira Yamaguchi, Naoya Imae, Yuzuru Karouji, Naoki Shirai, Toru Yada, Masanao Abe
    EARTH PLANETS AND SPACE 72(1) 2020年9月  
    We developed universal sample holders [the Kochi grid, Kochi clamp, and Okazaki cell) and a transfer vessel (facility-to-facility transfer container (FFTC)] to analyze sensitive and fragile samples, such as extremely small extraterrestrial materials. The holders and container prevent degradation, contamination due to the terrestrial atmosphere (water vapor and oxygen gas) and small particles, as well as mechanical sample damage. The FFTC can isolate the samples from the effects of the atmosphere for more than a week. The Kochi grid and clamp were made for a coordinated micro/nano-analysis that utilizes a focused-ion beam apparatus, transmission electron microscope, and nanoscale secondary ion mass spectrometry. The Okazaki cell was developed as an additional attachment for a scanning transmission X-ray microscope that uses near-edge X-ray absorption fine structure (NEXAFS). These new apparatuses help to minimize possible alterations from the exposure of the samples to air. The coordinated analysis involving these holders was successfully carried out without any sample damage or loss, thereby enabling us to obtain sufficient analytical datasets of textures, crystallography, elemental/isotopic abundances, and molecular functional groups for mu m-sized minerals and organics in both the Antarctic micrometeorite and a carbonaceous chondrite. We will apply the coordinated analysis to acquire the complex characteristics in samples obtained by the future spacecraft sample return mission.
  • Naoki Shirai, Yuzuru Karouji, Kazuya Kumagai, Masayuki Uesugi, Kaori Hirahara, Motoo Ito, Naotaka Tomioka, Kentaro Uesugi, Akira Yamaguchi, Naoya Imae, Takuji Ohigashi, Toru Yada, Masanao Abe
    METEORITICS & PLANETARY SCIENCE 55(7) 1665-1680 2020年7月  
    Chemical compositions of materials used for new sample holders (vertically aligned carbon nanotubes [VACNTs] and polyimide film), which were developed for the analysis of Hayabusa2-return samples, were determined by instrumental neutron activation analysis and/or instrumental photon activation analysis, to estimate contamination effects from the sample holders. The synthetic quartz plate used for the sample holders was also analyzed. Ten elements (Na, Al, Cr, Mn, Fe, Ni, Eu, W, Au, and Th) and 14 elements (Na, Al, K, Sc, Ti, Cr, Zn, Ga, Br, Sb, La, Eu, Ir, and Au) could be detected in the VACNTs and polyimide film, respectively. The VACNT data show that contamination by this material with respect to the Murchison meteorite is negligible in terms of the elemental ratios (e.g., Fe/Mn, Na/Al, and Mn/Cr) used for the classification of meteorites due to the extremely low density of VACNTs. However, for the Au/Cr ratio, even small degrees (1.7 wt%) of contamination by VACNTs will change the Au/Cr ratio. Elemental ratios used for the classification of meteorites are only influenced by large amounts of contamination (>60 wt%) of polyimide film, which is unlikely to occur. In contrast, detectable effects on Ti isotopic compositions are caused by >0.1 and >0.3 wt% contamination by VACNTs and polyimide film, respectively, and Hf isotopic changes are caused by >0.1 wt% contamination by VACNTs. The new sample holders (VACNTs and polyimide film) are suitable for chemical classification of Hayabusa2-return samples, because of their ease of use, applicability to multiple analytical instruments, and low contamination levels for most elements.
  • E. Tatsumi, D. Domingue, S. Schröder, Y. Yokota, D. Kuroda, M. Ishiguro, S. Hasegawa, T. Hiroi, R. Honda, R. Hemmi, L. Le Corre, N. Sakatani, T. Morota, M. Yamada, S. Kameda, T. Koyama, H. Suzuki, Y. Cho, K. Yoshioka, M. Matsuoka, C. Honda, M. Hayakawa, N. Hirata, N. Hirata, Y. Yamamoto, F. Vilas, N. Takato, M. Yoshikawa, M. Abe, S. Sugita
    Astronomy and Astrophysics 639 2020年7月1日  査読有り
    © ESO 2020. Context. The Hayabusa2 spacecraft launched by Japan Aerospace Exploration Agency has been conducting observations of the asteroid (162173) Ryugu since June 2018. The Telescopic Optical Navigation Camera (ONC-T) onboard Hayabusa2 has obtained thousands of images under a variety of illumination and viewing conditions. Aims. Our objective is to examine and validate the camera calibration, derive a photometric correction for creating global albedo maps, and to interpret the photometric modeling results to characterize the surface of Ryugu. Methods. We observed (162173) Ryugu with the Gemini-South telescope, and combined these measurements with other published ground-based observations of the asteroid. The ground-based observations were compared with the data obtained by ONC-T in order to validate the radiometric calibration mutually. We used a combination of the Hapke disk-integrated and disk-resolved model equations to simultaneously analyze the combined ground- and spacecraft-based data. Results. The average spectrum of Ryugu was classified as Cb-type following the SMASSII taxonomy and C/F-type following the Tholen taxonomy based on spacecraft observations. We derived Hapke model parameters for all seven color filters, which allowed us to photometrically correct images to within an error of <10% for ~80% of the image pixels used in the modeling effort. Using this model, we derived a geometric albedo of 4.0 ± 0.5% (v band) for Ryugu. The average reflectance factor at the standard illumination condition was 1.87 ± 0.14% in the v band. Moreover we measured a phase reddening of (2.0 ± 0.7) × 10-3 μm-1 deg-1 for Ryugu, similar to that observed for the asteroid (101955) Bennu. Conclusions. The global color map showed that the general trend was for darker regions to also be redder regions, however there were some distinct exceptions to this trend. For example, Otohime Saxum was bright and red while Kibidango crater was dark and blue. The darkness and flatness of Ryugu's reflectance might be caused by a high abundance of organic materials.
  • T. Morota, S. Sugita, Y. Cho, M. Kanamaru, E. Tatsumi, N. Sakatani, R. Honda, N. Hirata, H. Kikuchi, M. Yamada, Y. Yokota, S. Kameda, M. Matsuoka, H. Sawada, C. Honda, T. Kouyama, K. Ogawa, H. Suzuki, K. Yoshioka, M. Hayakawa, N. Hirata, M. Hirabayashi, H. Miyamoto, T. Michikami, T. Hiroi, R. Hemmi, O. S. Barnouin, C. M. Ernst, K. Kitazato, T. Nakamura, L. Riu, H. Senshu, H. Kobayashi, S. Sasaki, G. Komatsu, T. Irie, M. Suemitsu, D. Domingue, P. Michel, C. Pilorget, T. Iwata, M. Abe, M. Ohtake, Y. Nakauchi, K. Tsumura2, et al.
    Science 368(6491) 654-659 2020年5月  査読有り
    Collecting a sample of asteroid Ryugu The Hayabusa2 spacecraft recently traveled to the nearby carbonaceous asteroid Ryugu to collect samples and return them to Earth for laboratory analysis. Morota et al. describe Hayabusa2's first sample collection, taken during a brief touchdown on Ryugu's surface. Close-up images and video taken during the sampling process allowed the authors to investigate the surface colors and morphology on a small scale. Relating these to the surface craters and stratigraphy constrains the evolution of Ryugu. The authors conclude that the asteroid experienced a prior period of strong solar heating caused by changes in its orbit. The sample is expected to arrive on Earth in December 2020. Science , this issue p. 654
  • Arakawa M., Saiki T., Wada K., Ogawa K., Kadono T., Shirai K., Sawada H., Ishibashi K., Honda R., Sakatani N., Iijima Y., Okamoto C., Yano H., Takagi Y., Hayakawa M., Michel P., Jutzi M., Shimaki Y., Kimura S., Mimasu Y., Toda T., Imamura H., Nakazawa S., Hayakawa H., Sugita S., Morota T., Kameda S., Tatsumi E., Cho Y., Yoshioka K., Yokota Y., Matsuoka M., Yamada M., Kouyama T., Honda C., Tsuda Y., Watanabe S., Yoshikawa M., Tanaka S., Terui F., Kikuchi S., Yamaguchi T., Ogawa N., Ono G., Yoshikawa K., Takahashi T., Takei Y., Fujii A., Takeuchi H., Yamamoto Y., Okada T., Hirose C., Hosoda S., Mori O., Shimada T., Soldini S., Tsukizaki R., Iwata T., Ozaki M., Abe M., Namiki N., Kitazato K., Tachibana S., Ikeda H., Hirata N., Noguchi R., Miura A.
    368 67-71 2020年4月  査読有り
  • Okada T., Fukuhara T., Tanaka S., Taguchi M., Arai T., Senshu H., Sakatani N., Shimaki Y., Demura H., Ogawa Y., Suko K., Sekiguchi T., Kouyama T., Takita J., Matsunaga T., Imamura T., Wada T., Hasegawa S., Helbert J., Müller T. G., Hagermann A., Biele J., Grott M., Hamm M., Delbo M., Hirata N., Yamamoto Y., Sugita S., Namiki N., Kitazato K., Arakawa M., Tachibana S., Ikeda H., Ishiguro M., Wada K., Honda C., Honda R., Ishihara Y., Matsumoto K., Matsuoka M., Michikami T., Miura A., Morota T., Noda H., Noguchi R., Ogawa K., Shirai K., Tatsumi E., Yabuta H., Yokota Y., Yamada M., Abe M., Hayakawa M., Iwata T., Ozaki M., Yano H., Hosoda S., Mori O., Sawada H., Shimada T., Takeuchi H., Tsukizaki R., Fujii A., Hirose C., Kikuchi S., Mimasu Y., Ogawa N., Ono G., Takahashi T., Takei Y., Yamaguchi T., Yoshikawa K., Terui F., Saiki T., Nakazawa S., Yoshikawa M., Watanabe S., Tsuda Y.
    579(7800) 518-522 2020年3月  査読有り
  • Masayuki Uesugi, Kaori Hirahara, Kentaro Uesugi, Akihisa Takeuchi, Yuzuru Karouji, Naoki Shirai, Motoo Ito, Naotaka Tomioka, Takuji Ohigashi, Akira Yamaguchi, Naoya Imae, Toru Yada, Masanao Abe
    REVIEW OF SCIENTIFIC INSTRUMENTS 91(3) 035107-035107 2020年3月  査読有り
    A sample holder for a suite of synchrotron radiation measurements on extraterrestrial materials, which are fragile and irregularly shaped, was developed using carbon nanotubes and polyimide. The holder enables investigation of such samples with multiple analytical instruments, which means that we can reduce the number of sample transfers between holders. The holder developed in our study also enables investigation of such samples without exposure to the terrestrial atmosphere, which contains abundant contaminants, such as water vapor and organic substances. The stability of the samples in the holder during the measurements and disturbance of the analysis result by the holder were evaluated, which showed that sample drift motion and image disturbance due to x-ray attenuation and scattering of the holder materials are insignificant. Published under license by AIP Publishing.
  • M. A. Barucci, P. H. Hasselmann, M. Fulchignoni, R. Honda, Y. Yokota, S. Sugita, K. Kitazato, J. D, P. Deshapriya, D. Perna, E. Tatsumi, D. Domingue, T. Morota, S. Kameda, T. Iwata, M. Abe, M. Ohtake, S. Matsuura, M. Matsuoka, T. Hiroi, T. Nakamura, T. Kouyama, H. Suzuki, M. Yamada, N. Sakatani, C. Honda, K. Ogawa, M. Hayakawa, K. Yoshioka, Y. Cho, H. Sawada, D. Takir, F. Vilas, N. Hirata, N. Hirata, S. Tanaka, Y. Yamamoto, M. Yoshikawa, S. Watanabe, Y. Tsuda
    Astronomy & Astrophysics 629 A13-A13 2019年9月  査読有り
  • S Watanabe, M Hirabayashi, N Hirata, Na Hirata, R Noguchi, Y Shimaki, H Ikeda, E Tatsumi, M Yoshikawa, S Kikuchi, H Yabuta, T Nakamura, S Tachibana, Y Ishihara, T Morota, K Kitazato, N Sakatani, K Matsumoto, K Wada, H Senshu, C Honda, T Michikami, H Takeuchi, T Kouyama, R Honda, S Kameda, T Fuse, H Miyamoto, G Komatsu, S Sugita, T Okada, N Namiki, M Arakawa, M Ishiguro, M Abe, R Gaskell, E Palmer, O S Barnouin, P Michel, A S French, J W McMahon, D J Scheeres, P A Abell, Y Yamamoto, S Tanaka, K Shirai, M Matsuoka, M Yamada, Y Yokota, H Suzuki, K Yoshioka, Y Cho, S Tanaka, N Nishikawa, T Sugiyama, H Kikuchi, R Hemmi, T Yamaguchi, N Ogawa, G Ono, Y Mimasu, K Yoshikawa, T Takahashi, Y Takei, A Fujii, C Hirose, T Iwata, M Hayakawa, S Hosoda, O Mori, H Sawada, T Shimada, S Soldini, H Yano, R Tsukizaki, M Ozaki, Y Iijima, K Ogawa, M Fujimoto, T-M Ho, A Moussi, R Jaumann, J-P Bibring, C Krause, F Terui, T Saiki, S Nakazawa, Y Tsuda
    Science (New York, N.Y.) 364(6437) 268-272 2019年4月19日  
    The Hayabusa2 spacecraft arrived at the near-Earth carbonaceous asteroid 162173 Ryugu in 2018. We present Hayabusa2 observations of Ryugu's shape, mass, and geomorphology. Ryugu has an oblate "spinning top" shape, with a prominent circular equatorial ridge. Its bulk density, 1.19 ± 0.02 grams per cubic centimeter, indicates a high-porosity (>50%) interior. Large surface boulders suggest a rubble-pile structure. Surface slope analysis shows Ryugu's shape may have been produced from having once spun at twice the current rate. Coupled with the observed global material homogeneity, this suggests that Ryugu was reshaped by centrifugally induced deformation during a period of rapid rotation. From these remote-sensing investigations, we identified a suitable sample collection site on the equatorial ridge.
  • K. Kitazato, R. E. Milliken, T. Iwata, M. Abe, M. Ohtake, S. Matsuura, T. Arai, Y. Nakauchi, T. Nakamura, M. Matsuoka, H. Senshu, N. Hirata, T. Hiroi, C. Pilorget, R. Brunetto, F. Poulet, L. Riu, J.-P. Bibring, D. Takir, D. L. Domingue, F. Vilas, M. A. Barucci, D. Perna, E. Palomba, A. Galiano, K. Tsumura, T. Osawa, M. Komatsu, A. Nakato, T. Arai, N. Takato, T. Matsunaga, Y. Takagi, K. Matsumoto, T. Kouyama, Y. Yokota, E. Tatsumi, N. Sakatani, Y. Yamamoto, T. Okada, S. Sugita, R. Honda, T. Morota, S. Kameda, H. Sawada, C. Honda, M. Yamada, H. Suzuki, K. Yoshioka, M. Hayakawa, K. Ogawa, Y. Cho, K. Shirai, Y. Shimaki, N. Hirata, A. Yamaguchi, N. Ogawa, F. Terui, T. Yamaguchi, Y. Takei, T. Saiki, S. Nakazawa, S. Tanaka, M. Yoshikawa, S. Watanabe, Y. Tsuda
    Science 364(6437) 272-275 2019年4月19日  
    The near-Earth asteroid 162173 Ryugu, the target of the Hayabusa2 sample-return mission, is thought to be a primitive carbonaceous object. We report reflectance spectra of Ryugu's surface acquired with the Near-Infrared Spectrometer (NIRS3) on Hayabusa2, to provide direct measurements of the surface composition and geological context for the returned samples. A weak, narrow absorption feature centered at 2.72 micrometers was detected across the entire observed surface, indicating that hydroxyl (OH)-bearing minerals are ubiquitous there. The intensity of the OH feature and low albedo are similar to thermally and/or shock-metamorphosed carbonaceous chondrite meteorites. There are few variations in the OH-band position, which is consistent with Ryugu being a compositionally homogeneous rubble-pile object generated from impact fragments of an undifferentiated aqueously altered parent body.
  • S. Sugita, R. Honda, T. Morota, S. Kameda, H. Sawada, E. Tatsumi, M. Yamada, C. Honda, Y. Yokota, T. Kouyama, N. Sakatani, K. Ogawa, H. Suzuki, T. Okada, N. Namiki, S. Tanaka, Y. Iijima, K. Yoshioka, M. Hayakawa, Y. Cho, M. Matsuoka, N. Hirata, N. Hirata, H. Miyamoto, D. Domingue, M. Hirabayashi, T. Nakamura, T. Hiroi, T. Michikami, P. Michel, R.-L. Ballouz, O. S. Barnouin, C. M. Ernst, S. E. Schröder, H. Kikuchi, R. Hemmi, G. Komatsu, T. Fukuhara, M. Taguchi, T. Arai, H. Senshu, H. Demura, Y. Ogawa, Y. Shimaki, T. Sekiguchi, T. G. Müller, A. Hagermann, T. Mizuno, H. Noda, K. Matsumoto, R. Yamada, Y. Ishihara, H. Ikeda, H. Araki, K. Yamamoto, S. Abe, F. Yoshida, A. Higuchi, S. Sasaki, S. Oshigami, S. Tsuruta, K. Asari, S. Tazawa, M. Shizugami, J. Kimura, T. Otsubo, H. Yabuta, S. Hasegawa, M. Ishiguro, S. Tachibana, E. Palmer, R. Gaskell, L. Le Corre, R. Jaumann, K. Otto, N. Schmitz, P. A. Abell, M. A. Barucci, M. E. Zolensky, F. Vilas, F. Thuillet, C. Sugimoto, N. Takaki, Y. Suzuki, H. Kamiyoshihara, M. Okada, K. Nagata, M. Fujimoto, M. Yoshikawa, Y. Yamamoto, K. Shirai, R. Noguchi, N. Ogawa, F. Terui, S. Kikuchi, T. Yamaguchi, Y. Oki, Y. Takao, H. Takeuchi, G. Ono, Y. Mimasu, K. Yoshikawa, T. Takahashi, Y. Takei, A. Fujii, C. Hirose, S. Nakazawa, S. Hosoda, O. Mori, T. Shimada, S. Soldini, T. Iwata, M. Abe, H. Yano, R. Tsukizaki, M. Ozaki, K. Nishiyama, T. Saiki, S. Watanabe, Y. Tsuda
    Science 364 2019年3月19日  査読有り
    © 2019 by The University of Chicago. The near-Earth carbonaceous asteroid 162173 Ryugu is thought to have been produced from a parent body that contained water ice and organic molecules. The Hayabusa2 spacecraft has obtained global multi-color images of Ryugu. Geomorphological features present include a circum-equatorial ridge, east/west dichotomy, high boulder abundances across the entire surface, and impact craters. Age estimates from the craters indicate a resurfacing age of  10 6 years for the top 1-meter layer. Ryugu is among the darkest known bodies in the Solar System. The high abundance and spectral properties of boulders are consistent with moderately dehydrated materials, analogous to thermally metamorphosed meteorites found on Earth. The general uniformity in color across Ryugu’s surface supports partial dehydration due to internal heating of the asteroid’s parent body.
  • Uesugi, M., Uesugi, K., Ito, M., Tomioka, N., Ohigashi, T., Yamaguchi, A., Imae, N., Karouji, Y., Shirai, N., Yada, T., Abe, M., Hirahara, K., Kodama, Y., Sakurai, I.
    Meteoritics & Planetary Science 2019年  
  • Haruna Sugahara, Yoshinori Takano, Yuzuru Karouji, Kazuya Kumagai, Toru Yada, Naohiko Ohkouchi, Masanao Abe
    EARTH PLANETS AND SPACE 70(1) 2018年12月  
    The Hayabusa2 mission aims to obtain pristine samples from a near-Earth carbonaceous-type (C-type) asteroid, 162173 Ryugu, and return them to Earth. One of the scientific goals of the mission is to understand the origin and evolution of organic materials through the interactions between water and minerals in the early solar system. Thus, organic materials are the main focus of the analysis on the returned samples. The analysis of extraterrestrial organic materials, however, requires great care to avoid the introduction of terrestrial contaminants and artefacts to the samples. To investigate the potential for contamination, we performed an assessment through the amino acid analysis of witness coupons that were exposed in a clean chamber in an Institute of Space and Astronautical Science/Japan Aerospace Exploration Agency (ISAS/JAXA) curation room. In the study, the witness coupons were collected at different time periods, between 1day and 1month, to examine the accumulation rates of the contaminants. Seven common terrestrial amino acids (glycine, alanine, valine, leucine, isoleucine, proline, aspartic acid and glutamic acid) were detected on the witness coupons. Among them, glycine was found to be most abundant, with the highest concentration of 10pmol/cm(2) detected on the day 7 witness coupon. Alanine was found in the next highest concentration, approximately one-third that of glycine. A time-dependent profile in terms of the increasing trend observed in the concentration from days 1 to 7 was found. The contaminants were considered to have multiple origins. Our results are similar to those reported by the National Aeronautics and Space Administration/Johnson Space Center (NASA/JSC) OSIRIS-REx team, which indicates that the quality control against terrestrial contaminants in our facility is at the same quantitative level as in their facility. The knowledge obtained on the contaminants in this study will provide important information for the curation procedure of the Hayabusa2-returned samples.
  • F. Jourdan, N. E. Timms, E. Eroglu, C. Mayers, A. Frew, P. A. Bland, G. S. Collins, T. M. Davison, M. Abe, T. Yada
    Geology 45(9) 819-822 2017年9月1日  査読有り
    In situ extraterrestrial samples returned for study (e.g., from the Moon) are crucial in understanding the origin and evolution of the Solar System as, contrary to meteorites, they provide a known geological context for the samples and their analyses. Asteroid 25143 Itokawa is a rubble-pile asteroid consisting of reaccumulated fragments from a catastrophically disrupted monolithic parent asteroid, and from which regolith dust particles have been recovered by the Hayabusa space probe (Japan Aerospace Exploration Agency). We analyzed two dust particles using electron backscatter diffraction and 40Ar/39Ar dating techniques. One of the grains, showing signs of 15-25 GPa impact shock pressure, yielded a 40Ar/39Ar plateau age of 2.3 ± 0.1 Ga. We developed a novel temperature-pressure-porosity model, coupled with diffusion models to show that the relatively low pressure and high temperature involved in the impact process can be reconciled only if the asteroid was already made of porous material at ca. 2.3 Ga and, thus, if asteroid Itokawa was already formed, thereby providing a minimum age for catastrophic asteroid breakup. A second particle shows no sign of deformation, indicating shock pressure of &lt 10 GPa and a calculated maximum temperature of ~200 °C. This low temperature estimate is compatible with a lack of isotopic resetting for this particle. This suggests that the breakup of Itokawa's parent was a relatively low-temperature process at the scale of the asteroid, and occurred on a pre-shattered parent body.
  • Moe Matsuoka, Tomoki Nakamura, Takahito Osawa, Takahiro Iwata, Kohei Kitazato, Masanao Abe, Yusuke Nakauchi, Takehiko Arai, Mutsumi Komatsu, Takahiro Hiroi, Naoya Imae, Akira Yamaguchi, Hideyasu Kojima
    EARTH PLANETS AND SPACE 69 2017年9月  査読有り
    We conducted ground-based performance evaluation tests of the Near-Infrared Spectrometer (NIRS3) onboard Hayabusa2 spacecraft in November 2013 and from April to May 2014 and established a method for evaluating its measured reflectance spectra. Reflectance spectra of nine powdered carbonaceous chondrite samples were measured by both NIRS3 and a Fourier transform infrared (FT-IR) spectrometer. We have established two methods for correcting the NIRS3 data by comparing them with the corresponding FT-IR data because raw data obtained by NIRS3 underwent spectral distortion caused by systematic offsets in sensitivity of individual pixels. The corrected NIRS3 spectra of carbonaceous chondrite samples are comparable with their FT-IR spectra. The depth of each band component D-lambda is defined for each wavelength lambda(mu m) to characterize the absorption bands in NIRS3 spectra. It is suggested that the relationship between the D-2.72/D-2.79 ratio and the D-2.76/D-2.90 ratio would be useful for estimating the degree of heating of the asteroid surface, if contributions of terrestrial adsorbed water on D-2.79 and D-2.90 are properly corrected. The degrees of heating and space weathering are also comprehensively evaluated by the relationship between D-2.90 and the D-2.76/D-2.90 ratio. Reflectance spectra of asteroid Ryugu, the target asteroid of Hayabusa2, to be recorded by the NIRS3 instrument are expected to reveal the characteristics of the surface materials by using the evaluation technique proposed in this paper. Such information will be used for choosing the touchdown points for sampling and also for investigating the distribution of the materials similar to the returned samples on Ryugu.
  • Masanao Abe
    METEORITICS & PLANETARY SCIENCE 52(8) 1756-1757 2017年8月  査読有り
  • Hirotaka Sawada, Ryuji Okazaki, Shogo Tachibana, Kanako Sakamoto, Yoshinori Takano, Chisato Okamoto, Hajime Yano, Yayoi Miura, Masanao Abe, Sunao Hasegawa, Takaaki Noguchi
    SPACE SCIENCE REVIEWS 208(1-4) 81-106 2017年7月  査読有り
    Japan Aerospace Exploration Agency (JAXA) launched the asteroid exploration probe "Hayabusa2" in December 3rd, 2014, following the 1st Hayabusa mission. With technological and scientific improvements from the Hayabusa probe, we plan to visit the C-type asteroid 162137 Ryugu (1999 JU3), and to sample surface materials of the C-type asteroid that is likely to be different from the S-type asteroid Itokawa and contain more pristine materials, including organic matter and/or hydrated minerals, than S-type asteroids. We developed the Hayabusa2 sampler to collect a minimum of 100 mg of surface samples including several mm-sized particles at three surface locations without any severe terrestrial contamination. The basic configuration of the sampler design is mainly as same as the 1st Hayabusa (Yano et al. in Science, 312(5778):1350-1353, 2006), with several minor but important modifications based on lessons learned from the Hayabusa to fulfill the scientific requirements and to raise the scientific value of the returned samples. In this paper, we will report the details of the sampling system of Hayabusa2 with results of performance tests during the development and the current status of the sampling system.
  • Ryuji Okazaki, Hirotaka Sawada, Shinji Yamanouchi, Shogo Tachibana, Yayoi N. Miura, Kanako Sakamoto, Yoshinori Takano, Masanao Abe, Shoichi Itoh, Keita Yamada, Hikaru Yabuta, Chisato Okamoto, Hajime Yano, Takaaki Noguchi, Tomoki Nakamura, Keisuke Nagao
    SPACE SCIENCE REVIEWS 208(1-4) 107-124 2017年7月  査読有り
    The spacecraft Hayabusa2 was launched on December 3, 2014, to collect and return samples from a C-type asteroid, 162173 Ryugu (provisional designation, 1999 JU(3)). It is expected that the samples collected contain organic matter and water-bearing minerals and have key information to elucidate the origin and history of the Solar System and the evolution of bio-related organics prior to delivery to the early Earth. In order to obtain samples with volatile species without terrestrial contamination, based on lessons learned from the Hayabusa mission, the sample catcher and container of Hayabusa2 were refined from those used in Hayabusa. The improvements include (1) a mirror finish of the inner wall surface of the sample catcher and the container, (2) adoption of an aluminum metal sealing system, and (3) addition of a gas-sampling interface for gas collection and evacuation. The former two improvements were made to limit contamination of the samples by terrestrial atmosphere below 1 Pa after the container is sealed. The gas-sampling interface will be used to promptly collect volatile species released from the samples in the sample container after sealing of the container. These improvements maintain the value of the returned samples.
  • Takahiro Iwata, Kohei Kitazato, Masanao Abe, Makiko Ohtake, Takehiko Arai, Tomoko Arai, Naru Hirata, Takahiro Hiroi, Chikatoshi Honda, Naoya Imae, Mutsumi Komatsu, Tsuneo Matsunaga, Moe Matsuoka, Shuji Matsuura, Tomoki Nakamura, Aiko Nakato, Yusuke Nakauchi, Takahito Osawa, Hiroki Senshu, Yasuhiko Takagi, Kohji Tsumura, Naruhisa Takato, Sei-ichiro Watanabe, Maria Antonietta Barucci, Ernesto Palomba, Masanobu Ozaki
    SPACE SCIENCE REVIEWS 208(1-4) 317-337 2017年7月  査読有り
    NIRS3: The Near Infrared Spectrometer is installed on the Hayabusa2 spacecraft to observe the target C-type asteroid 162173 Ryugu at near infrared wavelengths of 1.8 to 3.2 mu m. It aims to obtain reflectance spectra in order to detect absorption bands of hydrated and hydroxide minerals in the 3 mu m-band. We adopted a linear-image sensor with indium arsenide (InAs) photo diodes and a cooling system with a passive radiator to achieve an optics temperature of 188 K (-85 degrees C), which enables to retaining sufficient sensitivity and noise level in the 3 mu m wavelength region. We conducted ground performance tests for the NIRS3 flight model (FM) to confirm its baseline specifications. The results imply that the properties such as the signal-to-noise ratio (SNR) conform to scientific requirements to determine the degree of aqueous alteration, such as CM or CI chondrite, and the stage of thermal metamorphism on the asteroid surface.
  • Yada T, Abe M, Okada T, Yurimoto H, Uesugi Masayuki, Karouji Yuzuru, Nakato Aiko, Hashiguchi Minako, Matsumoto Toru, Nishimura Masahiro, Kumagai Kazuya, Matsui Shigeo, Yoshitake Miwa, Sakamoto Kanako, Nakano Yuki, Kawasaki Noriyuki, Fujimoto Masaki
    METEORITICS & PLANETARY SCIENCE 51 A677-A677 2016年8月  査読有り
  • Hiroshi Naraoka, Dan Aoki, Kazuhiko Fukushima, Masayuki Uesugi, Motoo Ito, Fumio Kitajima, Hajime Mita, Hikaru Yabuta, Yoshinori Takano, Toru Yada, Yukihiro Ishibashi, Yuzuru Karouji, Takaaki Okada, Masanao Abe
    Earth, Planets and Space 67(1) 2015年12月27日  査読有り
    © 2015 Naraoka et al.; licensee Springer. Three carbonaceous category 3 particles (RA-QD02-0180, RB-QD04-0037-01, and RB-QD04-0047-02) returned in the sample catcher from the Hayabusa spacecraft were analyzed by time of flight-secondary ion mass spectrometry (ToF-SIMS) to establish an analytical procedure for determination of their origins. By the different analytical schemes, the three particles gave distinct elemental and molecular ions, in which the organic carbons commonly appear to be associated with nitrogen, silicon, and/or fluorine. The particles could be debris of silicon rubber and fluorinated compounds and are therefore man-made artifacts rather than natural organic matter.
  • Jisun Park, Brent D. Turrin, Gregory F. Herzog, Fara N. Lindsay, Jeremy S. Delaney, Carl C. Swisher, Masayuki Uesugi, Yuzuru Karouji, Toru Yada, Masanao Abe, Tatsuaki Okada, Yukihiro Ishibashi
    METEORITICS & PLANETARY SCIENCE 50(12) 2087-2098 2015年12月  査読有り
    The Hayabusa mission to asteroid 25143, Itokawa, brought back 2000 small particles, which most closely resemble material found in LL4-6 chondrites. We report an Ar-40/Ar-39 age of 1.3 +/- 0.3 Ga for a sample of Itokawa consisting of three grains with a total mass of similar to 2 mu g. This age is lower than the &gt;4.0 Ga ages measured for 75% of LL chondrites but close to one for Y-790964 and its pairs. The flat Ar-40/Ar-39 release spectrum of the sample suggests complete degassing 1.3 Ga ago. Recent solar heating in Itokawa's current orbit does not appear likely to have reset that age. Solar or impact heating 1.3 Ga ago could have done so. If impact heating was responsible, then the 1.3 Ga age sets an upper bound on the time at which the Itokawa rubble pile was assembled and suggests that rubble pile creation was an ongoing process in the inner solar system for at least the first 3 billion years of solar system history.
  • Hiroshi Naraoka, Dan Aoki, Kazuhiko Fukushima, Masayuki Uesugi, Motoo Ito, Fumio Kitajima, Hajime Mita, Hikaru Yabuta, Yoshinori Takano, Toru Yada, Yukihiro Ishibashi, Yuzuru Karouji, Takaaki Okada, Masanao Abe
    EARTH PLANETS AND SPACE 67 2015年5月  査読有り
    Three carbonaceous category 3 particles (RA-QD02-0180, RB-QD04-0037-01, and RB-QD04-0047-02) returned in the sample catcher from the Hayabusa spacecraft were analyzed by time of flight-secondary ion mass spectrometry (ToF-SIMS) to establish an analytical procedure for determination of their origins. By the different analytical schemes, the three particles gave distinct elemental and molecular ions, in which the organic carbons commonly appear to be associated with nitrogen, silicon, and/or fluorine. The particles could be debris of silicon rubber and fluorinated compounds and are therefore man-made artifacts rather than natural organic matter.

MISC

 490

書籍等出版物

 3

講演・口頭発表等

 2
  • 吉川真, 柳沢俊史, 安部正真, 池永敏憲, 岩城陽大, 岡田達明, 菊地耕一, 黒崎裕久, 黒田信介, 佐伯孝尚, 嶌生有理, 津田雄一, 西山和孝, 三桝裕也, 浦川聖太郎, 奥村真一郎
    第23 回宇宙科学シンポジウム 2023年1月6日
  • 三桝裕也, 田中智, 臼井寛裕, 安部正真, 橘省吾, 佐藤広幸, 佐伯孝尚, 吉川 真, 中澤暁, 津田雄一
    第23 回宇宙科学シンポジウム 2023年1月5日

共同研究・競争的資金等の研究課題

 9