研究者業績

堂谷 忠靖

ドウタニ タダヤス  (Tadayasu Dotani)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙物理学研究系 教授
総合研究大学院大学 先端学術院 宇宙科学コース 教授
東京工業大学 理学院物理学系物理学コース 特定教授
関西学院大学 大学院理工学研究科 客員教授
学位
理学博士(東京大学)

J-GLOBAL ID
200901025041369206
researchmap会員ID
1000144439

専門はX線天文学。特に、中性子星やブラックホールを含むX線連星の観測的研究および衛星搭載X線CCDカメラの開発研究。


受賞

 1

論文

 201
  • Keisuke Shinozaki, Toyoaki Suzuki, Noriko Y. Yamasaki, Yutaro Sekimoto, Tadayasu Dotani, Keisuke Yoshihara, Hiroyuki Sugita, Shoji Tsunematsu, Kenichi Kanao
    Cryogenics 138 103795-103795 2024年3月  
  • T. Hasebe, P. A. R. Ade, A. Adler, E. Allys, D. Alonso, K. Arnold, D. Auguste, J. Aumont, R. Aurlien, J. Austermann, S. Azzoni, C. Baccigalupi, A. J. Banday, R. Banerji, R. B. Barreiro, N. Bartolo, S. Basak, E. Battistelli, L. Bautista, J. Beall, D. Beck, S. Beckman, K. Benabed, J. Bermejo-Ballesteros, M. Bersanelli, J. Bonis, J. Borrill, F. Bouchet, F. Boulanger, S. Bounissou, M. Brilenkov, M. L. Brown, M. Bucher, E. Calabrese, M. Calvo, P. Campeti, A. Carones, F. J. Casas, A. Catalano, A. Challinor, V. Chan, K. Cheung, Y. Chinone, J. Cliche, F. Columbro, W. Coulton, J. Cubas, A. Cukierman, D. Curtis, G. D’Alessandro, K. Dachlythra, P. de Bernardis, T. de Haan, E. de la Hoz, M. De Petris, S. Della Torre, C. Dickinson, P. Diego-Palazuelos, M. Dobbs, T. Dotani, D. Douillet, L. Duband, A. Ducout, S. Duff, J. M. Duval, K. Ebisawa, T. Elleflot, H. K. Eriksen, J. Errard, T. Essinger-Hileman, F. Finelli, R. Flauger, C. Franceschet, U. Fuskeland, S. Galli, M. Galloway, K. Ganga, J. R. Gao, R. T. Genova-Santos, M. Gerbino, M. Gervasi, T. Ghigna, S. Giardiello, E. Gjerløw, M. L. Gradziel, J. Grain, L. Grandsire, F. Grupp, A. Gruppuso, J. E. Gudmundsson, N. W. Halverson, J. Hamilton, P. Hargrave, M. Hasegawa, M. Hattori, M. Hazumi, S. Henrot-Versillé, L. T. Hergt, D. Herman, D. Herranz, C. A. Hill, G. Hilton, E. Hivon, R. A. Hlozek, T. D. Hoang, A. L. Hornsby, Y. Hoshino, J. Hubmayr, K. Ichiki, T. Iida, H. Imada, K. Ishimura, H. Ishino, G. Jaehnig, M. Jones, T. Kaga, S. Kashima, N. Katayama, A. Kato, T. Kawasaki, R. Keskitalo, T. Kisner, Y. Kobayashi, N. Kogiso, A. Kogut, K. Kohri, E. Komatsu, K. Komatsu, K. Konishi, N. Krachmalnicoff, I. Kreykenbohm, C. L. Kuo, A. Kushino, L. Lamagna, J. V. Lanen, G. Laquaniello, M. Lattanzi, A. T. Lee, C. Leloup, F. Levrier, E. Linder, T. Louis, G. Luzzi, J. Macias-Perez, T. Maciaszek, B. Maffei, D. Maino, M. Maki, S. Mandelli, M. Maris, E. Martínez-González, S. Masi, M. Massa, S. Matarrese, F. T. Matsuda, T. Matsumura, L. Mele, A. Mennella, M. Migliaccio, Y. Minami, K. Mitsuda, A. Moggi, A. Monfardini, J. Montgomery, L. Montier, G. Morgante, B. Mot, Y. Murata, J. A. Murphy, M. Nagai, Y. Nagano, T. Nagasaki, R. Nagata, S. Nakamura, R. Nakano, T. Namikawa, F. Nati, P. Natoli, S. Nerval, T. Nishibori, H. Nishino, F. Noviello, C. O’Sullivan, K. Odagiri, H. Ogawa, H. Ogawa, S. Oguri, H. Ohsaki, I. S. Ohta, N. Okada, N. Okada, L. Pagano, A. Paiella, D. Paoletti, A. Passerini, G. Patanchon, V. Pelgrim, J. Peloton, F. Piacentini, M. Piat, G. Pisano, G. Polenta, D. Poletti, T. Prouvé, G. Puglisi, D. Rambaud, C. Raum, S. Realini, M. Reinecke, M. Remazeilles, A. Ritacco, G. Roudil, J. Rubino-Martin, M. Russell, H. Sakurai, Y. Sakurai, M. Sandri, M. Sasaki, G. Savini, D. Scott, J. Seibert, Y. Sekimoto, B. Sherwin, K. Shinozaki, M. Shiraishi, P. Shirron, G. Signorelli, G. Smecher, F. Spinella, S. Stever, R. Stompor, S. Sugiyama, R. Sullivan, A. Suzuki, J. Suzuki, T. L. Svalheim, E. Switzer, R. Takaku, H. Takakura, S. Takakura, Y. Takase, Y. Takeda, A. Tartari, D. Tavagnacco, A. Taylor, E. Taylor, Y. Terao, J. Thermeau, H. Thommesen, K. L. Thompson, B. Thorne, T. Toda, M. Tomasi, M. Tominaga, N. Trappe, M. Tristram, M. Tsuji, M. Tsujimoto, C. Tucker, J. Ullom, L. Vacher, G. Vermeulen, P. Vielva, F. Villa, M. Vissers, N. Vittorio, B. Wandelt, W. Wang, K. Watanuki, I. K. Wehus, J. Weller, B. Westbrook, J. Wilms, B. Winter, E. J. Wollack, N. Y. Yamasaki, T. Yoshida, J. Yumoto, A. Zacchei, M. Zannoni, A. Zonca
    Journal of Low Temperature Physics 211(5-6) 384-397 2022年12月2日  
  • M. Tsuji, M. Tsujimoto, Y. Sekimoto, T. Dotani, M. Shiraishi
    Journal of Low Temperature Physics 209(5-6) 1097-1103 2022年12月  
    The radio frequency interference (RFI) due to the X-band telecommunication with the LiteBIRD spacecraft was computed using a 3D electromagnetic field simulator to evaluate its field strength at the instrument detectors. First, the level of RFI with different materials for the spacecraft main body was evaluated. The attenuation effects for aluminum (Al) and carbon-fiber-reinforced plastic (CFRP) in comparison with a perfect electric conductor (PEC) were 1.5 dB and 10.5 dB, respectively. Then, the electric field strength for various shield plate structures on the solar panels was evaluated. In the best case, the RFI level could be attenuated by another 31 dB with an optimum design. Finally, the frequency dependence of the RFI was evaluated across the X-band, giving an attenuation slope of − 10 dB/oct, leading to an electric field intensity of − 116.8 dBV/m at the detector position for a frequency of 8.4 GHz.
  • E Allys, K Arnold, J Aumont, R Aurlien, S Azzoni, C Baccigalupi, A J Banday, R Banerji, R B Barreiro, N Bartolo, L Bautista, D Beck, S Beckman, M Bersanelli, F Boulanger, M Brilenkov, M Bucher, E Calabrese, P Campeti, A Carones, F J Casas, A Catalano, V Chan, K Cheung, Y Chinone, S E Clark, F Columbro, G D’Alessandro, P de Bernardis, T de Haan, E de  la Hoz, M De Petris, S Della Torre, P Diego-Palazuelos, M Dobbs, T Dotani, J M Duval, T Elleflot, H K Eriksen, J Errard, T Essinger-Hileman, F Finelli, R Flauger, C Franceschet, U Fuskeland, M Galloway, K Ganga, M Gerbino, M Gervasi, R T Génova-Santos, T Ghigna, S Giardiello, E Gjerløw, J Grain, F Grupp, A Gruppuso, J E Gudmundsson, N W Halverson, P Hargrave, T Hasebe, M Hasegawa, M Hazumi, S Henrot-Versillé, B Hensley, L T Hergt, D Herman, E Hivon, R A Hlozek, A L Hornsby, Y Hoshino, J Hubmayr, K Ichiki, T Iida, H Imada, H Ishino, G Jaehnig, N Katayama, A Kato, R Keskitalo, T Kisner, Y Kobayashi, A Kogut, K Kohri, E Komatsu, K Komatsu, K Konishi, N Krachmalnicoff, C L Kuo, L Lamagna, M Lattanzi, A T Lee, C Leloup, F Levrier, E Linder, G Luzzi, J Macias-Perez, T Maciaszek, B Maffei, D Maino, S Mandelli, E Martínez-González, S Masi, M Massa, S Matarrese, F T Matsuda, T Matsumura, L Mele, M Migliaccio, Y Minami, A Moggi, J Montgomery, L Montier, G Morgante, B Mot, Y Nagano, T Nagasaki, R Nagata, R Nakano, T Namikawa, F Nati, P Natoli, S Nerval, F Noviello, K Odagiri, S Oguri, H Ohsaki, L Pagano, A Paiella, D Paoletti, A Passerini, G Patanchon, F Piacentini, M Piat, G Polenta, D Poletti, T Prouvé, G Puglisi, D Rambaud, C Raum, S Realini, M Reinecke, M Remazeilles, A Ritacco, G Roudil, J A Rubino-Martin, M Russell, H Sakurai, Y Sakurai, M Sasaki, D Scott, Y Sekimoto, K Shinozaki, M Shiraishi, P Shirron, G Signorelli, F Spinella, S Stever, R Stompor, S Sugiyama, R M Sullivan, A Suzuki, T L Svalheim, E Switzer, R Takaku, H Takakura, Y Takase, A Tartari, Y Terao, J Thermeau, H Thommesen, K L Thompson, M Tomasi, M Tominaga, M Tristram, M Tsuji, M Tsujimoto, L Vacher, P Vielva, N Vittorio, W Wang, K Watanuki, I K Wehus, J Weller, B Westbrook, J Wilms, E J Wollack, J Yumoto, M Zannoni
    Progress of Theoretical and Experimental Physics 2023(4) 2022年11月21日  
    Abstract LiteBIRD the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA’s H3 rocket. LiteBIRD is planned to orbit the Sun-Earth Lagrangian point L2, where it will map the cosmic microwave background (CMB) polarization over the entire sky for three years, with three telescopes in 15 frequency bands between 34 and 448 GHz, to achieve an unprecedented total sensitivity of 2.2 μK-arcmin, with a typical angular resolution of 0.5○ at 100 GHz. The primary scientific objective of LiteBIRD is to search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. We provide an overview of the LiteBIRD project, including scientific objectives, mission and system requirements, operation concept, spacecraft and payload module design, expected scientific outcomes, potential design extensions and synergies with other projects. Subject Index LiteBIRD cosmic inflation, cosmic microwave background, B-mode polarization, primordial gravitational waves, quantum gravity, space telescope
  • Tomokage Yoneyama, Tadayasu Dotani
    Publications of the Astronomical Society of Japan 75(1) 30-36 2022年11月12日  
    Abstract 2S 0921−630 is an eclipsing low-mass X-ray binary (LMXB) with an orbital period of ∼9 d. Past X-ray observations have revealed that 2S 0921−630 has an extended accretion disk corona (ADC), from which most of the X-rays from the system are emitted. We report the result of our Suzaku archival data analysis of 2S 0921−630. The average X-ray spectrum is reproduced with a blackbody emission (kTbb ∼ 0.3 keV) Comptonized by optically thick gas (“Compton cloud”; optical depth τ ∼ 21) with a temperature of ∼2 keV, combined with 13 emission lines. We find that most of the emission lines correspond to highly ionized atoms: O, Ne, Mg, Si, S, Ar, and Fe. A Kα emission line and an absorption edge of semi-neutral iron (Fe  textsci– textscxvii) are also detected. The semi-neutral iron Kα line is significantly broad, with a width of 0.11 ± 0.02 keV in sigma, which corresponds to the Doppler broadening by the Kepler motion at a radius of ∼109 cm. We suggest that the observed semi-neutral iron line originates at the inner part of the accretion disk in the immediate outside of the Compton cloud, i.e., the Compton cloud may have a radius of ∼109 cm.

MISC

 200
  • 関本裕太郎, 堂谷忠靖, 篠崎慶亮, 高倉隼人, 辻本匡弘, 長谷部孝, 満田和久, 永田竜, 羽澄昌史, 南雄人, 片山伸彦, 桜井雄基, 菅井肇, 高倉理, 松村知岳, 石野宏和, 魚住聖, 鹿島伸悟, 小松英一郎, 今田大皓
    日本天文学会年会講演予稿集 2019 2019年  
  • 関本裕太郎, 堂谷忠靖, 篠崎慶亮, 高倉隼人, 辻本匡弘, 長谷部孝, 満田和久, 永田竜, 羽澄昌史, 南雄人, 宇都宮真, 片山伸彦, 桜井雄基, 菅井肇, 高倉理, 松村知岳, 石野宏和, 魚住聖, 鹿島伸悟, 小松英一郎, 今田大皓
    日本天文学会年会講演予稿集 2019 2019年  
  • 長谷部孝, 関本裕太郎, 堂谷忠靖, 篠崎慶亮
    日本天文学会年会講演予稿集 2019 2019年  
  • 林田清, 岩垣純一, 米山友景, 岡崎貴樹, 朝倉一統, 松本浩典, 中嶋大, 金丸善朗, 佐藤仁, 西岡祐介, 森浩二, 山内誠, 廿日出勇, 内田裕之, 尾近洸行, 田中孝明, 鶴剛, 信川久実子, 平賀純子, 村上弘志, 冨田洋, 山岡和貴, 幸村孝由, 萩野浩一, 小林翔悟, 内山秀樹, 信川正順, 堂谷忠靖, 尾崎正伸, 常深博
    日本天文学会年会講演予稿集 2018 219 2018年8月20日  
  • 岩垣純一, 岡崎貴樹, 朝倉一統, 米山友景, 林田清, 松本浩典, 中嶋大, 金丸善朗, 佐藤仁, 西岡祐介, 森浩二, 下井建生, 冨田洋, 萩野浩一, 幸村孝由, 田中孝明, 内田裕之, 鶴剛, 村上弘志, 山内誠, 廿日出勇, 信川正順, 信川久実子, 小林翔悟, 平賀純子, 内山秀樹, 山岡和貴, 尾崎正伸, 堂谷忠靖, 常深博
    日本天文学会年会講演予稿集 2018 220 2018年8月20日  
  • 米山友景, 林田清, 岩垣純一, 岡崎貴樹, 朝倉一統, 松本浩典, 中嶋大, 金丸善朗, 佐藤仁, 西岡祐介, 森浩二, 山内誠, 廿日出勇, 内田裕之, 田中孝明, 尾近洸行, 鶴剛, 信川久実子, 平賀純子, 村上弘志, 冨田洋, 山岡和貴, 幸村孝由, 萩野浩一, 小林翔悟, 内山秀樹, 信川正順, 堂谷忠靖, 尾崎正伸, 常深博
    日本天文学会年会講演予稿集 2018 221 2018年8月20日  
  • 佐藤仁, 金丸善朗, 西岡祐介, 武田彩希, 森浩二, 中嶋大, 岩垣純一, 岡崎貴樹, 朝倉一統, 米山友景, 林田清, 松本浩典, 下井建生, 冨田洋, 萩野浩一, 幸村孝由, 尾近洸行, 田中孝明, 内田裕之, 鶴剛, 村上弘志, 山内誠, 廿日出勇, 信川正順, 信川久実子, 小林翔悟, 平賀純子, 内山秀樹, 山岡和貴, 尾崎正伸, 堂谷忠靖, 常深博
    日本天文学会年会講演予稿集 2018 221 2018年8月20日  
  • 内田裕之, 田中孝明, 鶴剛, 中嶋大, 林田清, 松本浩典, 森浩二, 山内誠, 廿日出勇, 冨田洋, 幸村孝由, 萩野浩一, 小林翔悟, 内山秀樹, 平賀純子, 信川正順, 村上弘志, 信川久実子, 山岡和貴, 堂谷忠靖, 尾崎正伸, 常深博
    日本天文学会年会講演予稿集 2018 219 2018年8月20日  
  • 中嶋大, 金丸善朗, 佐藤仁, 西岡祐介, 武田彩希, 森浩二, 岩垣純一, 岡崎貴樹, 朝倉一統, 米山友景, 林田清, 松本浩典, 下井建生, 冨田洋, 萩野浩一, 幸村孝由, 尾近洸行, 田中孝明, 内田裕之, 鶴剛, 村上弘志, 山内誠, 廿日出勇, 信川正順, 信川久実子, 小林翔悟, 平賀純子, 内山秀樹, 山岡和貴, 尾崎正伸, 堂谷忠靖, 常深博
    日本天文学会年会講演予稿集 2018 219 2018年8月20日  
  • 山岡和貴, 林田清, 吉田将之, 平賀純子, 中嶋大, 尾崎正伸, DOTY John P, 松本浩典, 常深博, 内田裕之, 田中孝明, 鶴剛, 森浩二, 山内誠, 廿日出勇, 信川久実子, 村上弘志, 冨田洋, 幸村孝由, 萩野浩一, 小林翔悟, 内山秀樹, 信川正順, 堂谷忠靖
    日本天文学会年会講演予稿集 2018 221 2018年8月20日  
  • Felix Aharonian, Hiroki Akamatsu, Fumie Akimoto, Steven W. Allen, Lorella Angelini, Marc Audard, Hisamitsu Awaki, Magnus Axelsson, Aya Bamba, Marshall W. Bautz, Roger Blandford, Laura W. Brenneman, Gregory V. Brown, Esra Bulbul, Edward M. Cackett, Maria Chernyakova, Meng P. Chiao, Paolo S. Coppi, Elisa Costantini, Jelle De Plaa, Cor P. De Vries, Jan Willem Den Herder, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan E. Eckart, Teruaki Enoto, Yuichiro Ezoe, Andrew C. Fabian, Carlo Ferrigno, Adam R. Foster, Ryuichi Fujimoto, Yasushi Fukazawa, Akihiro Furuzawa, Massimiliano Galeazzi, Luigi C. Gallo, Poshak Gandhi, Margherita Giustini, Andrea Goldwurm, Liyi Gu, Matteo Guainazzi, Yoshito Haba, Kouichi Hagino, Kenji Hamaguchi, Ilana M. Harrus, Isamu Hatsukade, Katsuhiro Hayashi, Takayuki Hayashi, Kiyoshi Hayashida, Junko S. Hiraga, Ann Hornschemeier, Akio Hoshino, John P. Hughes, Yuto Ichinohe, Ryo Iizuka, Hajime Inoue, Yoshiyuki Inoue, Manabu Ishida, Kumi Ishikawa, Yoshitaka Ishisaki, Masachika Iwai, Jelle Kaastra, Tim Kallman, Tsuneyoshi Kamae, Jun Kataoka, Satoru Katsuda, Nobuyuki Kawai, Richard L. Kelley, Caroline A. Kilbourne, Takao Kitaguchi, Shunji Kitamoto, Tetsu Kitayama, Takayoshi Kohmura, Motohide Kokubun, Katsuji Koyama, Shu Koyama, Peter Kretschmar, Hans A. Krimm, Aya Kubota, Hideyo Kunieda, Philippe Laurent, L. E.E. Shiu-Hang, Maurice A. Leutenegger, Olivier O. Limousin, Michael Loewenstein, Knox S. Long, David Lumb, Greg Madejski, Yoshitomo Maeda, Daniel Maier, Kazuo Makishima, Maxim Markevitch, Hironori Matsumoto, Kyoko Matsushita, Dan McCammon, Brian R. McNamara, Missagh Mehdipour, Eric D. Miller, Jon M. Miller, Shin Mineshige
    Publications of the Astronomical Society of Japan 70(2) 2018年3月1日  
    © The Author(s) 2017. Published by Oxford University Press on behalf of the Astronomical Society of Japan. To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2-300 keV band and the Kashima NICT radio telescope in the 1.4-1.7 GHz band with a net exposure of about 2 ks on 2016 March 25, just before the loss of the Hitomi mission. The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1000 and 100 GRPs were simultaneously observed at the main pulse and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main pulse or inter-pulse phase. All variations are within the 2 σ fluctuations of the X-ray fluxes at the pulse peaks, and the 3 σ upper limits of variations of main pulse or inter-pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2-300 keV band. The values for main pulse or inter-pulse GRPs become 25% or 110%, respectively, when the phase width is restricted to the 0.03 phase. Among the upper limits from the Hitomi satellite, those in the 4.5-10 keV and 70-300 keV bands are obtained for the first time, and those in other bands are consistent with previous reports. Numerically, the upper limits of the main pulse and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) × 10−11 erg cm−2, respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere. Although the number of photon-emitting particles should temporarily increase to account for the brightening of the radio emission, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a >0.02% brightening of the pulse-peak flux under such conditions.
  • 冨田洋, 石田学, 前田良知, 堂谷忠靖, 尾崎正伸, 林田清, 中嶋大, 松本浩典, 常深博, 森浩二, 山内誠, 廿日出勇, 鶴剛, 田中孝明, 内田裕之, 小林翔悟, 幸村孝由, 萩野浩一, 岡島崇, 村上弘志, 内山秀樹, 山岡和貴, 信川正順, 信川久実子, 平賀純子
    日本天文学会年会講演予稿集 2018 228 2018年2月20日  
  • 大西里実, 岩垣純一, 中嶋大, 林田清, 松本浩典, 常深博, 鶴剛, 田中孝明, 内田裕之, 小林翔悟, 冨田洋, 堂谷忠靖, 尾崎正伸, 森浩二, 山内誠, 廿日出勇, 幸村孝由, 萩野浩一, 村上弘志, 内山秀樹, 山岡和貴, 信川正順, 信川久実子, 平賀純子
    日本天文学会年会講演予稿集 2018 229 2018年2月20日  
  • Takaaki Tanaka, Hiroyuki Uchida, Hiroshi Nakajima, Hiroshi Tsunemi, Kiyoshi Hayashida, Takeshi G. Tsuru, Tadayasu Dotani, Ryo Nagino, Shota Inoue, Shohei Katada, Ryosaku Washino, Masanobu Ozaki, Hiroshi Tomida, Chikara Natsukari, Shutaro Ueda, Masachika Iwai, Koji Mori, Makoto Yamauchi, Isamu Hatsukade, Yusuke Nishioka, Eri Isoda, Masayoshi Nobukawa, Junko S. Hiraga, Takayoshi Kohmura, Hiroshi Murakami, Kumiko K. Nobukawa, Aya Bamba, Joh, P. Doty
    J. Astron. Telesc. Instrum. Syst. 4(1), 011211 (2018) 4(1) 2018年1月22日  
    The Soft X-ray Imager (SXI) is an imaging spectrometer using charge-coupled<br /> devices (CCDs) aboard the Hitomi X-ray observatory. The SXI sensor has four<br /> CCDs with an imaging area size of $31~{\rm mm} \times 31~{\rm mm}$ arranged in<br /> a $2 \times 2$ array. Combined with the X-ray mirror, the Soft X-ray Telescope,<br /> the SXI detects X-rays between $0.4~{\rm keV}$ and $12~{\rm keV}$ and covers a<br /> $38^{\prime} \times 38^{\prime}$ field-of-view. The CCDs are P-channel<br /> fully-depleted, back-illumination type with a depletion layer thickness of<br /> $200~\mu{\rm m}$. Low operation temperature down to $-120~^\circ{\rm C}$ as<br /> well as charge injection is employed to reduce the charge transfer inefficiency<br /> of the CCDs. The functionality and performance of the SXI are verified in<br /> on-ground tests. The energy resolution measured is $161$-$170~{\rm eV}$ in full<br /> width at half maximum for $5.9~{\rm keV}$ X-rays. In the tests, we found that<br /> the CTI of some regions are significantly higher. A method is developed to<br /> properly treat the position-dependent CTI. Another problem we found is pinholes<br /> in the Al coating on the incident surface of the CCDs for optical light<br /> blocking. The Al thickness of the contamination blocking filter is increased in<br /> order to sufficiently block optical light.
  • 幸村孝由, 林田清, 冨田洋, 森浩二, 岡島崇, 中嶋大, 鶴剛, 田中孝明, 内田裕之, 村上弘志, 山内誠, 廿日出勇, 萩野浩一, 石田学, 前田良知, 内山秀樹, 山岡和貴, 松本浩典, 信川正順, 信川久美子, 平賀純子, 小林翔悟, 堂谷忠靖, 尾崎正伸, 常深博
    日本物理学会講演概要集(CD-ROM) 73(1) 2018年  
  • 森浩二, 林田清, 冨田洋, 田中孝明, 内田裕之, 鶴剛, 中嶋大, 松本浩典, 岡島崇, 石田学, 前田良知, 村上弘志, 山内誠, 廿日出勇, 信川正順, 信川久実子, 幸村孝由, 萩野浩一, 小林翔悟, 平賀純子, 内山秀樹, 山岡和貴, 尾崎正伸, 堂谷忠靖, 常深博
    日本物理学会講演概要集(CD-ROM) 73(2) 2018年  
  • Makoto Tashiro, Makoto Tashiro, Hironori Maejima, Kenichi Toda, Richard Kelley, Lillian Reichenthal, James Lobell, Robert Petre, Matteo Guainazzi, Elisa Costantini, Mark Edison, Ryuichi Fujimoto, Martin Grim, Kiyoshi Hayashida, Jan Willem Den Herder, Yoshitaka Ishisaki, Stéphane Paltani, Kyoko Matsushita, Koji Mori, Gary Sneiderman, Yoh Takei, Yukikatsu Terada, Hiroshi Tomida, Hiroki Akamatsu, Lorella Angelini, Yoshitaka Arai, Hisamitsu Awaki, Lurli Babyk, Lurli Babyk, Aya Bamba, Peter Barfknecht, Kim Barnstable, Thomas Bialas, Branimir Blagojevic, Joseph Bonafede, Clifford Brambora, Laura Brenneman, Greg Brown, Kimberly Brown, Laura Burns, Edgar Canavan, Tim Carnahan, Meng Chiao, Brian Comber, Lia Corrales, Cor De Vries, Johannes Dercksen, Maria DIaz-Trigo, Tyrone DIllard, Michael DIpirro, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan Eckart, Teruaki Enoto, Yuichiro Ezoe, Carlo Ferrigno, Yutaka Fujita, Yasushi Fukazawa, Akihiro Furuzawa, Luigi Gallo, Steve Graham, Liyi Gu, Kohichi Hagino, Kenji Hamaguchi, Isamu Hatsukade, Dean Hawes, Takayuki Hayashi, Cailey Hegarty, Natalie Hell, Junko Hiraga, Edmund Hodges-Kluck, Matt Holland, Ann Hornschemeier, Akio Hoshino, Yuto Ichinohe, Ryo Iizuka, Kazunori Ishibashi, Manabu Ishida, Kumi Ishikawa, Kosei Ishimura, Bryan James, Timothy Kallman, Erin Kara, Satoru Katsuda, Steven Kenyon, Caroline Kilbourne, Mark Kimball, Takao Kitaguchi, Shunji Kitamoto, Shogo Kobayashi, Takayoshi Kohmura, Shu Koyama, Aya Kubota, Maurice Leutenegger, Maurice Leutenegger, Tom Lockard, Mike Loewenstein, Yoshitomo Maeda, Lynette Marbley
    Proceedings of SPIE - The International Society for Optical Engineering 10699 2018年1月1日  
    © 2018 SPIE. The ASTRO-H mission was designed and developed through an international collaboration of JAXA, NASA, ESA, and the CSA. It was successfully launched on February 17, 2016, and then named Hitomi. During the in-orbit verification phase, the on-board observational instruments functioned as expected. The intricate coolant and refrigeration systems for soft X-ray spectrometer (SXS, a quantum micro-calorimeter) and soft X-ray imager (SXI, an X-ray CCD) also functioned as expected. However, on March 26, 2016, operations were prematurely terminated by a series of abnormal events and mishaps triggered by the attitude control system. These errors led to a fatal event: the loss of the solar panels on the Hitomi mission. The X-ray Astronomy Recovery Mission (or, XARM) is proposed to regain the key scientific advances anticipated by the international collaboration behind Hitomi. XARM will recover this science in the shortest time possible by focusing on one of the main science goals of Hitomi,&quot;Resolving astrophysical problems by precise high-resolution X-ray spectroscopy&quot;.1This decision was reached after evaluating the performance of the instruments aboard Hitomi and the mission&#039;s initial scientific results, and considering the landscape of planned international X-ray astrophysics missions in 2020&#039;s and 2030&#039;s. Hitomi opened the door to high-resolution spectroscopy in the X-ray universe. It revealed a number of discrepancies between new observational results and prior theoretical predictions. Yet, the resolution pioneered by Hitomi is also the key to answering these and other fundamental questions. The high spectral resolution realized by XARM will not offer mere refinements; rather, it will enable qualitative leaps in astrophysics and plasma physics. XARM has therefore been given a broad scientific charge: &quot;Revealing material circulation and energy transfer in cosmic plasmas and elucidating evolution of cosmic structures and objects&quot;. To fulfill this charge, four categories of science objectives that were defined for Hitomi will also be pursued by XARM; these include (1) Structure formation of the Universe and evolution of clusters of galaxies; (2) Circulation history of baryonic matters in the Universe; (3) Transport and circulation of energy in the Universe; (4) New science with unprecedented high resolution X-ray spectroscopy. In order to achieve these scientific objectives, XARM will carry a 6 × 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and a wider field of view. This paper introduces the science objectives, mission concept, and observing plan of XARM.
  • 上田 周太朗, 北山 哲, 堂谷 忠靖
    天文月報 = The astronomical herald 110(8) 513-521 2017年8月  
  • Hitomi Collaboration, Felix Aharonian, Hiroki Akamatsu, Fumie Akimoto, Steven W. Allen, Lorella Angelini, Marc Audard, Hisamitsu Awaki, Magnus Axelsson, Aya Bamba, Marshall, W. Bautz, Roger Blandford, Laura W. Brenneman, Greg V. Brown, Esra Bulbul, Edward M. Cackett, Maria Chernyakova, Meng P. Chiao, Paolo S. Coppi, Elisa Costantini, Jelle de Plaa, Cor P. de Vries, Jan-Willem den Herder, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan E. Eckart, Teruaki Enoto, Yuichiro Ezoe, Andrew C. Fabian, Carlo Ferrigno, Adam R. Foster, Ryuichi Fujimoto, Yasushi Fukazawa, Akihiro Furuzawa, Massimiliano Galeazzi, Luigi C. Gallo, Poshak Gandhi, Margherita Giustini, Andrea Goldwurm, Liyi Gu, Matteo Guainazzi, Yoshito Haba, Kouichi Hagino, Kenji Hamaguchi, Ilana M. Harrus, Isamu Hatsukade, Katsuhiro Hayashi, Takayuki Hayashi, Kiyoshi Hayashida, Junko S. Hiraga, Ann Hornschemeier, Akio Hoshino, John, P. Hughes, Yuto Ichinohe, Ryo Iizuka, Hajime Inoue, Yoshiyuki Inoue, Manabu Ishida, Kumi Ishikawa, Yoshitaka Ishisaki, Jelle Kaastra, Tim Kallman, Tsuneyoshi Kamae, Jun Kataoka, Satoru Katsuda, Nobuyuki Kawai, Richard L. Kelley, Caroline A. Kilbourne, Takao Kitaguchi, Shunji Kitamoto, Tetsu Kitayama, Takayoshi Kohmura, Motohide Kokubun, Katsuji Koyama, Shu Koyama, Peter Kretschmar, Hans A. Krimm, Aya Kubota, Hideyo Kunieda, Philippe Laurent, Shiu-Hang Lee, Maurice A. Leutenegger, Olivier O. Limousin, Michael Loewenstein, Knox S. Long, David Lumb, Greg Madejski, Yoshitomo Maeda, Daniel Maier, Kazuo Makishima, Maxim Markevitch, Hironori Matsumoto, Kyoko Matsushita, Dan McCammon, Brian R. McNamara, Missagh Mehdipour, Eric D. Miller, Jon M. Miller, Shin Mineshige, Kazuhisa Mitsuda, Ikuyuki Mitsuishi, Takuya Miyazawa, Tsunefumi Mizuno, Hideyuki Mori, Koji Mori, Koji Mukai, Hiroshi Murakami, Richard, F. Mushotzky, Takao Nakagawa, Hiroshi Nakajima, Takeshi Nakamori, Shinya Nakashima, Kazuhiro Nakazawa, Kumiko K. Nobukawa, Masayoshi Nobukawa, Hirofumi Noda, Hirokazu Odaka, Takaya Ohashi, Masanori Ohno, Takashi Okajima, Naomi Ota, Masanobu Ozaki, Frits Paerels, Stephane Paltani, Robert Petre, Ciro Pinto, Frederick S. Porter, Katja Pottschmidt, Christopher S. Reynolds, Samar Safi-Harb, Shinya Saito, Kazuhiro Sakai, Toru Sasaki, Goro Sato, Kosuke Sato, Rie Sato, Toshiki Sato, Makoto Sawada, Norbert Schartel, Peter J. Serlemtsos, Hiromi Seta, Megumi Shidatsu, Aurora Simionescu, Randall K. Smith, Yang Soong, Lukasz Stawarz, Yasuharu Sugawara, Satoshi Sugita, Andrew Szymkowiak, Hiroyasu Tajima, Hiromitsu Takahashi, Tadayuki Takahashi, Shinichiro Takeda, Yoh Takei, Toru Tamagawa, Takayuki Tamura, Takaaki Tanaka, Yasuo Tanaka, Yasuyuki T. Tanaka, Makoto S. Tashiro, Yuzuru Tawara, Yukikatsu Terada, Yuichi Terashima, Francesco Tombesi, Hiroshi Tomida, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Go Tsuru, Hiroyuki Uchida, Hideki Uchiyama, Yasunobu Uchiyama, Shutaro Ueda, Yoshihiro Ueda, Shinichiro Uno, C. Megan Urry, Eugenio Ursino, Shin Watanabe, Norbert Werner, Dan R. Wilkins, Brian J. Williams, Shinya Yamada, Hiroya Yamaguchi, Kazutaka Yamaoka, Noriko Y. Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Tahir Yaqoob, Yoichi Yatsu, Daisuke Yonetoku, Irina Zhuravleva, Abderahmen Zoghbi, Nozomu Tominaga, Takashi J. Moriya
    70(2) 2017年7月1日  
    The Crab nebula originated from a core-collapse supernova (SN) explosion<br /> observed in 1054 A.D. When viewed as a supernova remnant (SNR), it has an<br /> anomalously low observed ejecta mass and kinetic energy for an Fe-core collapse<br /> SN. Intensive searches were made for a massive shell that solves this<br /> discrepancy, but none has been detected. An alternative idea is that the SN1054<br /> is an electron-capture (EC) explosion with a lower explosion energy by an order<br /> of magnitude than Fe-core collapse SNe. In the X-rays, imaging searches were<br /> performed for the plasma emission from the shell in the Crab outskirts to set a<br /> stringent upper limit to the X-ray emitting mass. However, the extreme<br /> brightness of the source hampers access to its vicinity. We thus employed<br /> spectroscopic technique using the X-ray micro-calorimeter onboard the Hitomi<br /> satellite. By exploiting its superb energy resolution, we set an upper limit<br /> for emission or absorption features from yet undetected thermal plasma in the<br /> 2-12 keV range. We also re-evaluated the existing Chandra and XMM-Newton data.<br /> By assembling these results, a new upper limit was obtained for the X-ray<br /> plasma mass of &lt;~ 1Mo for a wide range of assumed shell radius, size, and<br /> plasma temperature both in and out of the collisional equilibrium. To compare<br /> with the observation, we further performed hydrodynamic simulations of the Crab<br /> SNR for two SN models (Fe-core versus EC) under two SN environments (uniform<br /> ISM versus progenitor wind). We found that the observed mass limit can be<br /> compatible with both SN models if the SN environment has a low density of &lt;~<br /> 0.03 cm-3 (Fe core) or &lt;~ 0.1 cm-3 (EC) for the uniform density, or a<br /> progenitor wind density somewhat less than that provided by a mass loss rate of<br /> 10-5 Mo yr-1 at 20 km s-1 for the wind environment.
  • F. A. Aharonian, H. Akamatsu, F. Akimoto, S. W. Allen, L. Angelini, K. A. Arnaud, M. Audard, H. Awaki, M. Axelsson, A. Bamba, M. W. Bautz, R. D. Blandford, E. Bulbul, L. W. Brenneman, G. V. Brown, E. M. Cackett, M. Chernyakova, M. P. Chiao, P. Coppi, E. Costantini, J. de Plaa, J. -W. den Herder, C. Done, T. Dotani, K. Ebisawa, M. E. Eckart, T. Enoto, Y. Ezoe, A. C. Fabian, C. Ferrigno, A. R. Foster, R. Fujimoto, Y. Fukazawa, A. Furuzawa, M. Galeazzi, L. C. Gallo, P. Gandhi, M. Giustini, A. Goldwurm, L. Gu, M. Guainazzi, Y. Haba, K. Hagino, K. Hamaguchi, I. Harrus, I. Hatsukade, K. Hayashi, T. Hayashi, K. Hayashida, J. Hiraga, A. E. Hornschemeier, A. Hoshino, J. P. Hughes, Y. Ichinohe, R. Iizuka, H. Inoue, S. Inoue, Y. Inoue, K. Ishibashi, M. Ishida, K. Ishikawa, Y. Ishisaki, M. Itoh, M. Iwai, N. Iyomoto, J. S. Kaastra, T. Kallman, T. Kamae, E. Kara, J. Kataoka, S. Katsuda, J. Katsuta, M. Kawaharada, N. Kawai, R. L. Kelley, D. Khangulyan, C. A. Kilbourne, A. L. King, T. Kitaguchi, S. Kitamoto, T. Kitayama, T. Kohmura, M. Kokubun, S. Koyama, K. Koyama, P. Kretschmar, H. A. Krimm, A. Kubota, H. Kunieda, P. Laurent, F. Lebrun, S. -H. Lee, M. A. Leutenegger, O. Limousin, M. Loewenstein, K. S. Long, D. H. Lumb, G. M. Madejski, Y. Maeda, D. Maier, K. Makishima, M. Markevitch, H. Matsumoto, K. Matsushita, D. McCammon, B. R. McNamara, M. Mehdipour, E. D. Miller, J. M. Miller, S. Mineshige, K. Mitsuda, I. Mitsuishi, T. Miyazawa, T. Mizuno, H. Mori, K. Mori, H. Moseley, K. Mukai, H. Murakami, T. Murakami, R. F. Mushotzky, T. Nakagawa, H. Nakajima, T. Nakamori, T. Nakano, S. Nakashima, K. Nakazawa, K. Nobukawa, M. Nobukawa, H. Noda, M. Nomachi, S. L. O'Dell, H. Odaka, T. Ohashi, M. Ohno, T. Okajima, N. Ota, M. Ozaki, F. Paerels, S. Paltani, A. Parmar, R. Petre, C. Pinto, M. Pohl, F. S. Porter, K. Pottschmidt, B. D. Ramsey, C. S. Reynolds, H. R. Russell, S. Safi-Harb, S. Saito, K. Sakai, H. Sameshima, T. Sasaki, G. Sato, K. Sato, R. Sato, M. Sawada, N. Schartel, P. J. Serlemitsos, H. Seta, M. Shidatsu, A. Simionescu, R. K. Smith, Y. Soong, L. Stawarz, Y. Sugawara, S. Sugita, A. E. Szymkowiak, H. Tajima, H. Takahashi, T. Takahashi, S. Takeda, Y. Takei, T. Tamagawa, K. Tamura, T. Tamura, T. Tanaka, Yasuo Tanaka, Yasuyuki Tanaka, M. Tashiro, Y. Tawara, Y. Terada, Y. Terashima, F. Tombesi, H. Tomida, Y. Tsuboi, M. Tsujimoto, H. Tsunemi, T. Tsuru, H. Uchida, H. Uchiyama, Y. Uchiyama, S. Ueda, Y. Ueda, S. Ueno, S. Uno, C. M. Urry, E. Ursino, C. P. de Vries, S. Watanabe, N. Werner, D. R. Wik, D. R. Wilkins, B. J. Williams, S. Yamada, H. Yamaguchi, K. Yamaoka, N. Y. Yamasaki, M. Yamauchi, S. Yamauchi, T. Yaqoob, Y. Yatsu, D. Yonetoku, A. Yoshida, I. Zhuravleva, A. Zoghbi
    ASTROPHYSICAL JOURNAL LETTERS 837(1) 2017年3月  
    X-ray spectroscopy with Hitomi was expected to resolve the origin of the faint unidentified E approximate to 3.5 keV emission line reported in several low-resolution studies of various massive systems, such as galaxies and clusters, including the Perseus cluster. We have analyzed the Hitomi first-light observation of the Perseus cluster. The emission line expected for Perseus based on the XMM-Newton signal from the large cluster sample under the dark matter decay scenario is too faint to be detectable in the Hitomi data. However, the previously reported 3.5 keV flux from Perseus was anomalously high compared to the sample-based prediction. We find no unidentified line at the reported high flux level. Taking into account the XMM measurement uncertainties for this region, the inconsistency with Hitomi is at a 99% significance for a broad dark matter line and at 99.7% for a narrow line from the gas. We do not find anomalously high fluxes of the nearby faint K line or the Ar satellite line that were proposed as explanations for the earlier 3.5 keV detections. We do find a hint of a broad excess near the energies of high-n transitions of S XVI (E similar or equal to 3.44 keV rest-frame)-a possible signature of charge exchange in the molecular nebula and another proposed explanation for the unidentified line. While its energy is consistent with XMM pn detections, it is unlikely to explain the MOS signal. A confirmation of this interesting feature has to wait for a more sensitive observation with a future calorimeter experiment.
  • 河合 誠之, 常深 博, 幸村 孝由, 根來 均, 上田 佳宏, 坪井 陽子, 海老沢 研, 森井 幹雄, 穴吹 直久, 湯浅 孝行, 堂谷 忠靖, 谷津 陽一, 中村 卓史, 田中 貴浩, 吉田 道利, 神田 展行, Vagins Mark, 有元 誠, 冨田 洋, 上野 史郎, 三原 建弘, 芹野 素子, 吉田 篤正, 坂本 貴紀
    日本物理学会講演概要集 71 503-503 2016年  
  • Ishino H, Akiba Y, Arnold K, Barron D, Borrill J, Chendra R, Chinone Y, Cho S, Cukierman A, de Haan T, Dobbs M, Dominjon A, Dotani T, Elleflot T, Errard J, Fujino T, Fuke H, Funaki T, Goeckner-Wald N, Halverson N, Harvey P, Hasebe T, Hasegawa M, Hattori K, Hattori M, Hazumi M, Hidehira N, Hill C, Hilton G, Holzapfel W, Hori Y, Hubmayr J, Ichiki K, Imada H, Inatani J, Inoue M, Inoue Y, Trie F, Irwin K, Ishitsuka H, Jeong O, Kanai H, Karatsu K, Kashima S, Katayama N, Kawano I, Kawasaki T, Keating B, Kernasovskiy S, Keskitalo R, Kibayashi A, Kida Y, Kimura N, Kimura K, Kisner T, Kohri K, Komatsu E, Komatsu K, Kuo C. -L, Kuromiya S, Kusaka A, Lee A, Li D, Linder E, Maki M, Matsuhara H, Matsumura T, Matsuoka S, Matsuura S, Mima S, Minami Y, Mitsuda K, Nagai M, Nagasaki T, Nagata R, Nakajima M, Nakamura S, Namikawa T, Naruse M, Nishibori T, Nishijo K, Nishino H, Noda A, Noguchi T, Ogawa H, Ogburn W, Oguri S, Ohta I, Okada N, Okamoto A, Okamura T, Otani C, Pisano G, Rebeiz G, Richards P, Sakai S, Sakurai Y, Sato Y, Sato N, Segawa Y, Sekiguchi S, Sekimoto Y, Sekine M, Seljak U, Sherwin B, Shimizu T, Shinozaki K, Shu S, Stompor R, Sugai H, Sugita H, Suzuki J, Suzuki T, Suzuki A, Tajima O, Takada S, Takakura S, Takano K, Takatori S, Takei Y, Tanabe D, Tomaru T, Tomita N, Turin P, Uozumi S, Utsunomiya S, Uzawa Y, Wada T, Watanabe H, Westbrook B, Whitehorn N, Yamada Y, Yamamoto R, Yamasaki N, Yamashita T, Yoshida T, Yoshida M, Yotsumoto K
    SPACE TELESCOPES AND INSTRUMENTATION 2016: OPTICAL, INFRARED, AND MILLIMETER WAVE 9904 2016年  査読有り
  • 穴吹 直久, 常深 博, 林田 清, 中嶋 大, 薙野 綾, 鶴 剛, 田中 孝明, 信川 正順, 内田 裕之, 堂谷 忠靖, 尾崎 正伸, 夏 苅権, 冨田 洋, 木村 公, 平賀 純子, 幸村 孝由, 森 浩二, 廿日出 勇, 山内 誠, 西岡 祐介, 村上 弘志, 馬場 彩, Doty John, SXIチーム
    日本物理学会講演概要集 69(2) 37-37 2014年8月22日  
  • 村上 弘志, 堂谷 忠靖, 尾崎 正伸, 夏苅 権, 冨田 洋, 木村 公, 常深 博, 林田 清, 中嶋 大, 穴吹 直久, 薙野 綾, 鶴 剛, 田中 孝明, 信川 正順, 内田 裕之, 平賀 純子, 幸村 孝由, 森 浩二, 廿日出 勇, 山内 誠, 西岡 祐介, 馬場 彩, Doty John, SXIチーム
    日本物理学会講演概要集 69(1) 129-129 2014年3月5日  
  • 宮城生成, 堂谷忠靖
    日本天文学会2024年春季年会 2014年3月  
  • 堂谷 忠靖, 山崎 典子, 馬場 勧
    宇宙科学技術連合講演会講演集 57 6p 2013年10月9日  
  • 平賀 純子, 堂谷 忠靖, 尾崎 正伸, 夏苅 権, 冨田 洋, 木村 公, 林田 清, 常深 博, 中嶋 大, 穴吹 直久, 薙野 綾, 鶴 剛, 田中 孝明, 信川 正順, 内田 裕之, 幸村 孝由, 村上 弘志, 森 浩二, 廿日出 勇, 山内 誠, 西岡 祐介, 馬場 彩, Doty John, SXIチーム
    日本物理学会講演概要集 68(2) 111-111 2013年8月26日  
  • 林田 清, 常深 博, 中嶋 大, 穴吹 直久, 薙野 綾, 鶴 剛, 田中 孝明, 信川 正順, 内田 裕之, 堂谷 忠靖, 尾崎 正伸, 夏苅 権, 冨田 洋, 木村 公, 幸村 孝由, 村上 弘志, 平賀 純子, 森 浩二, 廿日出 勇, 山内 誠, 西岡 祐介, 属場 彩, Doty John, SXIチーム
    日本物理学会講演概要集 68(1) 134-134 2013年3月26日  
  • 松田桂子, 松田桂子, GANDHI Poshak, 堂谷忠靖, 中川貴雄, 塩谷圭吾, 瀧田怜
    日本天文学会年会講演予稿集 2013 2013年  
  • MORI Hideyuki, MAEDA Yoshitomo, UEDA Yoshihiro, DOTANI Tadayasu, ISHIDA Manabu
    PASJ : publications of the Astronomical Society of Japan 64(5) "112-1"-"112-11" 2012年10月25日  
  • SHIMADA Takanobu, HIROSE Kazuyuki, KUKITA Akio, IKEDA Hirokazu, OHGUSHI Yoshio, OZAKI Masanobu, DOTANI Tadayasu, OKAZAKI Tsuyoshi, TAKAHASHI Tadayuki, NOZAKI Yukishige, MURAMATSU Takeshi, MIZUSHIMA Kazuyo
    電子情報通信学会技術研究報告. SANE, 宇宙・航行エレクトロニクス 112(229) 17-22 2012年10月3日  
    Japan Aerospace Exploration Agency (JAXA) has been developing an X-ray astronomy satellite named "ASTRO-H", which will be launched in 2014. This paper provides a summary of the design overview and development status of an electrical power subsystem for ASTRO-H. The subsystem consists of rigid solar array paddles that generate approximately 3500W at the end of life of the system, a power control unit that delivers an unregulated 50V bus power supply, shunt dissipators, battery charge control units, two 100-Ah Li-ion batteries, and a non-explosive actuator controller. Currently, manufacturing and verification tests for the satellite system have been implemented for the launch.
  • 西岡 祐介, 森 浩二, 大浦 智史, 小浦 祐明, 山内 誠, 中嶋 大, 上田 周太朗, 菅 裕哲, 林田 清, 穴吹 直久, 常深 博, 幸村 孝由, 池田 翔馬, 村上 弘志, 前田 幸重, 相良 建至, 堂谷 忠靖, 尾崎 正伸, SXIチーム
    日本物理学会講演概要集 67(2) 119-119 2012年8月24日  
  • 幸村 孝由, 池田 翔馬, 金子 健太, 矢部 一成, 常深 博, 林田 清, 中嶋 大, 穴吹 直久, 薙野 綾, 上田 周太朗, 菅 裕哲, 米森 愛美, 鶴 剛, 内田 裕之, 大西 隆雄, 堂谷 忠靖, 尾崎 正伸, 冨田 洋, 北本 俊二, 村上 弘志, 梅津 里香, 小松 飛斗, ASTRO-H SXIチーム
    日本物理学会講演概要集 67(2) 119-119 2012年8月24日  
  • K. Matsuta, P. Gandhi, T. Dotani, T. Nakagawa, N. Isobe, Y. Ueda, K. Ichikawa, Y. Terashima, S. Oyabu, I. Yamamura, Stawarz
    Astrophysical Journal 753(2) 2012年7月10日  
    We combine data from two all-sky surveys in order to study the connection between the infrared and hard X-ray (>10keV) properties for local active galactic nuclei (AGNs). The Swift Burst Alert Telescope all-sky survey provides an unbiased, flux-limited selection of hard X-ray-detected AGNs. Cross-correlating the 22month hard X-ray survey with the AKARI all-sky survey, we studied 158 AGNs detected by the AKARI instruments. We find a strong correlation for most AGNs between the infrared (9, 18, and 90 μm) and hard X-ray (14-195keV) luminosities, and quantify the correlation for various subsamples of AGNs. Partial correlation analysis confirms the intrinsic correlation after removing the redshift contribution. The correlation for radio galaxies has a slope and normalization identical to that for Seyfert 1 galaxies, implying similar hard X-ray/infrared emission processes in both. In contrast, Compton-thick (CT) sources show a large deficit in the hard X-ray band, because high gas column densities diminish even their hard X-ray luminosities. We propose two photometric diagnostics for source classification: one is an X-ray luminosity versus infrared color diagram, in which type 1 radio-loud AGNs are well isolated from the others in the sample. The other uses the X-ray versus infrared color as a useful redshift-independent indicator for identifying CT AGNs. Importantly, CT AGNs and starburst galaxies in composite systems can also be differentiated in this plane based upon their hard X-ray fluxes and dust temperatures. This diagram may be useful as a new indicator to classify objects in new and upcoming surveys such as WISE and NuSTAR. © 2012. The American Astronomical Society. All rights reserved..
  • YAMADA Shin'ya, UCHIYAMA Hideki, DOTANI Tadayasu, TSUJIMOTO Masahiro, KATSUDA Satoru, MAKISHIMA Kazuo, TAKAHASHI Hiromitsu, NODA Hirofumi, TORII Shunsuke, SAKURAI Soki, ENOTO Teruaki, YUASA Takayuki, KOYAMA Shu, BAMBA Aya
    PASJ : publications of the Astronomical Society of Japan 64(3) "53-1"-"53-12" 2012年6月25日  
  • 藤永 貴久, 岩井 將親, 穴吹 直久, 尾崎 正伸, 堂谷 忠靖, 夏苅 権, 林田 清, 常深 博, 中嶋 大, 上田 周太朗, 池田 翔馬
    日本物理学会講演概要集 67(1) 139-139 2012年3月5日  
  • Kohmura, T, Kawai, K, Ikeda, S, Kaneko, K, Tsunemi, H, Hayashida, K, Nakajima, H, Koyama, K, Tsuru, T. G, Nobukawa, M, Dotani, T, Ozaki, M, Tsujimoto, M, Matsuta, K, Kitamoto, S, Murakami, H, Higashi, K, Uchiyama, H, Mori, K, Suzaku XIS Team
    SUZAKU 2011: Exploring the X-ray Universe: Suzaku and Beyond. AIP Conference Proceedings 1427 247-248 2012年3月  
  • 海田亮平, 森浩二, 林田清, 常深博, 鶴剛, 内田裕之, 信川正順, 松本浩典, 堂谷忠靖, 尾崎正伸, 辻本匡弘, 馬場彩, 村上弘志, 幸村孝由
    日本天文学会年会講演予稿集 2012 291 2012年2月20日  
  • S. Ikeda, T. Kohmura, K. Kawai, K. Kaneko, T. Watanabe, H. Tsunemi, K. Hayashida, N. Anabuki, H. Nakajima, S. Ueda, T. G. Tsuru, T. Dotani, M. Ozaki, K. Matsuta, T. Fujinaga, S. Kitamoto, H. Murakami, J. Hiraga, K. Mori
    SUZAKU 2011: EXPLORING THE X-RAY UNIVERSE: SUZAKU AND BEYOND 1427 253-254 2012年  査読有り
    We have developed the back-illuminated X-ray CCD camera (BI-CCD) to observe X-ray in space. The X-ray CCD has a sensitivity not only for in X-ray but also in both Optical and UV light, X-ray CCD has to equip a filter to cut off optical light as well as UV light. The X-ray Imaging Spectrometer (XIS) onboard Suzaku satellite equipped with a thin film (OBF : Optical Blocking Filter) to cut off optical light and UV light. OBF is always in danger tearing by the acousmato or vibration during the launch, and it is difficult to handle on the ground because of its thickness. Instead of OBF, we have newly developed and produced OBL (Optical Blocking Layer), which is directly coating on the X-ray CCD surface.
  • Nakamura, R., Bamba, A., Dotani, T., Ishida, M., Yamazaki, R., Kohri, K.
    Astrophysical Journal 746(2) 2012年  査読有り
    A systematic study of the synchrotron X-ray emission from supernova remnants (SNRs) has been conducted. We selected a total of 12 SNRs whose synchrotron X-ray spectral parameters are available in the literature with reasonable accuracy, and studied how their luminosities change as a function of radius. It is found that the synchrotron X-ray luminosity tends to drop especially when the SNRs become larger than ~5 pc, despite large scatter. This may be explained by the change of spectral shape caused by the decrease of the synchrotron roll-off energy. A simple evolutionary model of the X-ray luminosity is proposed and is found to reproduce the observed data approximately, with reasonable model parameters. According to the model, the total energy of accelerated electrons is estimated to be 10^(47-48) ergs, which is well below the supernova explosion energy. The maximum energies of accelerated electrons and protons are also discussed.
  • 松田桂子, GANDHI Poshak, 堂谷忠靖, 磯部直樹, 中川貴雄, 山村一誠, 市川幸平, 上田佳宏, 寺島雄一, 大藪進喜
    日本天文学会年会講演予稿集 2012 2012年  
  • 堂谷 忠靖
    空気清浄 49(4) 34-44 2011年11月30日  
  • 上田 周太朗, 林田 清, 中嶋 大, 森 秀樹, 藤川 真里, 小松 聖児, 穴吹 直久, 常深 博, 幸村 孝由, 堂谷 忠靖, 尾崎 正伸, 夏苅 権, 藤永 貴久, 松田 桂子, 鶴 剛, 大西 隆雄, 村上 弘志, 森 浩二, 平賀 純子, ASTRO-H, SXIチーム
    日本物理学会講演概要集 66(2) 112-112 2011年8月24日  
  • 海田亮平, 森浩二, 林田清, 常深博, 鶴剛, 内田裕之, 信川正順, 松本浩典, 堂谷忠靖, 尾崎正伸, 辻本匡弘, 馬場彩, 村上弘志, 幸村孝由
    日本天文学会年会講演予稿集 2011 295 2011年8月20日  
  • 寺田 幸功, 原山 淳, 石田 学, 堂谷 忠靖, 馬場 彩, 林多 多佳由, 浦田 祐次, 林 紅妙
    日本物理学会講演概要集 66(1) 110-110 2011年3月3日  
  • 松田桂子, 松田桂子, GANDHI Poshak, 堂谷忠靖, 市川幸平, 上田佳宏, 寺島雄一, 中川貴雄, 大藪進喜
    日本天文学会年会講演予稿集 2011 2011年  
  • 堂谷 忠靖
    日本物理學會誌 65(11) 866-868 2010年11月5日  
  • 幸村 孝由, 河合 耕平, 渡辺 辰雄, 小川 大樹, 池田 翔馬, 牛山 薫, 金子 健太, 北本 俊二, 村上 弘志, 常深 博, 林田 清, 中嶋 大, 穴吹 直久, 内田 裕之, 上田 周太朗, 鶴 剛, 堂谷 忠靖, 尾崎 正伸, 馬場 彩, 森 浩二, 平賀 純子, ASTRO-H SXIチーム
    日本物理学会講演概要集 65(2) 83-83 2010年8月18日  
  • 寺田 幸功, 原山 淳, 馬場 彩, 石田 学, 堂谷 忠靖, 林 多佳由, 中村 良子, 牧島 一夫, 向井 浩二, 新田 敦子, Jager Okkie de, Chadwick Paula, Wagner Stefan, Buckley David
    日本物理学会講演概要集 65(1) 106-106 2010年3月1日  

共同研究・競争的資金等の研究課題

 15

● 指導学生等の数

 1
  • 年度
    2021年度(FY2021)
    修士課程学生数
    2
    連携大学院制度による学生数
    2
    学術特別研究員数
    1

● 専任大学名

 1
  • 専任大学名
    総合研究大学院大学(SOKENDAI)