研究者業績

中村 正人

ナカムラ マサト  (Masato Nakamura)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 教授
学位
博士(理学)(1987年10月 東京大学)

通称等の別名
宇宙研
J-GLOBAL ID
200901098690652704
researchmap会員ID
1000161601

外部リンク

研究キーワード

 1

論文

 173
  • T. Nagai, I. Shinohara, Y. Saito, A. Ieda, R. Nakamura
    Journal of Geophysical Research: Space Physics 128(12) 2023年12月  
    The spacecraft Geotail surveyed the near-Earth plasma sheet from XGSM = −10 to −31 RE and YGSM = −20 to +20 RE during the period from 1994 to 2022. It observed 243 magnetic reconnection events and 785 tailward flow events under various solar wind conditions during plasma sheet residence time of over 23,000 hr. Magnetic reconnections associated with the onset of magnetospheric substorms occur mostly in the range XGSM = −23 to −31 RE. When the solar wind is intense and high substorm activities continue, magnetic reconnection can occur closer to the Earth. The YGSM locations of magnetic reconnections depend on the solar wind conditions and on previous substorm activity. Under normal solar wind conditions, magnetic reconnection occurs preferentially in the pre-midnight plasma sheet. Under conditions with intense (weak) solar wind energy input, however, magnetic reconnection can occur in the post-midnight (duskside) plasma sheet. Continuous substorm activity tends to shift the magnetic reconnection site duskward. The plasma sheet thinning proceeds faster under intense solar wind conditions, and the loading process that provides the preconditions for magnetic reconnection becomes shorter. When magnetic flux piles up during a prolonged period with a strongly northward-oriented interplanetary magnetic field (IMF) Bz, the time necessary to provide the preconditions for magnetic reconnection becomes longer. Although the solar wind conditions are the primary factors that control the location and timing of magnetic reconnections, the plasma sheet conditions created by preceding substorm activity or the strongly northward IMF Bz can modify the solar wind control.
  • Yeon Joo Lee, Antonio García Muñoz, Atsushi Yamazaki, Eric Quémerais, Stefano Mottola, Stephan Hellmich, Thomas Granzer, Gilles Bergond, Martin Roth, Eulalia Gallego-Cano, Jean-Yves Chaufray, Rozenn Robidel, Go Murakami, Kei Masunaga, Murat Kaplan, Orhan Erece, Ricardo Hueso, Petr Kabáth, Magdaléna Špoková, Agustín Sánchez-Lavega, Myung-Jin Kim, Valeria Mangano, Kandis-Lea Jessup, Thomas Widemann, Ko-ichiro Sugiyama, Shigeto Watanabe, Manabu Yamada, Takehiko Satoh, Masato Nakamura, Masataka Imai, Juan Cabrera
    The Planetary Science Journal 3(9) 209-209 2022年9月1日  
    Abstract We performed a unique Venus observation campaign to measure the disk brightness of Venus over a broad range of wavelengths in 2020 August and September. The primary goal of the campaign was to investigate the absorption properties of the unknown absorber in the clouds. The secondary goal was to extract a disk mean SO2 gas abundance, whose absorption spectral feature is entangled with that of the unknown absorber at ultraviolet wavelengths. A total of three spacecraft and six ground-based telescopes participated in this campaign, covering the 52–1700 nm wavelength range. After careful evaluation of the observational data, we focused on the data sets acquired by four facilities. We accomplished our primary goal by analyzing the reflectivity spectrum of the Venus disk over the 283–800 nm wavelengths. Considerable absorption is present in the 350–450 nm range, for which we retrieved the corresponding optical depth of the unknown absorber. The result shows the consistent wavelength dependence of the relative optical depth with that at low latitudes, during the Venus flyby by MESSENGER in 2007, which was expected because the overall disk reflectivity is dominated by low latitudes. Last, we summarize the experience that we obtained during this first campaign, which should enable us to accomplish our second goal in future campaigns.
  • Kiichi Fukuya, Takeshi Imamura, Makoto Taguchi, Tetsuya Fukuhara, Toru Kouyama, Takeshi Horinouchi, Javier Peralta, Masahiko Futaguchi, Takeru Yamada, Takao M. Sato, Atsushi Yamazaki, Shin ya Murakami, Takehiko Satoh, Masahiro Takagi, Masato Nakamura
    Nature 595(7868) 511-515 2021年7月22日  
    Although Venus is a terrestrial planet similar to Earth, its atmospheric circulation is much different and poorly characterized1. Winds at the cloud top have been measured predominantly on the dayside. Prominent poleward drifts have been observed with dayside cloud tracking and interpreted to be caused by thermal tides and a Hadley circulation2–4; however, the lack of nightside measurements over broad latitudes has prevented the unambiguous characterization of these components. Here we obtain cloud-tracked winds at all local times using thermal infrared images taken by the Venus orbiter Akatsuki, which is sensitive to an altitude of about 65 kilometres5. Prominent equatorward flows are found on the nightside, resulting in null meridional velocities when these are zonally averaged. The velocity structure of the thermal tides was determined without the influence of the Hadley circulation. The semidiurnal tide was found to have an amplitude large enough to contribute to the maintenance of the atmospheric superrotation. The weakness of the mean meridional flow at the cloud top implies that the poleward branch of the Hadley circulation exists above the cloud top and that the equatorward branch exists in the clouds. Our results should shed light on atmospheric superrotation in other celestial bodies.
  • T. M. Sato, T. Satoh, H. Sagawa, N. Manago, Y. J. Lee, S. Murakami, K. Ogohara, G. L. Hashimoto, Y. Kasaba, A. Yamazaki, M. Yamada, S. Watanabe, T. Imamura, M. Nakamura
    Icarus 345 113682-113682 2020年7月15日  査読有り
    © 2020 Elsevier Inc. We describe the dayside cloud top structure of Venus as retrieved from 93 images acquired at a wide variety of solar phase angles (0–120°) using the 2.02-μm channel of the 2-μm camera (IR2) onboard the Venus orbiter, Akatsuki, from April 4 to May 25, 2016. Since the 2.02-μm channel is located in a CO2 absorption band, the sunlight reflected from Venus allowed us to determine the cloud top altitude corresponding to unit aerosol optical depth at 2.02 μm. First, the observed solar phase angle dependence and the center-to-limb variation of the reflected sunlight in the region equatorward of 30° were used to construct a spatially averaged cloud top structure characterized by cloud top altitude zc, Mode 2 modal radius rg,2, and cloud scale height H, which were 70.4 km, 1.06 μm, and 5.3 km, respectively. Second, cloud top altitudes at individual locations were retrieved on a pixel-by-pixel basis with an assumption that rg,2 and H were uniform for the entire planet. The latitudinal structure of the cloud top altitude was symmetric with respect to the equator. The average cloud top altitude was 70.5 km in the equatorial region and showed a gradual decrease of ~2 km by the 45° latitude. It rapidly dropped at latitudes of 50–60° and reached 61 km in latitudes of 70–75°. The average cloud top altitude in the region equatorward of 30° showed negligible local time dependence, with changes up to 1 km at most. Local variations in cloud top altitude, including stationary gravity wave features, occurred within several hundreds of meters. Although long zonal or tilted streaky features poleward of ~45° were clearly identifiable, features in the low and middle latitudes were usually subtle. These did not necessarily appear as local variations at the cloud top level, where mottled and patchy UV patterns were observed, suggestive of convection and turbulence at the cloud top level.
  • J. Peralta, T. Navarro, C. W. Vun, A. Sánchez‐Lavega, K. McGouldrick, T. Horinouchi, T. Imamura, R. Hueso, J. P. Boyd, G. Schubert, T. Kouyama, T. Satoh, N. Iwagami, E. F. Young, M. A. Bullock, P. Machado, Y. J. Lee, S. S. Limaye, M. Nakamura, S. Tellmann, A. Wesley, P. Miles
    Geophysical Research Letters 47(11) 2020年6月16日  査読有り
  • Takeshi Horinouchi, Yoshi-Yuki Hayashi, Shigeto Watanabe, Manabu Yamada, Atsushi Yamazaki, Toru Kouyama, Makoto Taguchi, Tetsuya Fukuhara, Masahiro Takagi, Kazunori Ogohara, Shin-ya Murakami, Javier Peralta, Sanjay S. Limaye, Takeshi Imamura, Masato Nakamura, Takao M. Sato, Takehiko Satoh
    Science 368(6489) 405-409 2020年4月24日  査読有り
    Venus has a thick atmosphere that rotates 60 times as fast as the surface, a phenomenon known as super-rotation. We use data obtained from the orbiting Akatsuki spacecraft to investigate how the super-rotation is maintained in the cloud layer, where the rotation speed is highest. A thermally induced latitudinal-vertical circulation acts to homogenize the distribution of the angular momentum around the rotational axis. Maintaining the super-rotation requires this to be counteracted by atmospheric waves and turbulence. Among those effects, thermal tides transport the angular momentum, which maintains the rotation peak, near the cloud top at low latitudes. Other planetary-scale waves and large-scale turbulence act in the opposite direction. We suggest that hydrodynamic instabilities adjust the angular-momentum distribution at mid-latitudes.
  • Masataka Imai, Toru Kouyama, Yukihiro Takahashi, Atsushi Yamazaki, Shigeto Watanabe, Manabu Yamada, Takeshi Imamura, Takehiko Satoh, Masato Nakamura, Shin‐ya Murakami, Kazunori Ogohara, Takeshi Horinouchi
    Journal of Geophysical Research: Planets 124(10) 2635-2659 2019年10月  査読有り
  • T. Kouyama, M. Taguchi, T. Fukuhara, T. Imamura, T. Horinouchi, T. M. Sato, S. Murakami, G. L. Hashimoto, Y. J. Lee, M. Futaguchi, T. Yamada, M. Akiba, T. Satoh, M. Nakamura
    Geophysical Research Letters 46(16) 9457-9465 2019年8月28日  査読有り
  • Ralph D. Lorenz, Masataka Imai, Yukihiro Takahashi, Mitsuteru Sato, Atsushi Yamazaki, Takao M. Sato, Takeshi Imamura, Takehiko Satoh, Masato Nakamura
    Geophysical Research Letters 46(14) 7955-7961 2019年7月28日  査読有り
  • Javier Peralta, Keishiro Muto, Ricardo Hueso, Takeshi Horinouchi, Agustín Sánchez-Lavega, Shin-ya Murakami, Pedro Machado, Eliot F. Young, Yeon Joo Lee, Toru Kouyama, Hideo Sagawa, Kevin McGouldrick, Takehiko Satoh, Takeshi Imamura, Sanjay S. Limaye, Takao M. Sato, Kazunori Ogohara, Masato Nakamura, David Luz
    The Astrophysical Journal Supplement Series 239(2) 29-29 2018年12月7日  査読有り
  • Masato Nakamura, Dmitri Titov, Kevin McGouldrick, Pierre Drossart, Jean-Loup Bertaux, Huixin Liu
    Earth, Planets and Space 70(1) 2018年12月  
  • Naomoto Iwagami, Takeshi Sakanoi, George L. Hashimoto, Kenta Sawai, Shoko Ohtsuki, Seiko Takagi, Kazunori Uemizu, Munetaka Ueno, Shingo Kameda, Shin ya Murakami, Masato Nakamura, Nobuaki Ishii, Takumi Abe, Takehiko Satoh, Takeshi Imamura, Chikako Hirose, Makoto Suzuki, Naru Hirata, Atsushi Yamazaki, Takao M. Sato, Manabu Yamada, Yukio Yamamoto, Tetsuya Fukuhara, Kazunori Ogohara, Hiroki Ando, Ko ichiro Sugiyama, Hiroki Kashimura, Toru Kouyama
    Earth, Planets and Space 70(1) 2018年12月1日  査読有り
    © 2018, The Author(s). The status and initial products of the 1-μm camera onboard the Akatsuki mission to Venus are presented. After the successful retrial of Venus’ orbit insertion on Dec. 2015 (5 years after the failure in Dec. 2010), and after a long cruise under intense radiation, damage in the detector seems small and fortunately insignificant in the final quality of the images. More than 600 dayside images have been obtained since the beginning of regular operation on Apr. 2016 although nightside images are less numerous (about 150 in total at three wavelengths) due to the light scattered from the bright dayside. However, data acquisition stopped after December 07, 2016, due to malfunction of the electronics and has not been resumed since then. The 0.90-µm dayside images are of sufficient quality for the cloud-tracking procedure to retrieve wind field in the cloud region. The results appear to be similar to those reported by previous 1-μm imaging by Galileo and Venus Express. The representative altitude sampled for such dayside images is estimated to be 51–55 km. Also, the quality of the nightside 1.01-µm images is sufficient for a search for active volcanism, since interference due to cloud inhomogeneity appears to be insignificant. The quality of the 0.97-µm images may be insufficient to achieve the expected spatial resolution for the near-surface H2O mixing ratio retrievals.[Figure not available: see fulltext.].
  • Sanjay S. Limaye, Shigeto Watanabe, Atsushi Yamazaki, Manabu Yamada, Takehiko Satoh, Takao M. Sato, Masato Nakamura, Makoto Taguchi, Tetsuya Fukuhara, Takeshi Imamura, Toru Kouyama, Yeon Joo Lee, Yeon Joo Lee, Takeshi Horinouchi, Javier Peralta, Naomoto Iwagami, George L. Hashimoto, Seiko Takagi, Shoko Ohtsuki, Shin ya Murakami, Yukio Yamamoto, Kazunori Ogohara, Hiroki Ando, Ko ichiro Sugiyama, Nobuaki Ishii, Takumi Abe, Chikako Hirose, Makoto Suzuki, Naru Hirata, Eliot F. Young, Adriana C. Ocampo
    Earth, Planets and Space 70(1) 2018年12月1日  査読有り
    © 2018, The Author(s). Since insertion into orbit on December 7, 2015, the Akatsuki orbiter has returned global images of Venus from its four imaging cameras at eleven discrete wavelengths from ultraviolet (283 and 365 nm) and near infrared (0.9–2.3 µm), to the thermal infrared (8–12 µm) from a near-equatorial orbit. The Venus Express and Pioneer Venus Orbiter missions have also monitored the planet for long periods but from polar or near-polar orbits. The wavelength coverage and views of the planet also differ for all three missions. In reflected light, the images reveal features seen near the cloud tops (~ 70 km altitude), whereas in the near-infrared images of the nightside, features seen are at mid- to lower cloud levels (~ 48–60 km altitude). The dayside cloud cover imaged at the ultraviolet wavelengths shows morphologies similar to what was observed from Mariner 10, Pioneer Venus, Galileo, Venus Express and MESSENGER. The daytime images at 0.9 and 2.02 µm also reveal some interesting features which bear similarity to the ultraviolet images. The nighttime images at 1.74, 2.26 and 2.32 µm and at 8–12 µm reveal features not seen before and show new details of the nightside including narrow wavy ribbons, curved string-like features, long-scale waves, long dark streaks, isolated bright spots, sharp boundaries and even mesoscale vortices. Some features previously seen such as circum-equatorial belts (CEBs) and occasional areal brightenings at ultraviolet (seen in Venus Express observations) of the cloud cover at ultraviolet wavelengths have not been observed thus far. Evidence for the hemispheric vortex organization of the global circulation can be seen at all wavelengths on the day- and nightsides. Akatsuki images reveal new and puzzling morphology of the complex nightside cloud cover. The cloud morphologies provide some clues to the processes occurring in the atmosphere and are thus, a key diagnostic tool when quantitative dynamical analysis is not feasible due to insufficient information.[Figure not available: see fulltext.].
  • Han, S, G. Murakami, H. Kita, F. Tsuchiya C. Tao, H. Misawa, A. Yamazaki, M. Nakamura
    J. Geophys. Res. 123(11) 9508-9516 2018年11月  査読有り
  • Lori S. Glaze, Colin F. Wilson, Liudmila V. Zasova, Masato Nakamura, Sanjay Limaye
    Space Science Reviews 214(5) 2018年8月  査読有り
  • Yukihiro Takahashi, Mitsuteru Sato, Masataka Imai, Ralph Lorenz, Yoav Yair, Karen Aplin, Georg Fischer, Masato Nakamura, Nobuaki Ishii, Takumi Abe, Takehiko Satoh, Takeshi Imamura, Chikako Hirose, Makoto Suzuki, George L. Hashimoto, Naru Hirata, Atsushi Yamazaki, Takao M. Sato, Manabu Yamada, Shin-ya Murakami, Yukio Yamamoto, Tetsuya Fukuhara, Kazunori Ogohara, Hiroki Ando, Ko-ichiro Sugiyama, Hiroki Kashimura, Shoko Ohtsuki
    Earth, Planets and Space 70(1) 2018年5月  査読有り
  • Atsushi Yamazaki, Manabu Yamada, Yeon Joo Lee, Shigeto Watanabe, Takeshi Horinouchi, Shin-ya Murakami, Toru Kouyama, Kazunori Ogohara, Takeshi Imamura, Takao M. Sato, Yukio Yamamoto, Tetsuya Fukuhara, Hiroki Ando, Ko-ichiro Sugiyama, Seiko Takagi, Hiroki Kashimura, Shoko Ohtsuki, Naru Hirata, George L. Hashimoto, Makoto Suzuki, Chikako Hirose, Munetaka Ueno, Takehiko Satoh, Takumi Abe, Nobuaki Ishii, Masato Nakamura
    EARTH PLANETS AND SPACE 70 2018年2月  
    The ultraviolet imager (UVI) has been developed for the Akatsuki spacecraft (Venus Climate Orbiter mission). The UVI takes ultraviolet (UV) images of the solar radiation reflected by the Venusian clouds with narrow bandpass filters centered at the 283 and 365 nm wavelengths. There are absorption bands of SO2 and unknown absorbers in these wavelength regions. The UV images provide the spatial distribution of SO2 and the unknown absorber around cloud top altitudes. The images also allow us to understand the cloud top morphologies and haze properties. Nominal sequential images with 2-h intervals are used to understand the dynamics of the Venusian atmosphere by estimating the wind vectors at the cloud top altitude, as well as the mass transportation of UV absorbers. The UVI is equipped with off-axial catadioptric optics, two bandpass filters, a diffuser installed in a filter wheel moving with a step motor, and a high sensitivity charge-coupled device with UV coating. The UVI images have spatial resolutions ranging from 200 m to 86 km at sub-spacecraft points. The UVI has been kept in good condition during the extended interplanetary cruise by carefully designed operations that have maintained its temperature maintenance and avoided solar radiation damage. The images have signal-to-noise ratios of over 100 after onboard desmear processing.
  • Yamazaki Atsushi, Yamada Manabu, Lee Yeon Joo, Watanabe Shigeto, Horinouchi Takeshi, Murakami Shin-ya, Kouyama Toru, Ogohara Kazunori, Imamura Takeshi, Sato Takao M, Yamamoto Yukio, Fukuhara Tetsuya, Ando Hiroki, Sugiyama Ko-ichiro, Takagi Seiko, Kashimura Hiroki, Ohtsuki Shoko, Hirata Naru, Hashimoto George L, Suzuki Makoto, Hirose Chikako, Ueno Munetaka, Satoh Takehiko, Abe Takumi, Ishii Nobuaki, Nakamura Masato
    Earth Planets and Space 70(1) 23-23 2018年2月  査読有り
    The ultraviolet imager (UVI) has been developed for the Akatsuki spacecraft (Venus Climate Orbiter mission). The UVI takes ultraviolet (UV) images of the solar radiation reflected by the Venusian clouds with narrow bandpass filters centered at the 283 and 365 nm wavelengths. There are absorption bands of SO2 and unknown absorbers in these wavelength regions. The UV images provi
  • T. Kouyama, T. Imamura, M. Taguchi, T. Fukuhara, T. M. Sato, A. Yamazaki, M. Futaguchi, S. Murakami, G. L. Hashimoto, M. Ueno, N. Iwagami, S. Takagi, M. Takagi, K. Ogohara, H. Kashimura, T. Horinouchi, N. Sato, M. Yamada, Y. Yamamoto, S. Ohtsuki, K. Sugiyama, H. Ando, M. Takamura, T. Yamada, T. Satoh, M. Nakamura
    Geophysical Research Letters 44(24) 12,098-12,105 2017年12月28日  査読有り
    The existence of large stationary gravity waves was discovered during Akatsuki's first observation sequence in 2015. In this study, the further detection of large stationary gravity waves in brightness temperature images over a 1.5 year period is reported. The waves periodically appeared mostly above four specific highland regions in the low latitudes when these regions were in the local afternoon. The wave amplitudes attenuated after the wave locations passed beyond the evening terminator, and the locations of the waves tended to slowly drift eastward over their lifetimes. The appearances of stationary waves depend not only on surface topography but also on latitude and local time, suggesting that solar heating during the daytime and atmospheric structure affected by solar heating may control the excitation and propagation of stationary waves.
  • Takehiko Satoh, Takehiko Satoh, Takao M. Sato, Masato Nakamura, Yasumasa Kasaba, Munetaka Ueno, Makoto Suzuki, George L. Hashimoto, Takeshi Horinouchi, Takeshi Imamura, Atsushi Yamazaki, Takayuki Enomoto, Yuri Sakurai, Kosuke Takami, Kenta Sawai, Takashi Nakakushi, Takumi Abe, Nobuaki Ishii, Chikako Hirose, Naru Hirata, Manabu Yamada, Shin Ya Murakami, Yukio Yamamoto, Tetsuya Fukuhara, Kazunori Ogohara, Hiroki Ando, Ko Ichiro Sugiyama, Hiroki Kashimura, Shoko Ohtsuki
    Earth, Planets and Space 69(1) 2017年12月1日  査読有り
    © 2017 The Author(s). The first year (December 2015 to November 2016) of IR2 after Akatsuki's successful insertion to an elongated elliptical orbit around Venus is reported with performance evaluation and results of data acquisition. The single-stage Stirling-cycle cryo-cooler of IR2 has been operated with various driving voltages to achieve the best possible cooling under the given thermal environment. A total of 3091 images of Venus (1420 dayside images at 2.02 μm and 1671 night-side images at 1.735, 2.26, and 2.32 μm) were acquired in this period. Additionally, 159 images, including images of stars for calibration and dark images for the evaluation of noise levels, were captured. Low-frequency flat images (not available in pre-launch calibration data) have been constructed using the images of Venus acquired from near the pericenter to establish the procedure to correct for the IR2 flat-field response. It was noticed that multiple reflections of infrared light in the PtSi detector caused a weak but extended tail of the point-spread function (PSF), contaminating the night-side disk of Venus with light from the much brighter dayside crescent. This necessitated the construction of an empirical PSF to remove this contamination and also to improve the dayside data by deconvolution, and this work is also discussed. Detailed astrometry is performed on star-field images in the H-band (1.65 μm), hereby confirming that the geometrical distortion of IR2 images is negligible.
  • Kazunori Ogohara, Masahiro Takagi, Shin-ya Murakami, Takeshi Horinouchi, Manabu Yamada, Toru Kouyama, George L. Hashimoto, Takeshi Imamura, Yukio Yamamoto, Hiroki Kashimura, Naru Hirata, Naoki Sato, Atsushi Yamazaki, Takehiko Satoh, Naomoto Iwagami, Makoto Taguchi, Shigeto Watanabe, Takao M. Sato, Shoko Ohtsuki, Tetsuya Fukuhara, Masahiko Futaguchi, Takeshi Sakanoi, Shingo Kameda, Ko-ichiro Sugiyama, Hiroki Ando, Yeon Joo Lee, Masato Nakamura, Makoto Suzuki, Chikako Hirose, Nobuaki Ishii, Takumi Abe
    EARTH PLANETS AND SPACE 69 2017年12月  査読有り
    We provide an overview of data products from observations by the Japanese Venus Climate Orbiter, Akatsuki, and describe the definition and content of each data-processing level. Levels 1 and 2 consist of non-calibrated and calibrated radiance (or brightness temperature), respectively, as well as geometry information (e.g., illumination angles). Level 3 data are global-grid data in the regular longitude-latitude coordinate system, produced from the contents of Level 2. Non-negligible errors in navigational data and instrumental alignment can result in serious errors in the geometry calculations. Such errors cause mismapping of the data and lead to inconsistencies between radiances and illumination angles, along with errors in cloud-motion vectors. Thus, we carefully correct the boresight pointing of each camera by fitting an ellipse to the observed Venusian limb to provide improved longitude-latitude maps for Level 3 products, if possible. The accuracy of the pointing correction is also estimated statistically by simulating observed limb distributions. The results show that our algorithm successfully corrects instrumental pointing and will enable a variety of studies on the Venusian atmosphere using Akatsuki data.
  • Takehiko Satoh, Takao M. Sato, Masato Nakamura, Yasumasa Kasaba, Munetaka Ueno, Makoto Suzuki, George L. Hashimoto, Takeshi Horinouchi, Takeshi Imamura, Atsushi Yamazaki, Takayuki Enomoto, Yuri Sakurai, Kosuke Takami, Kenta Sawai, Takashi Nakakushi, Takumi Abe, Nobuaki Ishii, Chikako Hirose, Naru Hirata, Manabu Yamada, Shin-ya Murakami, Yukio Yamamoto, Tetsuya Fukuhara, Kazunori Ogohara, Hiroki Ando, Ko-ichiro Sugiyama, Hiroki Kashimura, Shoko Ohtsuki
    EARTH PLANETS AND SPACE 69(1) 2017年11月  査読有り
    The first year (December 2015 to November 2016) of IR2 after Akatsuki's successful insertion to an elongated elliptical orbit around Venus is reported with performance evaluation and results of data acquisition. The single-stage Stirling-cycle cryo-cooler of IR2 has been operated with various driving voltages to achieve the best possible cooling under the given thermal environment. A total of 3091 images of Venus (1420 dayside images at 2.02 mu m and 1671 night-side images at 1.735, 2.26, and 2.32 mu m) were acquired in this period. Additionally, 159 images, including images of stars for calibration and dark images for the evaluation of noise levels, were captured. Low-frequency flat images (not available in pre-launch calibration data) have been constructed using the images of Venus acquired from near the pericenter to establish the procedure to correct for the IR2 flat-field response. It was noticed that multiple reflections of infrared light in the PtSi detector caused a weak but extended tail of the point-spread function (PSF), contaminating the night-side disk of Venus with light from the much brighter dayside crescent. This necessitated the construction of an empirical PSF to remove this contamination and also to improve the dayside data by deconvolution, and this work is also discussed. Detailed astrometry is performed on star-field images in the H-band (1.65 mu m), hereby confirming that the geometrical distortion of IR2 images is negligible.
  • Takeshi Horinouchi, Shin-ya Murakami, Takehiko Satoh, Javier Peralta, Kazunori Ogohara, Toru Kouyama, Takeshi Imamura, Hiroki Kashimura, Sanjay S. Limaye, Kevin McGouldrick, Masato Nakamura, Takao M. Sato, Ko-ichiro Sugiyama, Masahiro Takagi, Shigeto Watanabe, Manabu Yamada, Atsushi Yamazaki, Eliot F. Young
    Nature Geoscience 10(10) 798-798 2017年10月  
  • Tetsuya Fukuhara, Makoto Taguchi, Takeshi Imamura, Akane Hayashitani, Takeru Yamada, Masahiko Futaguchi, Toru Kouyama, Takao M. Sato, Mao Takamura, Naomoto Iwagami, Masato Nakamura, Makoto Suzuki, Munetaka Ueno, George L. Hashimoto, Mitsuteru Sato, Seiko Takagi, Atsushi Yamazaki, Manabu Yamada, Shin-ya Murakami, Yukio Yamamoto, Kazunori Ogohara, Hiroki Ando, Ko-ichiro Sugiyama, Hiroki Kashimura, Shoko Ohtsuki, Nobuaki Ishii, Takumi Abe, Takehiko Satoh, Chikako Hirose, Naru Hirata
    EARTH PLANETS AND SPACE 69 2017年10月  査読有り
    The Venus Climate Orbiter Akatsuki arrived at Venus in December 2015, and the Longwave Infrared Camera (LIR) onboard the spacecraft started making observations. LIR has acquired more than 8000 images during the first two Venusian years since orbit insertion without any serious faults. However, brightness temperature derived from LIR images contained an unexpected bias that related not to natural phenomena but to a thermal condition of the instrument. The bias could be partially eliminated by keeping the power supply unit for LIR always active, while the residual bias was simply correlated with the baffle temperature. Therefore, deep-space images were acquired at different baffle temperatures on orbit, and a reference table for eliminating the bias from images was prepared. In the corrected images, the brightness temperature was similar to 230 K at the center of the Venus disk, where the effect of limb darkening is negligible. The result is independent of the baffle temperature and consistent with the results of previous studies. Later, a laboratory experiment with the proto model of LIR showed that when the germanium (Ge) lens was heated, its actual temperature was slightly higher than the temperature measured by a thermal sensor attached to the lens holder. The experiment confirmed that transitory baffle heating accounted for the background bias found in the brightness temperature observed by LIR.
  • Takeshi Imamura, Hiroki Ando, Silvia Tellmann, Martin Paetzold, Bernd Haeusler, Atsushi Yamazaki, Takao M. Sato, Katsuyuki Noguchi, Yoshifumi Futaana, Janusz Oschlisniok, Sanjay Limaye, R. K. Choudhary, Yasuhiro Murata, Hiroshi Takeuchi, Chikako Hirose, Tsutomu Ichikawa, Tomoaki Toda, Atsushi Tomiki, Takumi Abe, Zen-ichi Yamamoto, Hirotomo Noda, Takahiro Iwata, Shin-ya Murakami, Takehiko Satoh, Tetsuya Fukuhara, Kazunori Ogohara, Ko-ichiro Sugiyama, Hiroki Kashimura, Shoko Ohtsuki, Seiko Takagi, Yukio Yamamoto, Naru Hirata, George L. Hashimoto, Manabu Yamada, Makoto Suzuki, Nobuaki Ishii, Tomoko Hayashiyama, Yeon Joo Lee, Masato Nakamura
    EARTH PLANETS AND SPACE 69 2017年10月  査読有り
    After the arrival of Akatsuki spacecraft of Japan Aerospace Exploration Agency at Venus in December 2015, the radio occultation experiment, termed RS (Radio Science), obtained 19 vertical profiles of the Venusian atmosphere by April 2017. An onboard ultra-stable oscillator is used to generate stable X-band downlink signals needed for the experiment. The quantities to be retrieved are the atmospheric pressure, the temperature, the sulfuric acid vapor mixing ratio, and the electron density. Temperature profiles were successfully obtained down to similar to 38 km altitude and show distinct atmospheric structures depending on the altitude. The overall structure is close to the previous observations, suggesting a remarkable stability of the thermal structure. Local time-dependent features are seen within and above the clouds, which is located around 48-70 km altitude. The H2SO4 vapor density roughly follows the saturation curve at cloud heights, suggesting equilibrium with cloud particles. The ionospheric electron density profiles are also successfully retrieved, showing distinct local time dependence. Akatsuki RS mainly probes the low and middle latitude regions thanks to the near-equatorial orbit in contrast to the previous radio occultation experiments using polar orbiters. Studies based on combined analyses of RS and optical imaging data are ongoing.
  • Takeshi Horinouchi, Shin-ya Murakami, Takehiko Satoh, Javier Peralta, Kazunori Ogohara, Toru Kouyama, Takeshi Imamura, Hiroki Kashimura, Sanjay S. Limaye, Kevin McGouldrick, Masato Nakamura, Takao M. Sato, Ko-ichiro Sugiyama, Masahiro Takagi, Shigeto Watanabe, Manabu Yamada, Atsushi Yamazaki, Eliot F. Young
    Nature Geoscience 10(9) 646-651 2017年9月1日  査読有り
  • J. Peralta, Y.J. Lee, K. McGouldrick, H. Sagawa, A. Sánchez-Lavega, T. Imamura, T. Widemann, M. Nakamura
    Icarus 288 235-239 2017年5月  査読有り
  • Tetsuya Fukuhara, Masahiko Futaguchi, George L. Hashimoto, Takeshi Horinouchi, Takeshi Imamura, Naomoto Iwagaimi, Toru Kouyama, Shin-ya Murakami, Masato Nakamura, Kazunori Ogohara, Mitsuteru Sato, Takao M. Sato, Makoto Suzuki, Makoto Taguchi, Seiko Takagi, Munetaka Ueno, Shigeto Watanabe, Manabu Yamada, Atsushi Yamazaki
    Nature Geoscience 10(2) 85-88 2017年2月  査読有り
    The planet Venus is covered by thick clouds of sulfuric acid that move westwards because the entire upper atmosphere rotates much faster than the planet itself. At the cloud tops, about 65 km in altitude, small-scale features are predominantly carried by the background wind at speeds of approximately 100 ms(-1). In contrast, planetary-scale atmospheric features have been observed to move slightly faster or slower than the background wind, a phenomenon that has been interpreted to reflect the propagation of planetary-scale waves. Here we report the detection of an interhemispheric bow-shaped structure stretching 10,000 km across at the cloud-top level of Venus in middle infrared and ultraviolet images from the Japanese orbiter Akatsuki. Over several days of observation, the bow-shaped structure remained relatively fixed in position above the highland on the slowly rotating surface, despite the background atmospheric super rotation. We suggest that the bow-shaped structure is the result of an atmospheric gravity wave generated in the lower atmosphere by mountain topography that then propagated upwards. Numerical simulations provide preliminary support for this interpretation, but the formation and propagation of a mountain gravity wave remain difficult to reconcile with assumed near-surface conditions on Venus. We suggest that winds in the deep atmosphere may be spatially or temporally more variable than previously thought.
  • T. Nagai, N. Kitamura, H. Hasegawa, I. Shinohara, S. Yokota, Y. Saito, R. Nakamura, B. L. Giles, C. Pollock, T. E. Moore, J. C. Dorelli, D. J. Gershman, W. R. Paterson, L. A. Avanov, M. O. Chandler, V. Coffey, J. A. Sauvaud, B. Lavraud, C. T. Russell, R. J. Strangeway, M. Oka, K. J. Genestreti, J. L. Burch
    GEOPHYSICAL RESEARCH LETTERS 43(12) 6028-6035 2016年6月  査読有り
    The structure of asymmetric magnetopause reconnection is explored with multiple point and high-time-resolution ion velocity distribution observations from the Magnetospheric Multiscale mission. On 9 September 2015, reconnection took place at the magnetopause, which separated the magnetosheath and the magnetosphere with a density ratio of 25:2. The magnetic field intensity was rather constant, even higher in the asymptotic magnetosheath. The reconnected field line region had a width of approximately 540 km. In this region, streaming and gyrating ions are discriminated. The large extension of the reconnected field line region toward the magnetosheath can be identified where a thick layer of escaping magnetospheric ions was formed. The scale of the magnetosheath side of the reconnected field line region relative to the scale of its magnetospheric side was 4.5:1.
  • 佐藤 毅彦, 中村 正人, 上野 宗孝, 上水 和典, 鈴木 睦, 今村 剛, 山崎 敦, 山田 学, 佐藤 隆雄, 笠羽 康正, はしもと じょーじ, 木股 雅文, 吉田 誠至
    遊・星・人 25(2) 68-71 2016年6月  招待有り
  • Takehiko Satoh, Masato Nakamura, Munetaka Ueno, Kazunori Uemizu, Makoto Suzuki, Takeshi Imamura, Yasumasa Kasaba, Seiji Yoshida, Masafumi Kimata
    EARTH PLANETS AND SPACE 68(1) 74 2016年5月  査読有り
    IR2, a near-infrared camera in the 2-mu m region onboard Akatsuki has been developed to primarily study the middle-to-lower atmospheric dynamics of Venus as probed in the 1.74- and 2.3-mu m "windows" of the CO2 atmosphere on the night side. The spatial and temporal variability of CO below the clouds is also studied by differentiating 2.32-mu m CO-band images from simultaneous 2.26-mu m images. Images of the night-side disk in these wavelengths will enable us to determine the zonal and meridional winds near the cloud-base altitudes. IR2 also images at 2.02 mu m, the center of a CO2 absorption band. Such images can visualize the variation of the cloud-top altitudes as contrast features due to different absorption path lengths of the reflected sunlight. Tracking of the 2.02-mu m features will also enable us to obtain wind information at the cloud-top level. Together with the other cameras and the radio science equipment on Akatsuki, IR2 will contribute to understanding of the production and maintenance mechanism of super-rotation in the Venusian atmosphere. During cruise, IR2 observed zodiacal light with a broad-band H filter (1.65 mu m), imaged the Earth-moon remotely from a distance of similar to 30 million km, and determined Venus's phase curves at small phase angles. We have just started the early phase operation check of IR2 at Venus, as the orbit insertion in December 2015 was successful.
  • Masato Nakamura, Takeshi Imamura, Nobuaki Ishii, Takumi Abe, Yasuhiro Kawakatsu, Chikako Hirose, Takehiko Satoh, Makoto Suzuki, Munetaka Ueno, Atsushi Yamazaki, Naomoto Iwagami, Shigeto Watanabe, Makoto Taguchi, Tetsuya Fukuhara, Yukihiro Takahashi, Manabu Yamada, Masataka Imai, Shoko Ohtsuki, Kazunori Uemizu, George L. Hashimoto, Masahiro Takagi, Yoshihisa Matsuda, Kazunori Ogohara, Naoki Sato, Yasumasa Kasaba, Toru Kouyama, Naru Hirata, Ryosuke Nakamura, Yukio Yamamoto, Takeshi Horinouchi, Masaru Yamamoto, Yoshi-Yuki Hayashi, Hiroki Kashimura, Ko-ichiro Sugiyama, Takeshi Sakanoi, Hiroki Ando, Shin-ya Murakami, Takao M. Sato, Seiko Takagi, Kensuke Nakajima, Javier Peralta, Yeon Joo Lee, Junichi Nakatsuka, Tsutomu Ichikawa, Kozaburo Inoue, Tomoaki Toda, Hiroyuki Toyota, Sumitaka Tachikawa, Shinichiro Narita, Tomoko Hayashiyama, Akiko Hasegawa, Yukio Kamata
    EARTH PLANETS AND SPACE 68(1) UNSP 75 2016年5月  査読有り
    AKATSUKI is the Japanese Venus Climate Orbiter that was designed to investigate the climate system of Venus. The orbiter was launched on May 21, 2010, and it reached Venus on December 7, 2010. Thrust was applied by the orbital maneuver engine in an attempt to put AKATSUKI into a westward equatorial orbit around Venus with a 30-h orbital period. However, this operation failed because of a malfunction in the propulsion system. After this failure, the spacecraft orbited the Sun for 5 years. On December 7, 2015, AKATSUKI once again approached Venus and the Venus orbit insertion was successful, whereby a westward equatorial orbit with apoapsis of similar to 440,000 km and orbital period of 14 days was initiated. Now that AKATSUKI's long journey to Venus has ended, it will provide scientific data on the Venusian climate system for two or more years. For the purpose of both decreasing the apoapsis altitude and avoiding a long eclipse during the orbit, a trim maneuver was performed at the first periapsis. The apoapsis altitude is now similar to 360,000 km with a periapsis altitude of 1000-8000 km, and the period is 10 days and 12 h. In this paper, we describe the details of the Venus orbit insertion-revenge 1 (VOI-R1) and the new orbit, the expected scientific information to be obtained at this orbit, and the Venus images captured by the onboard 1-mu m infrared camera, ultraviolet imager, and long-wave infrared camera 2 h after the successful initiation of the VOI-R1.
  • Masato Nakamura, Nobuaki Ishii, Takeshi Imamura, Takehiko Satoh, Takumi Abe, Chikako Hirose, Atsushi Yamazaki, Junichi Nakatsuka, Tsutomu Ichikawa, Tomoaki Toda, Hiroyuki Toyoda, Sumitaka Tachikawa, Yukio Kamata, Makoto Suzuki, Takao M. Sato, Shin Ya Murakami, Yukio Yamamoto, Naomoto Iwagami, Makoto Taguchi, Tesuya Fukuhara, Shigeto Watanabe, Yukihiro Takahashi, Munetaka Ueno, Manabu Yamada, George L. Hashimoto, Naru Hirata, Toru Kouyama, Kazunori Ogohara, Hiroki Ando, Koichiro Sugiyama, Hiroki Kashimura, Shoko Ohtsuki
    Proceedings of the International Astronautical Congress, IAC 2016年1月1日  
    Copyright © 2016 by the International Astronautical Federation (IAF). All rights reserved. Japan's Venus Climate Orbiter Akatsuki was proposed to ISAS (Institute of Space and Astronautical Science) in 2001 as an interplanetary mission. We made 5 cameras with narrow-band filters to image Venus at different wavelengths to track the cloud and minor components distribution at different heights to study the Venusian atmospheric dynamics in 3 dimension. It was launched on May 21st, 2010 and reached Venus on December 7th, 2010. With the thrust by the orbital maneuver engine, Akatsuki tried to go into the westward equatorial orbit around Venus with the 30 hours' orbital period, however it failed by the malfunction of the propulsion system. Later the spacecraft has been orbiting the sun for 5 years. On December 7th, 2015 Akatsuki met Venus again after the orbit control and Akatsuki was put into the westward equatorial orbit whose apoapsis is about 0.44 million km and orbital period of 14 days. Its main target is to shed light on the mechanism of the fast atmospheric circulation of Venus. The systematic imaging sequence by Akatsuki is advantageous for detecting meteorological phenomena with various temporal and spatial scales. We have five photometric sensors as mission instruments for imaging, which are 1 m-infrared camera (IR1), 2 m-infrared camera (IR2), ultra-violet imager (UVI), long-wave infrared camera (LIR), and lightning and airglow camera (LAC). These photometers except LIR have changeable filters in the optics to image in certain wavelengths. Akatsuki's long elliptical orbit around Venus is suitable for obtaining cloud-tracked wind vectors over a wide area continuously from high altitudes. With the observation, the characterizations of the meridional circulation, mid-latitude jets, and various wave activities are anticipated. The technical issues of Venus orbit insertion in 2015 and the scientific new results will be given in this paper.
  • H. Ando, D. Shiota, T. Imamura, M. Tokumaru, A. Asai, H. Isobe, M. Päzold, B. Häusler, M. Nakamura
    Journal of Geophysical Research: Space Physics 120(7) 5318-5328 2015年7月  査読有り
  • M. Kanao, T. Shimizu, T. Imamura, M. Nakamura
    Solar Physics 290(5) 1491-1506 2015年5月15日  査読有り
    The Hinode Solar Optical Telescope (SOT) successfully observed the transit of Venus with an unprecedented high spatial resolution on 5 – 6 June 2012, providing images of the aureole refracted by the atmosphere of Venus and the dark Venus disk against the bright solar surface. The transit of Venus provided a unique opportunity for calibrating the plate scale of SOT images. With the examination of the radius of the dark Venus disk, we determined the plate scale of G-band 430.5 nm images with high accuracy: 0.05369±0.00005 arcsec pixel−1. The radius was defined at the intensity level of the 0.5 transmittance and compared with the angular radius of Venus including the thickness of the atmosphere determined with the measurements of SPICAV onboard Venus Express. Thanks to the high spatial resolution, SOT images show that the dark Venus can be well represented by an ellipse. We observed 7.6 km difference in altitude between the equator and the polar regions.
  • Toru Kouyama, Takeshi Imamura, Masato Nakamura, Takehiko Satoh, Yoshifumi Futaana
    ICARUS 248 560-568 2015年3月  査読有り
    Recently it was found that the low-latitude zonal wind and the amplitudes of Kelvin and Rossby waves at the cloud top of Venus show long-term variations in a synchronized manner. For the purpose of explaining this synchronization, we investigated the influence of the background zonal wind profile on the upward propagation of Kelvin and Rossby waves at altitudes 60-80 km. Results from a linearized primitive equation model suggests that Kelvin waves can reach the cloud top height when the background wind speed is slow, whereas Rossby waves can reach the cloud top when the background wind speed is fast. These features obtained from the model are consistent with the observations. Since the momentum deposition by these waves can accelerate or decelerate the mean flow, these waves may contribute to the variation of the background wind. The calculated spatial distributions of the momentum dissipation indicate that the Kelvin waves accelerate the low-latitude atmosphere, and thus they can act to induce transition from the slow wind period to the fast wind period. On the other hand, the Rossby waves decelerate mainly the mid-latitude atmosphere, so that additional mechanisms are required to decelerate the low-latitude atmosphere. A possible mechanism is momentum advection caused by the Rossby wave-induced meridional circulation. (C) 2014 Elsevier Inc. All rights reserved.
  • Takehiko Satoh, Shoko Ohtsuki, Naomoto Iwagami, Munetaka Ueno, Kazunori Uemizu, Makoto Suzuki, George L. Hashimoto, Takeshi Sakanoi, Yasumasa Kasaba, Ryosuke Nakamura, Takeshi Imamura, Masato Nakamura, Tetsuya Fukuhara, Atsushi Yamazaki, Manabu Yamada
    Icarus 248 213-220 2015年3月  査読有り
    We present phase curves for Venus in the 1-2 mu m wavelength region, acquired with IR1 and IR2 on board Akatsuki (February-March 2011). A substantial discrepancy with the previously-published curves was found in the small phase angle range (0-30 degrees). Through analysis by radiative-transfer computation, it was found that the visibility of larger (similar to 1 mu m or larger) cloud particles was significantly higher than in the standard cloud model. Although the cause is unknown, this may be related to the recently reported increase in the abundance of SO2 in the upper atmosphere. It was also found that the cloud top is located at similar to 75 km and that 1-mu m particles exist above the cloud, both of these results being consistent with recent studies based on the Venus Express observations in 2006-2008. Further monitoring, including photometry for phase curves, polarimetry for aerosol properties, spectroscopy for SO2 abundance, and cloud opacity measurements in the near-infrared windows, is required in order to understand the mechanism of this large-scale change. (C) 2014 Elsevier Inc. All rights reserved.
  • M. Sato, T. Ushio, T. Morimoto, M. Kikuchi, H. Kikuchi, T. Adachi, M. Suzuki, A. Yamazaki, Y. Takahashi, U. Inan, I. Linscott, R. Ishida, Y. Sakamoto, K. Yoshida, Y. Hobara, T. Sano, T. Abe, M. Nakamura, H. Oda, Z. I. Kawasaki
    Journal of Geophysical Research 120(9) 3822-3851 2015年  
    © 2015. American Geophysical Union. All Rights Reserved. Global Lightning and Sprite Measurements on Japanese Experiment Module (JEM-GLIMS) is a space mission to conduct the nadir observations of lightning discharges and transient luminous events (TLEs). The main objectives of this mission are to identify the horizontal distribution of TLEs and to solve the occurrence conditions determining the spatial distribution. JEM-GLIMS was successfully launched and started continuous nadir observations in 2012. The global distribution of the detected lightning events shows that most of the events occurred over continental regions in the local summer hemisphere. In some events, strong far-ultraviolet emissions have been simultaneously detected with N2 1P and 2P emissions by the spectrophotometers, which strongly suggest the occurrence of TLEs. Especially, in some of these events, no significant optical emission was measured by the narrowband filter camera, which suggests the occurrence of elves, not sprites. The VLF receiver also succeeded in detecting lightning whistlers, which show clear falling-tone frequency dispersion. Based on the optical data, the time delay from the detected lightning emission to the whistlers was identified as ~10 ms, which can be reasonably explained by the wave propagation with the group velocity of whistlers. The VHF interferometer conducted the spaceborne interferometric observations and succeeded in detecting VHF pulses. We observed that the VHF pulses are likely to be excited by the lightning discharge possibly related with in-cloud discharges and measured with the JEM-GLIMS optical instruments. Thus, JEM-GLIMS provides the first full set of optical and electromagnetic data of lightning and TLEs obtained by nadir observations from space.
  • Mayu Miyamoto, Takeshi Imamura, Munetoshi Tokumaru, Hiroki Ando, Hiroaki Isobe, Ayumi Asai, Daikou Shiota, Tomoaki Toda, Bernd Häusler, Martin Pätzold, Alexander Nabatov, Masato Nakamura
    The Astrophysical Journal 797(1) 51-51 2014年11月24日  査読有り
    Radial variations of the amplitude and the energy flux of compressive waves in the solar corona were explored for the first time using a spacecraft radio occultation technique. By applying wavelet analysis to the frequency time series taken at heliocentric distances of 1.5-20.5 R-S (solar radii), quasi-periodic density disturbances were detected at almost all distances. The period ranges from 100 to 2000 s. The amplitude of the fractional density fluctuation increases with distance and reaches similar to 30% around 5 R-S, implying that nonlinearity of the wave field is potentially important. We further estimate the wave energy flux on the assumption that the observed periodical fluctuations are manifestations of acoustic waves. The energy flux increases with distance below similar to 6 R-S and seems to saturate above this height, suggesting that the acoustic waves do not propagate from the low corona but are generated in the extended corona, probably through nonlinear dissipation of Alfven waves. The compressive waves should eventually dissipate through shock generation to heat the corona.
  • T. M. Sato, H. Sagawa, T. Kouyama, K. Mitsuyama, T. Satoh, S. Ohtsuki, M. Ueno, Y. Kasaba, M. Nakamura, T. Imamura
    ICARUS 243 386-399 2014年11月  査読有り
    We have investigated the cloud top structure of Venus by analyzing ground-based images taken at the mid-infrared wavelengths of 8.66 mu m and 11.34 mu m. Venus at a solar phase angle of similar to 90 degrees, with the morning terminator in view, was observed by the Cooled Mid-Infrared Camera and Spectrometer (COMICS), mounted on the 8.2-m Subaru Telescope, during the period October 25-29, 2007. The disk-averaged brightness temperatures for the observation period are similar to 230 K and similar to 238 K at 8.66 mu m and 11.34 Inn, respectively. The obtained images with good signal-to-noise ratio and with high spatial resolution (similar to 200 km at the sub-observer point) provide several important findings. First, we present observational evidence, for the first time, of the possibility that the westward rotation of the polar features (the hot polar spots and the surrounding cold collars) is synchronized between the northern and southern hemispheres. Second, after high-pass filtering, the images reveal that streaks and mottled and patchy patterns are distributed over the entire disk, with typical amplitudes of similar to 0.5 K, and vary from day to day. The detected features, some of which are similar to those seen in past UV images, result from inhomogeneities of both the temperature and the cloud top altitude. Third, the equatorial center-to-limb variations of brightness temperatures have a systematic day-night asymmetry, except those on October 25, that the dayside brightness temperatures are higher than the nightside brightness temperatures by 0-4 K under the same viewing geometry. Such asymmetry would be caused by the propagation of the migrating semidiurnal tide. Finally, by applying the lapse rates deduced from previous studies, we demonstrate that the equatorial center-to-limb curves in the two spectral channels give access to two parameters: the cloud scale height Hand the cloud top altitude z(c), The acceptable models for data on October 25 are obtained at H=2.4-4.3 km and z(c)= 66-69 km; this supports previous results determined from spacecraft observations. (C) 2014 Elsevier Inc. All rights reserved.
  • H. Nakagawa, M. Bzowski, A. Yamazaki, H. Fukunishi, S. Watanabe, Y. Takahashi, M. Taguchi, I. Yoshikawa, K. Shiomi, M. Nakamura
    ASTRONOMY & ASTROPHYSICS 566 2014年6月  査読有り
  • Takeshi Imamura, Munetoshi Tokumaru, Hiroaki Isobe, Daikou Shiota, Hiroki Ando, Mayu Miyamoto, Tomoaki Toda, Bernd Häusler, Martin Pätzold, Alexander Nabatov, Ayumi Asai, Kentaro Yaji, Manabu Yamada, Masato Nakamura
    The Astrophysical Journal 788(2) 117-117 2014年5月29日  査読有り
    Radio scintillation observations have been unable to probe flow speeds in the low corona where the scattering of radio waves is exceedingly strong. Here we estimate outflow speeds continuously from the vicinity of the Sun to the outer corona (heliocentric distances of 1.5-20.5 solar radii) by applying the strong scattering theory to radio scintillations for the first time, using the Akatsuki spacecraft as the radio source. Small, nonzero outflow speeds were observed over a wide latitudinal range in the quiet-Sun low corona, suggesting that the supply of plasma from closed loops to the solar wind occurs over an extended area. The existence of power-law density fluctuations down to the scale of 100 m was suggested, which is indicative of well-developed turbulence which can play a key role in heating the corona. At higher altitudes, a rapid acceleration typical of radial open fields is observed, and the temperatures derived from the speed profile show a distinct maximum in the outer corona. This study opened up a possibility of observing detailed flow structures near the Sun from a vast amount of existing interplanetary scintillation data.
  • Masato Nakamura, Yasuhiro Kawakatsu, Chikako Hirose, Takeshi Imamura, Nobuaki Ishii, Takumi Abe, Atsushi Yamazaki, Manabu Yamada, Kazunori Ogohara, Kazunori Uemizu, Tetsuya Fukuhara, Shoko Ohtsuki, Takehiko Satoh, Makoto Suzuki, Munetaka Ueno, Junichi Nakatsuka, Naomoto Iwagami, Makoto Taguchi, Shigeto Watanabe, Yukihiro Takahashi, George L. Hashimoto, Hiroki Yamamoto
    ACTA ASTRONAUTICA 93 384-389 2014年1月  査読有り
    Japanese Venus Climate Orbiter/AKATSUKI was proposed in 2001 with strong support by international Venus science community and approved as an ISAS (The Institute of Space and Astronautical Science) mission soon after the proposal. The mission life we expected was more than two Earth years in Venus orbit. AKATSUKI was successfully launched at 06:58:22JST on May 21, 2010, by H-IIA F17. After the separation from H-IIA, the telemetry from AKATSUKI was normally detected by DSN Goldstone station (10:00JST) and the solar cell paddles' deployment was confirmed. After a successful cruise, the malfunction happened on the propulsion system during the Venus orbit insertion (VOI) on Dec. 7, 2010. The engine shut down before the planned reduction in speed to achieve. The spacecraft did not enter the Venus orbit but entered an orbit around the Sun with a period of 203 days. Most of the fuel still had remained, but the orbital maneuvering engine was found to be broken and unusable. However, we have found an alternate way of achieving orbit by using only the reaction control system (RSC). We had adopted the alternate way for orbital maneuver and three minor maneuvers in Nov. 2011 were successfully done so that AKATSUKI would meet Venus in 2015. We are considering several scenarios for VOI using only RCS. (C) 2013 IAA. Published by Elsevier Ltd. All rights reserved.
  • Go Murakami, Ichiro Yoshikawa, Kazuo Yoshioka, Atsushi Yamazaki, Masato Kagitani, Makoto Taguchi, Masayuki Kikuchi, Shingo Kameda, Masato Nakamura
    Geophysical Research Letters 40(2) 250-254 2013年1月28日  査読有り
    The Telescope of Extreme Ultraviolet (TEX) onboard Japan's lunar orbiter KAGUYA provided the first sequential images of the Earth's plasmasphere from the "side" (meridian) view. The TEX instrument obtained the global distribution of the terrestrial helium ions (He+) by detecting resonantly scattered emission at 30.4 nm. One of the most striking features of the plasmasphere found by TEX is an arc-shaped structure of enhanced brightness, which we call a "plasmaspheric filament". In the TEX image on 2 June 2008, the filament structure was clearly aligned to the dipole magnetic field line of L = 3.7 at 7.3 magnetic local time. Our analysis suggests that the filament represents an isolated flux tube filled with four times higher He + density than its neighbors. We found four events of plasmaspheric filament in the images obtained between March and June 2008, and in all four events, the geomagnetic activity was quite low. The plasmaspheric filament in the TEX image is the first evidence that a "finger" structure seen in the IMAGE-EUV image is the projection of an isolated flux tube. © 2013. American Geophysical Union. All Rights Reserved.
  • Toru Kouyama, Takeshi Imamura, Masato Nakamura, Takehiko Satoh, Yoshifumi Futaana
    Journal of Geophysical Research: Planets 118(1) 37-46 2013年1月  査読有り
  • Makoto Taguchi, Tetsuya Fukuhara, Masahiko Futaguchi, Mitsuteru Sato, Takeshi Imamura, Kazuaki Mitsuyama, Masato Nakamura, Munetaka Ueno, Makoto Suzuki, Naomoto Iwagami, George L. Hashimoto
    ICARUS 219(1) 502-504 2012年5月  査読有り
    Mid-infrared images of almost the entire Venus nightside hemisphere obtained by the Longwave Infrared Camera (LIR) onboard Akatsuki on December 9 and 10, 2010 reveal that the brightness temperature of the cloud-top ranges from 237 K in the cold polar collars to 243 K in the equatorial region, significantly higher than the values obtained by Venera 15. Other characteristic features of the temperature distributions observed are zonal belt structures seen in the middle and low latitudes and patchy temperature structures or quasi-periodic streaks extending in a north-south direction in the northern middle latitudes and southern low latitudes. (c) 2012 Elsevier Inc. All rights reserved.
  • Masato Nakamura, Yasuhiro Kawakatsu, Chikako Hirose, Takeshi Imamura, Nobuaki Ishii, Takumi Abe, Atsushi Yamazaki, Manabu Yamada, Kazunori Ogohara, Kazunori Uemizu, Tetsuya Fukuhara, Shoko Ohtsuki, Takehiko Satoh, Makoto Suzuki, Munetaka Ueno, Naomoto Iwagami, Makoto Taguchi, Shigeto Watanabe, Yukihiro Takahashi, George L. Hashimoto, Hiroki Yamamoto
    Proceedings of the International Astronautical Congress, IAC 3 1727-1732 2012年  
    Japanese Venus Climate Orbiter/AKATSUKI was proposed in 2001 with strong support by international Venus science community and approved as an ISAS (Institute of Space and Astronautical Science) mission soon after the proposal. The mission life we expected was more than two Earth years in Venus orbit. AKATSUKI was successfully launched at 06:58:22JST on May 21, 2010, by H-IIA F17. After the separation from H-IIA, the telemetry from AKATSUKI was normally detected by DSN Goldstone station (10:00JST) and the solar cell paddles' expansion was confirmed. The malfunction happened on the propulsion system during the Venus orbit insertion (VOI) on Dec 7, 2010. We failed to make the spacecraft become a Venus orbiter, and the spacecraft entered an orbit around the Sun with a period of 203 days. Most of the fuel still had remained, but the orbital maneuvering engine was found to be broken. We decided to use only the reaction control system (RCS) for orbital maneuver and three minor maneuvers in Nov 2011 were successfully done so that AKATSUKI will meet Venus in 2015. We are considering several scenarios for VOI using only RCS. Copyright © (2012) by the International Astronautical Federation.
  • Toru Kouyama, Takeshi Imamura, Masato Nakamura, Takehiko Satoh, Yoshihumi Futaana
    PLANETARY AND SPACE SCIENCE 60(1) 207-216 2012年1月  査読有り
    An improved cloud tracking method for deriving wind velocities from successive planetary images was developed. The new method incorporates into the traditional cross-correlation method an algorithm that corrects for erroneous cloud motion vectors by re-determining the most plausible correlation peak among all of the local maxima on the correlation surface by comparing each vector with its neighboring vectors. The newly developed method was applied to the Venusian violet images obtained by the Solid State Imaging system (SSI) onboard the Galileo spacecraft during its Venus flyby. Although the results may be biased by the choice of spatial scale of atmospheric features, the cloud tracking is the most practical mean of estimating the wind velocities with extensive spatial and temporal coverage. The two-dimensional distribution of the horizontal wind vector field over 5 days was obtained. It was found from these wind maps that the solar-fixed component in 1990 was similar to that in 1982 obtained by the Pioneer Venus orbiter. The deviation of the instantaneous zonal wind field from the solar-fixed component shows a distinct wavenumber-1 structure in the equatorial region. On the assumption that this structure is a manifestation of an equatorial Kelvin wave, the phase relationship between the zonal wind and the cloud brightness suggests a short photochemical lifetime of the violet absorber. The momentum deposition by this Kelvin wave, which is subject to radiative damping, would induce a westward mean-wind acceleration of similar to 0.3 m s(-1) per Earth day. (C) 2011 Elsevier Ltd. All rights reserved.
  • 佐藤毅彦, 大月祥子, 岩上直幹, 上野宗孝, 上水和典, 鈴木睦, はしもとじょーじ, 坂野井健, 笠羽康正, 中村良介, 今村剛, 中村正人, 福原哲哉, 山崎敦, 山田学
    第26回大気圏シンポジウム講演集 2012年  
  • 中村 正人
    電気学会誌 = The journal of the Institute of Electrical Engineers of Japan 131(4) 220-225 2011年4月1日  
    本記事に「抄録」はありません。

MISC

 86
  • 今村剛, 佐藤隆雄, 神山徹, 今井正尭, 安藤紘基, 佐川英夫, 原田裕己, 山崎敦, 佐藤毅彦, 中村正人
    地球電磁気・地球惑星圏学会総会及び講演会(Web) 150th 2021年  
  • 中村正人, 山崎敦, 山城龍馬, 石井信明, 戸田知朗, 二穴喜文, LIMAYE Sanjay S., 寺田直樹, 安藤紘基, 神山徹, 佐藤毅彦, 今村剛, 田口真, 林祥介, 堀之内武, LEE Yeon Joo, 高木征弘, 今井正尭, 福原哲哉, 杉本憲彦, 樫村博基, 渡部重十, 佐藤隆雄, はしもと じょーじ, 村上真也, MCGOULDRICK Kevin, 阿部琢美, 廣瀬史子, 山田学, 小郷原一智, 杉山耕一朗, 大月祥子, PERALTA Javier, 高木聖子, 岩上直幹, 上野宗孝, 坂野井健, 亀田真吾, 笠羽康正, 高橋幸弘, 佐藤光輝, 松田佳久, 山本勝
    日本地球惑星科学連合大会予稿集(Web) 2020 2020年  
  • Takeshi Imamura, Hiroki Ando, Silvia Tellmann, Martin Pätzold, Bernd Häusler, Atsushi Yamazaki, Takao M. Sato, Katsuyuki Noguchi, Yoshifumi Futaana, Janusz Oschlisniok, Sanjay Limaye, R. K. Choudhary, Yasuhiro Murata, Hiroshi Takeuchi, Chikako Hirose, Tsutomu Ichikawa, Tomoaki Toda, Atsushi Tomiki, Takumi Abe, Zen Ichi Yamamoto, Hirotomo Noda, Takahiro Iwata, Shin Ya Murakami, Takehiko Satoh, Tetsuya Fukuhara, Kazunori Ogohara, Ko Ichiro Sugiyama, Hiroki Kashimura, Shoko Ohtsuki, Seiko Takagi, Yukio Yamamoto, Naru Hirata, George L. Hashimoto, Manabu Yamada, Makoto Suzuki, Nobuaki Ishii, Tomoko Hayashiyama, Yeon Joo Lee, Masato Nakamura
    Earth, Planets and Space 69(1) 2017年12月1日  
    © 2017 The Author(s). After the arrival of Akatsuki spacecraft of Japan Aerospace Exploration Agency at Venus in December 2015, the radio occultation experiment, termed RS (Radio Science), obtained 19 vertical profiles of the Venusian atmosphere by April 2017. An onboard ultra-stable oscillator is used to generate stable X-band downlink signals needed for the experiment. The quantities to be retrieved are the atmospheric pressure, the temperature, the sulfuric acid vapor mixing ratio, and the electron density. Temperature profiles were successfully obtained down to ~ 38 km altitude and show distinct atmospheric structures depending on the altitude. The overall structure is close to the previous observations, suggesting a remarkable stability of the thermal structure. Local time-dependent features are seen within and above the clouds, which is located around 48-70 km altitude. The H2SO4 vapor density roughly follows the saturation curve at cloud heights, suggesting equilibrium with cloud particles. The ionospheric electron density profiles are also successfully retrieved, showing distinct local time dependence. Akatsuki RS mainly probes the low and middle latitude regions thanks to the near-equatorial orbit in contrast to the previous radio occultation experiments using polar orbiters. Studies based on combined analyses of RS and optical imaging data are ongoing.[Figure not available: see fulltext.]
  • 中村 正人, 今村 剛
    日本物理学会誌 = Butsuri 72(2) 92-97 2017年2月  
  • 佐藤毅彦, 佐藤隆雄, 中村正人, 上野宗孝, 笠羽康正, はしもと じょーじ, 中串孝志, LIMAYE Sanjay, 堀之内武
    日本気象学会大会講演予稿集 (112) 2017年  

書籍等出版物

 5

共同研究・競争的資金等の研究課題

 23