研究者業績
基本情報
- 所属
- 国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 太陽系科学研究系 教授
- 学位
- 修士(理学)(1991年3月 京都大学)博士(理学)(1995年2月 東京大学)
- 連絡先
- saito
stp.isas.jaxa.jp
- 研究者番号
- 30260011
- J-GLOBAL ID
- 200901006495017695
- researchmap会員ID
- 1000174746
研究分野
1学歴
4-
- 1991年
-
- 1991年
-
- 1989年
-
- 1989年
受賞
6-
2023年8月
論文
425-
SPACE SCIENCE REVIEWS 221(3) 2025年4月
-
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 36(3) 553-564 2025年2月10日
-
Vacuum 235 114132-114132 2025年2月
-
Journal of Geophysical Research: Space Physics 130(2) 2025年1月29日
-
Earth, Planets and Space 76(1) 2024年12月27日
-
Earth, Planets and Space 76(1) 162 2024年12月18日 査読有りAbstract In this study, we investigated terrestrial-origin O+ ions below 1 keV around the Moon using data from the Kaguya satellite between December 2007 and June 2009. These terrestrial-origin low-energy O+ ions were identified based on three parameters: the periodicity of O+ ion count enhancement corresponding to Kaguya’s 2-h orbital period, the count ratio of O+ ions to Na+ and Al+ ions, and the direction of ion bulk velocity in the Sun–Earth direction. We identified three intervals that included such O+ ions: 14:30–20:30 UT on June 19, 2008, 19:00 UT on July 16, 2008 to 03:00 UT on July 17, 2008, and 14:00–24:00 UT on June 7, 2009. These intervals were found in the dawn sector, the dusk sector, and the midnight to dawn sector within the magnetotail, respectively. We examined the relation between geomagnetic storm conditions and increases in terrestrial-origin O+ ion counts and found that all three intervals occurred during the late recovery phase of moderate/weak magnetic storms. Since moderately/weakly disturbed conditions (Dst = –40 nT to –20 nT) account for approximately 21% of the total time between 1957 and 2016, we suggest that low-energy O+ ions from the Earth have a non-negligible impact on the ion composition and the ion mass density in the lunar plasma environment. Graphical abstract
-
The Astrophysical Journal 977(1) 117-117 2024年12月1日
-
Journal of Geophysical Research: Space Physics 129(8) 2024年8月2日
-
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS 129(8) 2024年8月
-
The Planetary Science Journal 5(8) 187-187 2024年8月1日
-
Astronomy & Astrophysics 687 A243-A243 2024年7月17日Context. The Mercury electron analyzer (MEA) obtained new electron observations during the first three Mercury flybys by BepiColombo on October 1, 2021 (MFB1), June 23 , 2022 (MFB2), and June 19, 2023 (MFB3). BepiColombo entered the dusk side magnetotail from the flank magnetosheath in the northern hemisphere, crossed the Mercury solar orbital equator around midnight in the magnetotail, traveled from midnight to dawn in the southern hemisphere near the closest approach, and exited from the post-dawn magnetosphere into the dayside magnetosheath. Aims. We aim to identify the magnetospheric boundaries and describe the structure and dynamics of the electron populations observed in the various regions explored along the flyby trajectories. Methods. We derive 4s time resolution electron densities and temperatures from MEA observations. We compare and contrast our new BepiColombo electron observations with those obtained from the Mariner 10 scanning electron spectrometer (SES) 49 yr ago. Results. A comparison to the averaged magnetospheric boundary crossings of MESSENGER indicates that the magnetosphere of Mercury was compressed during MFB1, close to its average state during MFB2, and highly compressed during MFB3. Our new MEA observations reveal the presence of a wake effect very close behind Mercury when BepiColombo entered the shadow region, a significant dusk-dawn asymmetry in electron fluxes in the nightside magnetosphere, and strongly fluctuating electrons with energies above 100s eV in the dawnside magnetosphere. Magnetospheric electron densities and temperatures are in the range of 10–30 cm−3 and above a few 100s eV in the pre-midnight-sector, and in the range of 1–100 cm−3 and well below 100 eV in the post-midnight sector, respectively. Conclusions. The MEA electron observations of different solar wind properties encountered during the first three Mercury flybys reveal the highly dynamic response and variability of the solar wind-magnetosphere interactions at Mercury. A good match is found between the electron plasma parameters derived by MEA in the various regions of the Hermean environment and similar ones derived in a few cases from other instruments on board BepiColombo.
-
GEOPHYSICAL RESEARCH LETTERS 51(13) 2024年7月16日
-
ADVANCES IN SPACE RESEARCH 73(10) 5383-5405 2024年5月15日
-
Nature Astronomy 2024年4月12日Abstract On 10 August 2021, the Mercury-bound BepiColombo spacecraft performed its second fly-by of Venus and provided a short-lived observation of its induced magnetosphere. Here we report results recorded by the Mass Spectrum Analyzer on board Mio, which reveal the presence of cold O+ and C+ with an average total flux of ~4 ± 1 × 104 cm−2 s−1 at a distance of about six planetary radii in a region that has never been explored before. The ratio of escaping C+ to O+ is at most 0.31 ± 0.2, implying that, in addition to atomic O+ ions, CO group ions or water group ions may be a source of the observed O+. Simultaneous magnetometer observations suggest that these planetary ions were in the magnetosheath flank in the vicinity of the magnetic pileup boundary downstream. These results have important implications regarding the evolution of Venus’s atmosphere and, in particular, the evolution of water on the surface of the planet.
-
Earth, Planets and Space 76(1) 2024年4月6日
-
Journal of Geophysical Research: Space Physics 129(3) 2024年2月28日
-
Geophysical Research Letters 51(1) 2024年1月16日
-
Journal of Geophysical Research: Space Physics 129(1) 2024年1月9日Abstract During the first flyby of the BepiColombo composite spacecraft at Mercury in October 2021 ion spectrometers observed two intense spectral lines with energies between 10 and 70 eV. The spectral lines persisted also at larger distances from Mercury and were observed again at lower intensity during cruise phase in March 2022 and at the second and third Mercury flyby as a single band. The ion composition indicates that water is the dominant gas source. The outgassing causes the composite spacecraft to charge up to a negative potential of up to −50 V. The distribution and intensity of the lower energy signal depends on the intensity of low energy electron fluxes around the spacecraft which again depend on the magnetic field orientation. We interpret the observation as being caused by water outgassing from different source locations on the spacecraft being ionized in two different regions of the surrounding potential. The interpretation is confirmed by two dimensional particle‐in‐cell simulations.
-
IEEE Aerospace Conference Proceedings 2024年
-
Astronomy & Astrophysics 2023年12月20日We derive electron density and temperature from observations obtained by the Mercury Electron Analyzer on board Mio during the cruise phase of BepiColombo while the spacecraft is in a stacked configuration. In order to remove the secondary electron emission contribution, we first fit the core electron population of the solar wind with a Maxwellian distribution. We then subtract the resulting distribution from the complete electron spectrum, and suppress the residual count rates observed at low energies. Hence, our corrected count rates consist of the sum of the fitted Maxwellian core electron population with a contribution at higher energies. We finally estimate the electron density and temperature from the corrected count rates using a classical integration method. We illustrate the results of our derivation for two case studies, including the second Venus flyby of BepiColombo when the Solar Orbiter spacecraft was located nearby, and for a statistical study using observations obtained to date for distances to the Sun ranging from 0.3 to 0.9 A.U. When compared either to measurements of Solar Orbiter or to measurements obtained by HELIOS and Parker Solar Probe, our method leads to a good estimation of the electron density and temperature. Hence, despite the strong limitations arising from the stacked configuration of BepiColombo during its cruise phase, we illustrate how we can retrieve reasonable estimates for the electron density and temperature for timescales from days down to several seconds.
-
Journal of Geophysical Research: Space Physics 128(12) 2023年12月
-
Reviews in Mineralogy and Geochemistry 89(1) 563-609 2023年12月1日
-
Sub-ion-gyro scale magnetic field compressions generated by the solar wind interaction with the moonEarth, Planets and Space 75(1) 2023年12月
-
Journal of Geophysical Research: Space Physics 128(10) 2023年10月
-
Nature Communications 14(1) 2023年7月18日
-
Nature Communications 13(1) 2022年12月15日 査読有りAbstract The second Venus flyby of the BepiColombo mission offer a unique opportunity to make a complete tour of one of the few gas-dynamics dominated interaction regions between the supersonic solar wind and a Solar System object. The spacecraft pass through the full Venusian magnetosheath following the plasma streamlines, and cross the subsolar stagnation region during very stable solar wind conditions as observed upstream by the neighboring Solar Orbiter mission. These rare multipoint synergistic observations and stable conditions experimentally confirm what was previously predicted for the barely-explored stagnation region close to solar minimum. Here, we show that this region has a large extend, up to an altitude of 1900 km, and the estimated low energy transfer near the subsolar point confirm that the atmosphere of Venus, despite being non-magnetized and less conductive due to lower ultraviolet flux at solar minimum, is capable of withstanding the solar wind under low dynamic pressure.
-
Earth, Planets, and Science 74(1) 2022年12月9日 査読有り
-
Earth, Planets and Space 74(1) 2022年12月
-
Nature Communications 13(1) 2022年10月28日 査読有りAbstract Electromagnetic whistler-mode waves in space plasmas play critical roles in collisionless energy transfer between the electrons and the electromagnetic field. Although resonant interactions have been considered as the likely generation process of the waves, observational identification has been extremely difficult due to the short time scale of resonant electron dynamics. Here we show strong nongyrotropy, which rotate with the wave, of cyclotron resonant electrons as direct evidence for the locally ongoing secular energy transfer from the resonant electrons to the whistler-mode waves using ultra-high temporal resolution data obtained by NASA’s Magnetospheric Multiscale (MMS) mission in the magnetosheath. The nongyrotropic electrons carry a resonant current, which is the energy source of the wave as predicted by the nonlinear wave growth theory. This result proves the nonlinear wave growth theory, and furthermore demonstrates that the degree of nongyrotropy, which cannot be predicted even by that nonlinear theory, can be studied by observations.
-
Planetary and Space Science 220 105547-105547 2022年10月
-
Geophysical Research Letters 49(17) 2022年9月16日
-
EXPERIMENTAL ASTRONOMY 54(2-3) 391-426 2022年9月
-
Planetary and Space Science 218 105499-105499 2022年9月
-
Journal of Geophysical Research: Space Physics 2022年6月30日
-
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS 127(4) 2022年4月
-
ANNALES GEOPHYSICAE 40(2) 217-229 2022年4月
-
Advances in Space Research 69(5) 2283-2304 2022年3月1日
-
Physics of Plasmas 29(1) 2022年1月1日
-
Radio Science, 57, 57(1) e2021RS007369 2022年1月 査読有り
-
Astrophysical Journal Letters 922(2) 2021年12月1日
-
Earth, Planets and Space 73(1) 2021年12月
-
Annales Geophysicae 39(5) 811-831 2021年9月17日
-
Geophysical Research Letters 48(17) 2021年9月16日
-
Journal of Geophysical Research: Space Physics 126(8) 2021年8月
-
Space Science Reviews 217(5) 2021年8月 査読有り筆頭著者責任著者
-
Journal of Geophysical Research: Space Physics 126(7) 2021年7月
MISC
252-
日本惑星科学会誌 遊・星・人 33(1) 2024年
講演・口頭発表等
202共同研究・競争的資金等の研究課題
32-
日本学術振興会 科学研究費助成事業 2023年4月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2022年6月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(A) 2020年4月 - 2023年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(S) 2017年5月 - 2022年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(A) 2017年4月 - 2021年3月
● 指導学生等の数
4-
年度2021年度(FY2021)博士課程学生数1修士課程学生数2
-
年度2020年度(FY2020)博士課程学生数1修士課程学生数2
-
年度2019年度(FY2019)博士課程学生数2修士課程学生数2
-
年度2018年度(FY2018)博士課程学生数2修士課程学生数3
● 専任大学名
1-
専任大学名東京大学(University of Tokyo)