研究者業績

齋藤 義文

サイトウ ヨシフミ  (Yoshifumi Saito)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 太陽系科学研究系 教授
学位
修士(理学)(1991年3月 京都大学)
博士(理学)(1995年2月 東京大学)

連絡先
saitostp.isas.jaxa.jp
研究者番号
30260011
J-GLOBAL ID
200901006495017695
researchmap会員ID
1000174746

論文

 400
  • L. Z. Hadid, D. Delcourt, Y. Saito, M. Fränz, S. Yokota, B. Fiethe, C. Verdeil, B. Katra, F. Leblanc, H. Fischer, M. Persson, S. Aizawa, N. André, Y. Harada, A. Fedorov, D. Fontaine, N. Krupp, H. Michalik, J-J. Berthelier, H. Krüger, G. Murakami, S. Matsuda, D. Heyner, H.-U. Auster, I. Richter, J. Z. D. Mieth, D. Schmid, D. Fischer
    Nature Astronomy 2024年4月12日  
    Abstract On 10 August 2021, the Mercury-bound BepiColombo spacecraft performed its second fly-by of Venus and provided a short-lived observation of its induced magnetosphere. Here we report results recorded by the Mass Spectrum Analyzer on board Mio, which reveal the presence of cold O+ and C+ with an average total flux of ~4 ± 1 × 104 cm−2 s−1 at a distance of about six planetary radii in a region that has never been explored before. The ratio of escaping C+ to O+ is at most 0.31 ± 0.2, implying that, in addition to atomic O+ ions, CO group ions or water group ions may be a source of the observed O+. Simultaneous magnetometer observations suggest that these planetary ions were in the magnetosheath flank in the vicinity of the magnetic pileup boundary downstream. These results have important implications regarding the evolution of Venus’s atmosphere and, in particular, the evolution of water on the surface of the planet.
  • Shoichiro Yokota, Yoshifumi Saito, Kazushi Asamura
    Earth, Planets and Space 76(1) 2024年4月6日  
    Abstract We have developed a low-energy particle experiment that alternately measures ions and electrons in space. The ability to switch between ion and electron measurements is achieved by simply adding ultra-thin carbon foils and positive and negative outputs to a conventional top-hat electrostatic analyzer and a high-voltage power supply, respectively. The advantage of this experiment is that it can perform both ion and electron measurements using only one MCP-based detector for electrons, since it detects secondary electrons emitted from the carbon foils. For the SS520-3 sounding rocket program, we prepared two identical energy analyzers, one for ions and the other for electrons to demonstrate this technique. Laboratory tests confirmed that the performance of the two analyzers was comparable to that of conventional analyzers for ion and electrons. The SS520-3 rocket experiment in the high latitude auroral region yielded observations that captured typical features of ions and electrons, which were similar to previous observations. Graphical Abstract
  • Jae‐Hee Lee, Khan‐Hyuk Kim, Seul‐Min Baek, Ho Jin, Yoshifumi Saito, Masaki N. Nishino, Shoichiro Yokota
    Journal of Geophysical Research: Space Physics 129(3) 2024年2月28日  
    Abstract We analyze data acquired by the Kaguya satellite on 14 October 2008 when the Moon was in the terrestrial magnetotail lobe to gain new insight into the energization of ions originating from the Moon. The Moon‐originating ions were detected over a broad range of latitudes from −80° to 50° above the Moon's dayside at ∼100 km altitude. The fluxes of the Moon‐originating ions were observed at energies from ∼50 to ∼1,000 eV. Additionally, these ions exhibited a wide distribution pitch angle spanning from ∼45 to 90°. The energy levels of ions originating from the Moon show rapid changes, either increasing or decreasing by a factor of ∼10 within 8 min without the solar zenith angle dependence. Such rapid energy changes were observed over the highland regions. These observations are discussed in light of possible acceleration mechanisms of Moon‐originating ions, including temporal and spatial effects.
  • Jun Zhong, Lianghai Xie, Lou Chuang Lee, James A. Slavin, Jim M. Raines, Ryan M. Dewey, Wing Huen Ip, Yoshifumi Saito, Yong Wei
    Geophysical Research Letters 51(1) 2024年1月16日  
    Among nearly 300 near-Mercury tail current sheet crossings performed by the MESSENGER spacecraft, we identified 37 traversals of an asymmetric current sheet, wherein the lobe densities on opposite sides differ by a factor of three or more. These asymmetric current sheet crossings primarily occur on the dawnside. A global magnetohydrodynamic (MHD) simulation was found to be in excellent agreement with the observations. The results suggest that the north–south density asymmetry is caused by solar wind entering via an upstream-connected window in one hemisphere. Furthermore, the Parker spiral interplanetary magnetic field (IMF) controls the near-tail density asymmetries, whereas Mercury's offset dipole magnetic field controls those in mid- or distant-tail regions. We propose that hemispheric asymmetries in Mercury's magnetospheric convection occur under strong IMF conditions.
  • M. Fränz, M. Rojo, T. Cornet, L. Z. Hadid, Y. Saito, N. André, A. Varsani, D. Schmid, H. Krüger, N. Krupp, D. Delcourt, B. Katra, Y. Harada, S. Yokota, C. Verdeil, S. Aizawa, A. Millilo, S. Orsini, V. Mangano, B. Fiethe, J. Benkhoff, G. Murakami
    Journal of Geophysical Research: Space Physics 129(1) 2024年1月9日  
    Abstract During the first flyby of the BepiColombo composite spacecraft at Mercury in October 2021 ion spectrometers observed two intense spectral lines with energies between 10 and 70 eV. The spectral lines persisted also at larger distances from Mercury and were observed again at lower intensity during cruise phase in March 2022 and at the second and third Mercury flyby as a single band. The ion composition indicates that water is the dominant gas source. The outgassing causes the composite spacecraft to charge up to a negative potential of up to −50 V. The distribution and intensity of the lower energy signal depends on the intensity of low energy electron fluxes around the spacecraft which again depend on the magnetic field orientation. We interpret the observation as being caused by water outgassing from different source locations on the spacecraft being ionized in two different regions of the surrounding potential. The interpretation is confirmed by two dimensional particle‐in‐cell simulations.
  • M. Rojo, M. Persson, J.-A. Sauvaud, S. Aizawa, G. Nicolaou, E. Penou, A. Barthe, N. André, C. Mazelle, A. Fedorov, S. Yokota, Y. Saito, D. Heyner, I. Richter, U. Auster, D. Schmid, D. Fischer, T. Horbury, C.J. Owen, M. Maksimovic, Y. Khotyaintsev, P. Louarn, G. Murakami
    Astronomy & Astrophysics 2023年12月20日  
    We derive electron density and temperature from observations obtained by the Mercury Electron Analyzer on board Mio during the cruise phase of BepiColombo while the spacecraft is in a stacked configuration. In order to remove the secondary electron emission contribution, we first fit the core electron population of the solar wind with a Maxwellian distribution. We then subtract the resulting distribution from the complete electron spectrum, and suppress the residual count rates observed at low energies. Hence, our corrected count rates consist of the sum of the fitted Maxwellian core electron population with a contribution at higher energies. We finally estimate the electron density and temperature from the corrected count rates using a classical integration method. We illustrate the results of our derivation for two case studies, including the second Venus flyby of BepiColombo when the Solar Orbiter spacecraft was located nearby, and for a statistical study using observations obtained to date for distances to the Sun ranging from 0.3 to 0.9 A.U. When compared either to measurements of Solar Orbiter or to measurements obtained by HELIOS and Parker Solar Probe, our method leads to a good estimation of the electron density and temperature. Hence, despite the strong limitations arising from the stacked configuration of BepiColombo during its cruise phase, we illustrate how we can retrieve reasonable estimates for the electron density and temperature for timescales from days down to several seconds.
  • T. Nagai, I. Shinohara, Y. Saito, A. Ieda, R. Nakamura
    Journal of Geophysical Research: Space Physics 128(12) 2023年12月  
    The spacecraft Geotail surveyed the near-Earth plasma sheet from XGSM = −10 to −31 RE and YGSM = −20 to +20 RE during the period from 1994 to 2022. It observed 243 magnetic reconnection events and 785 tailward flow events under various solar wind conditions during plasma sheet residence time of over 23,000 hr. Magnetic reconnections associated with the onset of magnetospheric substorms occur mostly in the range XGSM = −23 to −31 RE. When the solar wind is intense and high substorm activities continue, magnetic reconnection can occur closer to the Earth. The YGSM locations of magnetic reconnections depend on the solar wind conditions and on previous substorm activity. Under normal solar wind conditions, magnetic reconnection occurs preferentially in the pre-midnight plasma sheet. Under conditions with intense (weak) solar wind energy input, however, magnetic reconnection can occur in the post-midnight (duskside) plasma sheet. Continuous substorm activity tends to shift the magnetic reconnection site duskward. The plasma sheet thinning proceeds faster under intense solar wind conditions, and the loading process that provides the preconditions for magnetic reconnection becomes shorter. When magnetic flux piles up during a prolonged period with a strongly northward-oriented interplanetary magnetic field (IMF) Bz, the time necessary to provide the preconditions for magnetic reconnection becomes longer. Although the solar wind conditions are the primary factors that control the location and timing of magnetic reconnections, the plasma sheet conditions created by preceding substorm activity or the strongly northward IMF Bz can modify the solar wind control.
  • William M. Farrell, Jasper S. Halekas, Mihaly Horányi, Rosemary M. Killen, Cesare Grava, Jamey R. Szalay, Mehdi Benna, Pamela E. Clark, Michael R. Collier, Anthony Colaprete, Jan Deca, Richard C. Elphic, Shahab Fatemi, Yoshifumi Futaana, Mats Holmström, Dana M. Hurley, Georgiana Y. Kramer, Paul R. Mahaffy, Masaki N. Nishino, Sarah K. Noble, Yoshifumi Saito, Andrew R. Poppe, Kurt D. Retherford, Xu Wang, Shoichiro Yokota
    Reviews in Mineralogy and Geochemistry 89(1) 563-609 2023年12月1日  
  • Tomoko Nakagawa, Futoshi Takahashi, Yoshifumi Saito, Hisayoshi Shimizu
    Earth, Planets and Space 75(1) 2023年12月  
    Short-period magnetic enhancements were detected by the MAP-LMAG magnetometer onboard Kaguya orbiting the moon in the solar wind at an altitude of 100 km. The duration was typically 10 s, which corresponds to 0.5 degrees in latitude along the Kaguya orbit and a scale size of 15 km. The magnitude of the magnetic field was enhanced up to 1.5–3.6 times as large as that of the preceding quiet periods. No such magnetic enhancements were found in the upstream solar wind magnetic field. The short-period magnetic enhancements were categorized into 2 groups. One is the sub-ion-gyro-scale limb compression detected at the terminator region of the moon in a nearly constant solar wind magnetic field. The magnetic field flared away from the moon consistently with the previously known limb compressions. The scale size deduced from the duration was 11 km, 85 times as small as that of previously reported limb compressions. It is significantly smaller than the typical proton gyroradius 50–100 km in the solar wind at 1AU. The other types of magnetic enhancements appeared at crossings of magnetic discontinuities of the solar wind. Some of them were found on the nightside of the moon. A possible explanation is that they were magnetic fields compressed by the solar wind ions reflected at the moon channeled back along the current sheet of an interplanetary tangential discontinuity, similar to the hot flow anomalies observed at the Earth’s bow shock. The reflected ions themselves were not detected on the nightside of the moon, while the magnetic field compressed by the expanding region can penetrate through the moon to be detected as magnetic field enhancements on the nightside of the moon. Graphical Abstract: [Figure not available: see fulltext.].
  • S. W. Alqeeq, O. Le Contel, P. Canu, A. Retinò, T. Chust, L. Mirioni, A. Chuvatin, R. Nakamura, N. Ahmadi, F. D. Wilder, D. J. Gershman, Yu V. Khotyaintsev, P. A. Lindqvist, R. E. Ergun, J. L. Burch, R. B. Torbert, S. A. Fuselier, C. T. Russell, H. Y. Wei, R. J. Strangeway, K. R. Bromund, D. Fischer, B. L. Giles, Y. Saito
    Journal of Geophysical Research: Space Physics 128(10) 2023年10月  
    We carried out a statistical study of equatorial dipolarization fronts (DFs) detected by the Magnetospheric Multiscale mission during the full 2017 Earth's magnetotail season. We found that two DF classes are distinguished: class I (74.4%) corresponds to the standard DF properties and energy dissipation and a new class II (25.6%). This new class includes the six DF discussed in Alqeeq et al. (2022, https://doi.org/10.1063/5.0069432) and corresponds to a bump of the magnetic field associated with a minimum in the ion and electron pressures and a reversal of the energy conversion process. The possible origin of this second class is discussed. Both DF classes show that the energy conversion process in the spacecraft frame is driven by the diamagnetic current dominated by the ion pressure gradient. In the fluid frame, it is driven by the electron pressure gradient. In addition, we have shown that the energy conversion processes are not homogeneous at the electron scale mostly due to the variations of the electric fields for both DF classes.
  • Sae Aizawa, Yuki Harada, Nicolas André, Yoshifumi Saito, Stas Barabash, Dominique Delcourt, Jean-André Sauvaud, Alain Barthe, Andréi Fedorov, Emmanuel Penou, Shoichiro Yokota, Wataru Miyake, Moa Persson, Quentin Nénon, Mathias Rojo, Yoshifumi Futaana, Kazushi Asamura, Manabu Shimoyama, Lina Z. Hadid, Dominique Fontaine, Bruno Katra, Markus Fraenz, Norbert Krupp, Shoya Matsuda, Go Murakami
    Nature Communications 14(1) 2023年7月18日  
    Abstract Mercury’s magnetosphere is known to involve fundamental processes releasing particles and energy like at Earth due to the solar wind interaction. The resulting cycle is however much faster and involves acceleration, transport, loss, and recycling of plasma. Direct experimental evidence for the roles of electrons during this cycle is however missing. Here we show that in-situ plasma observations obtained during BepiColombo’s first Mercury flyby reveal a compressed magnetosphere hosts of quasi-periodic fluctuations, including the original observation of dynamic phenomena in the post-midnight, southern magnetosphere. The energy-time dispersed electron enhancements support the occurrence of substorm-related, multiple, impulsive injections of electrons that ultimately precipitate onto its surface and induce X-ray fluorescence. These observations reveal that electron injections and subsequent energy-dependent drift now observed throughout Solar System is a universal mechanism that generates aurorae despite the differences in structure and dynamics of the planetary magnetospheres.
  • Bernard V. Jackson, Munetoshi Tokumaru, Kazumasa Iwai, Matthew T. Bracamontes, Andrew Buffington, Ken’ichi Fujiki, Go Murakami, Daniel Heyner, Beatriz Sanchez-Cano, Mathias Rojo, Sae Aizawa, Nicolas Andre, Alain Barthe, Emmanuel Penou, Andrei Fedorov, Jean-Andre Sauvaud, Shoichiro Yokota, Yoshifumi Saito
    Solar Physics 298(5) 2023年5月30日  
    Abstract Remotely sensed interplanetary scintillation (IPS) data from the Institute for Space-Earth Environmental Research (ISEE), Japan, allows a determination of solar-wind parameters throughout the inner heliosphere. We show the 3D analysis technique developed for these data sets that forecast plasma velocity, density, and component magnetic fields at Earth, as well at the other inner heliospheric planets and spacecraft. One excellent coronal mass ejection (CME) example that occurred on the 10 March 2022 was viewed not only in the ISEE IPS analyses, but also by the spacecraft near Earth that measured the CME arrival at one AU. Solar Orbiter, that was nearly aligned along the Earth radial at 0.45 AU, also measured the CME in plasma density, velocity, and magnetic field. BepiColombo at 0.42 AU was also aligned with the STEREO A spacecraft, and viewed this CME. The instruments used here from BepiColombo include: 1) the European-Space-Agency Mercury-Planetary-Orbiter magnetic field measurements; 2) the Japan Aerospace Exploration Agency Mio spacecraft Solar Particle Monitor that viewed the CME Forbush decrease, and the Mercury Plasma Experiment/Mercury Electron Analyzer instruments that measured particles and solar-wind density from below the spacecraft protective sunshield covering. This article summarizes the analysis using ISEE, Japan real-time data for these forecasts: it provides a synopsis of the results and confirmation of the CME event morphology after its arrival, and discusses how future IPS analyses can augment these results.
  • M. Persson, S. Aizawa, N. André, S. Barabash, Y. Saito, Y. Harada, D. Heyner, S. Orsini, A. Fedorov, C. Mazelle, Y. Futaana, L. Z. Hadid, M. Volwerk, G. Collinson, B. Sanchez-Cano, A. Barthe, E. Penou, S. Yokota, V. Génot, J. A. Sauvaud, D. Delcourt, M. Fraenz, R. Modolo, A. Milillo, H.-U. Auster, I. Richter, J. Z. D. Mieth, P. Louarn, C. J. Owen, T. S. Horbury, K. Asamura, S. Matsuda, H. Nilsson, M. Wieser, T. Alberti, A. Varsani, V. Mangano, A. Mura, H. Lichtenegger, G. Laky, H. Jeszenszky, K. Masunaga, C. Signoles, M. Rojo, G. Murakami
    Nature Communications 13(1) 2022年12月15日  査読有り
    Abstract The second Venus flyby of the BepiColombo mission offer a unique opportunity to make a complete tour of one of the few gas-dynamics dominated interaction regions between the supersonic solar wind and a Solar System object. The spacecraft pass through the full Venusian magnetosheath following the plasma streamlines, and cross the subsolar stagnation region during very stable solar wind conditions as observed upstream by the neighboring Solar Orbiter mission. These rare multipoint synergistic observations and stable conditions experimentally confirm what was previously predicted for the barely-explored stagnation region close to solar minimum. Here, we show that this region has a large extend, up to an altitude of 1900 km, and the estimated low energy transfer near the subsolar point confirm that the atmosphere of Venus, despite being non-magnetized and less conductive due to lower ultraviolet flux at solar minimum, is capable of withstanding the solar wind under low dynamic pressure.
  • Masaki Nishino, Hiroshi Hasegawa, Yoshifumi Saito, Benoit Lavraud, Yukinaga Miyashita, Motoharu Nowada, Satoshi Kasahara, Tsugunobu Nagai
    Earth, Planets, and Science 74(1) 2022年12月9日  査読有り
    Abstract The density of the solar wind plasma near the Earth’s magnetosphere sometimes decreases to only several per cent of the usual value, and such density extrema result in a significant reduction of the dynamic pressure and Alfvén Mach number ($$M_A$$) of the solar wind flow. While a symmetric expansion of the Earth’s magnetosphere by the low dynamic pressure was assumed in previous studies, a global magnetohydrodynamic (MHD) simulation study predicted a remarkable dawn-dusk asymmetry of the magnetospheric shape under low-density solar wind and Parker-spiral interplanetary magnetic field (IMF) configuration. Here, we present observations consistent with the asymmetric deformation of the magnetosphere under low-$$M_A$$ solar wind and Parker-spiral IMF conditions, focusing on the significant expansion of the dawn-flank magnetosphere detected by the Geotail spacecraft. A global MHD simulation reproduced the dawnward expansion of the near-Earth magnetosphere, which was consistent with the observation by Geotail. The solar wind flow had a non-negligible dusk-to-dawn component and partly affected the dawnward expansion of the magnetosphere. Local, roughly Alfvénic sunward acceleration of magnetosheath ions at the dawn flank magnetopause suggests magnetosheath plasma entry into the magnetosphere through open field lines generated by magnetic reconnection at the dayside magnetopause. At the same time, Cluster 1 and 3, located near the southern polar cusp, also detected continuous antisunward ion jets and occasional sunward jets, which are consistent with the occurrence of magnetic reconnection near the southern cusp. These observations suggest that enhanced plasma acceleration at the dayside magnetopause operates under the low-$$M_A$$ solar wind and Parker spiral IMF conditions and that plasma influx across the dawnside magnetopause is at work under such a low-$$M_A$$ condition. These results can be helpful in understanding interactions between low-$$M_A$$ solar/stellar winds and celestial objects, such as inner planets and exoplanets. Graphic Abstract
  • Masaki N. Nishino, Yoshiya Kasahara, Yuki Harada, Yoshifumi Saito, Hideo Tsunakawa, Atsushi Kumamoto, Shoichiro Yokota, Futoshi Takahashi, Masaki Matsushima, Hidetoshi Shibuya, Hisayoshi Shimizu, Yukinaga Miyashita, Yoshitaka Goto, Takayuki Ono
    Earth, Planets and Space 74(1) 2022年12月  
    Wave–particle interactions are fundamental processes in space plasma, and some plasma waves, including electrostatic solitary waves (ESWs), are recognised as broadband noises (BBNs) in the electric field spectral data. Spacecraft observations in recent decades have detected BBNs around the Moon, but the generation mechanism of the BBNs is not fully understood. Here, we study a wake boundary traversal with BBNs observed by Kaguya, which includes an ESW event previously reported by Hashimoto et al. Geophys Res Lett 37:L19204 https://doi.org/10.1029/2010GL044529 (2010). Focusing on the relation between BBNs and electron pitch-angle distribution functions, we show that upward electron beams from the nightside lunar surface are effective for the generation of BBNs, in contrast to the original interpretation by Hashimoto et al. Geophys Res Lett 37:L19204 https://doi.org/10.1029/2010GL044529 (2010) that high-energy electrons accelerated by strong ambipolar electric fields excite ESWs in the region far from the Moon. When the BBNs were observed by the Kaguya spacecraft in the wake boundary, the spacecraft’s location was magnetically connected to the nightside lunar surface, and bi-streaming electron distributions of downward-going solar wind strahl component and upward-going field-aligned beams (at ∼ 124 eV) were detected. The interplanetary magnetic field was dominated by a positive BZ (i.e. the northward component), and strahl electrons travelled in the antiparallel direction to the interplanetary magnetic field (i.e. southward), which enabled the strahl electrons to precipitate onto the nightside lunar surface directly. The incident solar wind electrons cause negative charging of the nightside lunar surface, which generates downward electric fields that accelerate electrons from the nightside surface toward higher altitudes along the magnetic field. The bidirectional electron distribution is not a sufficient condition for the BBN generation, and the distribution of upward electron beams seems to be correlated with the BBNs. Ambipolar electric fields in the wake boundary should also contribute to the electron acceleration toward higher altitudes and further intrusion of the solar wind ions into the deeper wake. We suggest that solar wind ion intrusion into the wake boundary is also an important factor that controls the BBN generation by facilitating the influx of solar wind electrons there. Graphical Abstract: [Figure not available: see fulltext.]
  • N. Kitamura, T. Amano, Y. Omura, S. A. Boardsen, D. J. Gershman, Y. Miyoshi, M. Kitahara, Y. Katoh, H. Kojima, S. Nakamura, M. Shoji, Y. Saito, S. Yokota, B. L. Giles, W. R. Paterson, C. J. Pollock, A. C. Barrie, D. G. Skeberdis, S. Kreisler, O. Le Contel, C. T. Russell, R. J. Strangeway, P.-A. Lindqvist, R. E. Ergun, R. B. Torbert, J. L. Burch
    Nature Communications 13(1) 2022年10月28日  査読有り
    Abstract Electromagnetic whistler-mode waves in space plasmas play critical roles in collisionless energy transfer between the electrons and the electromagnetic field. Although resonant interactions have been considered as the likely generation process of the waves, observational identification has been extremely difficult due to the short time scale of resonant electron dynamics. Here we show strong nongyrotropy, which rotate with the wave, of cyclotron resonant electrons as direct evidence for the locally ongoing secular energy transfer from the resonant electrons to the whistler-mode waves using ultra-high temporal resolution data obtained by NASA’s Magnetospheric Multiscale (MMS) mission in the magnetosheath. The nongyrotropic electrons carry a resonant current, which is the energy source of the wave as predicted by the nonlinear wave growth theory. This result proves the nonlinear wave growth theory, and furthermore demonstrates that the degree of nongyrotropy, which cannot be predicted even by that nonlinear theory, can be studied by observations.
  • Oya Kawashima, Naho Yanase, Yoshihisa Okitsu, Masafumi Hirahara, Yoshifumi Saito, Yuzuru Karouji, Naoki Yamamoto, Shoichiro Yokota, Satoshi Kasahara
    Planetary and Space Science 220 105547-105547 2022年10月  
    Ion sources using electron impact ionization (EI) methods have been widely accepted in mass spectrometry for planetary exploration missions because of their simplicity. Previous space-borne mass spectrometers were primarily designed with the EI method using rhenium tungsten alloy filaments, enabling up to 100-200 ?mu A emission in typical cases. The emission level is desired to be enhanced because the sensitivity of mass spectrometers is a critical requirement for the future in situ mass spectrometry related to the measurement of trace components in planetary samples. In this study, we developed a new high-emission EI ion source using a Y2O3-coated iridium filament, which has a lower work function than rhenium tungsten alloy. The size of the ion source was 30 ?mm ?x ?26 ?mm ?x ?70 ?mm, and its weight was similar to 70 ?g. We confirmed that when consuming similar to 3.0 ?W power, the ion source records 1-2 ?mA electrons, which is 10 times greater than the conventional models' electron emission level. We verified the linearity of ionization efficiency and the electron current in the range of 0.1-1 ?mA, which indicates our new model increased the ionization efficiency. We conducted performance tests on the prototype with the 3.0 ?W heating condition, confirming a high ionization efficiency (similar to 10(4) ?nA/Pa). In addition, we conducted endurance tests of the ion source and demonstrated the persistence of the ionization efficiency for 30 ?min ?x ?100 cycles.
  • Yuki Harada, Sae Aizawa, Yoshifumi Saito, Nicolas André, Moa Persson, Dominique Delcourt, Lina Z. Hadid, Markus Fraenz, Shoichiro Yokota, Andréi Fedorov, Wataru Miyake, Emmanuel Penou, Alain Barthe, Jean André Sauvaud, Bruno Katra, Shoya Matsuda, Go Murakami
    Geophysical Research Letters 49(17) 2022年9月16日  
    We present initial results of low-energy ion observations from BepiColombo's first Mercury flyby. Unprecedentedly high time resolution measurements of low energy ions at Mercury by BepiColombo Mio reveal rapid (a few seconds) and large (1–2 orders of magnitude) fluctuations of ion flux around the magnetopause and within the magnetosphere. Around the magnetic equator in the pre-midnight magnetotail, Mio observed plasma sheet ions consistent with previous observations. In the midnight magnetotail near the closest approach, Mio observed the co-existence of high-energy (∼keV/q) and low-energy (<∼300 eV/q) ion components. The low-energy component is inferred to be cold with a temperature well below 100 eV and have a major contribution to the total density as opposed to previously reported cold tenuous ions. Future observations by Mio will provide insights into the sources, transport, and acceleration of the newly identified ion components.
  • Jonathan Rae, Colin Forsyth, Malcolm Dunlop, Minna Palmroth, Mark Lester, Reiner Friedel, Geoff Reeves, Larry Kepko, Lucille Turc, Clare Watt, Wojciech Hajdas, Theodoros Sarris, Yoshifumi Saito, Ondrej Santolik, Yuri Shprits, Chi Wang, Aurelie Marchaudon, Matthieu Berthomier, Octav Marghitu, Benoit Hubert, Martin Volwerk, Elena A. Kronberg, Ian Mann, Kyle Murphy, David Miles, Zhonghua Yao, Andrew Fazakerley, Jasmine Sandhu, Hayley Allison, Quanqi Shi
    EXPERIMENTAL ASTRONOMY 2022年9月  
    The fundamental processes responsible for energy exchange between large-scale electromagnetic fields and plasma are well understood theoretically, but in practice these theories have not been tested. These processes are ubiquitous in all plasmas, especially at the interface between high and low beta plasmas in planetary magnetospheres and other magnetic environments. Although such boundaries pervade the plasma Universe, the processes responsible for the release of the stored magnetic and thermal plasma energy have not been fully identified and the importance of the relative impact of each process is unknown. Despite advances in understanding energy release through the conversion of magnetic to kinetic energy in magnetic reconnection, how the extreme pressures in the regions between stretched and more relaxed field lines in the transition region are balanced and released through adiabatic convection of plasma and fields is still a mystery. Recent theoretical advances and the predictions of large-scale instabilities must be tested. In essence, the processes responsible remain poorly understood and the problem unresolved. The aim of the White Paper submitted to ESA's Voyage 2050 call, and the contents of this paper, is to highlight three outstanding open science questions that are of clear international interest: (i) the interplay of local and global plasma physics processes: (ii) the partitioning during energy conversion between electromagnetic and plasma energy: and (iii) what processes drive the coupling between low and high beta plasmas. We present a discussion of the new measurements and technological advances required from current state-of-the-art, and several candidate mission profiles with which these international high-priority science goals could be significantly advanced.
  • S. Aizawa, M. Persson, T. Menez, N. André, R. Modolo, V. Génot, B. Sanchez-Cano, M. Volwerk, J.-Y. Chaufray, C. Baskevitch, D. Heyner, Y. Saito, Y. Harada, F. Leblanc, A. Barthe, E. Penou, A. Fedorov, J.-A. Sauvaud, S. Yokota, U. Auster, I. Richter, J. Mieth, T.S. Horbury, P. Louarn, C.J. Owen, G. Murakami
    Planetary and Space Science 218 105499-105499 2022年9月  
  • H. Hasegawa, R. E. Denton, T. K. M. Nakamura, K. J. Genestreti, T. D. Phan, R. Nakamura, K.‐J. Hwang, N. Ahmadi, Q. Q. Shi, M. Hesse, J. L. Burch, J. M. Webster, R. B. Torbert, B. L. Giles, D. J. Gershman, C. T. Russell, R. J. Strangeway, H. Y. Wei, P.‐A. Lindqvist, Y. V. Khotyaintsev, R. E. Ergun, Y. Saito
    Journal of Geophysical Research: Space Physics 2022年6月30日  
  • Weijie Sun, James A. Slavin, Anna Milillo, Ryan M. Dewey, Stefano Orsini, Xianzhe Jia, Jim M. Raines, Stefano Livi, Jamie M. Jasinski, Suiyan Fu, Jiutong Zhao, Qiu-Gang Zong, Yoshifumi Saito, Changkun Li
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS 127(4) 2022年4月  
    At Mercury, several processes can release ions and neutrals out of the planet's surface. Here we present enhancements of planetary ions (Na+-group ions) in Mercury's northern magnetospheric cusp during flux transfer event (FTE) "showers." FTE showers are intervals of intense dayside magnetopause reconnection, during which FTEs are observed in quick succession, that is, only separated by a few seconds. This study identifies 1953 FTE shower intervals and 1795 Non-FTE shower intervals. During the shower intervals, this study shows that the FTEs form a solar wind entry layer equatorward of the northern magnetospheric cusp. In this entry layer, solar wind ions are accelerated and move downward (i.e., planetward) toward the cusp, which sputter upward-moving planetary ions with a particle flux of 1 x 10(11) m(-2) s(-1) within 1 min. The precipitation rate is estimated to increase by an order of magnitude during FTE showers, to 2 x 10(25) s(-1), and the neutral density of the exosphere could vary by >10% in response to this FTE-driven sputtering. Such rapid large-scale variations driven by dayside reconnection may explain the minute-to-minute changes in Mercury's exosphere, especially on the high latitudes, observed by ground-based telescopes on Earth. Our MESSENGER in situ observation of enhanced planetary ions in the entry layer likely corresponds to an escape channel for Mercury's planetary ions. Comprehensive, future multipoint measurements made by BepiColombo will greatly enhance our understanding of the processes contributing to Mercury's dynamic exosphere and magnetosphere.
  • Weijie Sun, James A. Slavin, Rumi Nakamura, Daniel Heyner, Karlheinz J. Trattner, Johannes Z. D. Mieth, Jiutong Zhao, Qiu-Gang Zong, Sae Aizawa, Nicolas Andre, Yoshifumi Saito
    ANNALES GEOPHYSICAE 40(2) 217-229 2022年4月  
    This study analyzes the flux transfer event (FTE)-type flux ropes and magnetic reconnection around the day-side magnetopause during BepiColombo's Earth flyby. The magnetosheath has a high plasma beta (similar to 8), and the interplanetary magnetic field (IMF) has a significant radial component. Six flux ropes are identified around the magnetopause. The motion of flux ropes together with the maximum magnetic shear model suggests that the reconnection X-line possibly swipes BepiColombo near the magnetic equator due to an increase in the radial component of the IMF. The flux rope with the highest flux content contains a clear coalescence signature, i.e., two smaller flux ropes merge, supporting theoretical predictions that the flux contents of flux ropes can grow through coalescence. The coalescence of the two FTE-type flux ropes takes place through secondary reconnection at the point of contact between the two flux ropes. The BepiColombo measurements indicate a large normalized guide field and a reconnection rate comparable to that measured at the magnetopause (similar to 0.1).
  • Keigo Enya, Masanori Kobayashi, Jun Kimura, Hiroshi Araki, Noriyuki Namiki, Hirotomo Noda, Shingo Kashima, Shoko Oshigami, Ko Ishibashi, T. Yamawaki, Kazuyuki Tohara, Yoshifumi Saito, Masanobu Ozaki, Takahide Mizuno, Shunichi Kamata, Koji Matsumoto, Sho Sasaki, Kiyoshi Kuramoto, Yuki Sato, Takeshi Yokozawa, Tsutomu Numata, Satoko Mizumoto, Hiroyuki Mizuno, Kenta Nagamine, Akihiko Sawamura, Kazuo Tanimoto, Hisato Imai, Hiroyuki Nakagawa, Okiharu Kirino, David Green, Masayuki Fujii, Satoru Iwamura, Naofumi Fujishiro, Yoshiaki Matsumoto, Kay Lingenauber, Reinald Kallenbach, Christian Althaus, Thomas Behnke, Jan Binger, Anna Daurskikh, Henri Eisenmenger, Ulrich Heer, Christian Hüttig, Luisa M. Lara, Alexander Lichopoj, Horst Georg Lötzke, Fabian Lüdicke, Harald Michaelis, Juan Pablo Rodriguez Garcia, Kerstin Rösner, Alexander Stark, Gregor Steinbrügge, Pascal Thabaut, Nicolas Thomas, Simone del Togno, Daniel Wahl, Belinda Wendler, Kai Wickhusen, Konrad Willner, Hauke Hussmann
    Advances in Space Research 69(5) 2283-2304 2022年3月1日  
    The Jupiter Icy Moons Explorer (JUICE) is a science mission led by the European Space Agency, being developed for launch in 2023. The Ganymede Laser Altimeter (GALA) is an instrument onboard JUICE, whose main scientific goals are to understand ice tectonics based on topographic data, the subsurface structure by measuring tidal response, and small-scale roughness and albedo of the surface. In addition, from the perspective of astrobiology, it is imperative to study the subsurface ocean scientifically. The development of GALA has proceeded through an international collaboration between Germany (the lead), Japan, Switzerland, and Spain. Within this framework, the Japanese team (GALA-J) is responsible for developing three receiver modules: the Backend Optics (BEO), the Focal Plane Assembly (FPA), and the Analog Electronics Module (AEM). Like the German team, GALA-J also developed software to simulate the performance of the entire GALA system (performance model). In July 2020, the Proto-Flight Models of BEO, FPA, and AEM were delivered from Japan to Germany. This paper presents an overview of JUICE/GALA and its scientific objectives and describes the instrumentation, mainly focusing on Japan's contribution.
  • S. W. Alqeeq, O. Le Contel, P. Canu, A. Retinò, T. Chust, L. Mirioni, L. Richard, Y. Aït-Si-Ahmed, A. Alexandrova, A. Chuvatin, N. Ahmadi, S. M. Baraka, R. Nakamura, F. D. Wilder, D. J. Gershman, P. A. Lindqvist, Yu V. Khotyaintsev, R. E. Ergun, J. L. Burch, R. B. Torbert, C. T. Russell, W. Magnes, R. J. Strangeway, K. R. Bromund, H. Wei, F. Plaschke, B. J. Anderson, B. L. Giles, S. A. Fuselier, Y. Saito, B. Lavraud
    Physics of Plasmas 29(1) 2022年1月1日  
    We report on six dipolarization fronts (DFs) embedded in fast earthward flows detected by the Magnetospheric Multiscale mission during a substorm event on 23 July 2017. We analyzed Ohm's law for each event and found that ions are mostly decoupled from the magnetic field by Hall fields. However, the electron pressure gradient term is also contributing to the ion decoupling and likely responsible for an electron decoupling at DF. We also analyzed the energy conversion process and found that the energy in the spacecraft frame is transferred from the electromagnetic field to the plasma (J · E > 0) ahead or at the DF, whereas it is the opposite (J · E < 0) behind the front. This reversal is mainly due to a local reversal of the cross-tail current indicating a substructure of the DF. In the fluid frame, we found that the energy is mostly transferred from the plasma to the electromagnetic field (J · E ′ < 0) and should contribute to the deceleration of the fast flow. However, we show that the energy conversion process is not homogeneous at the electron scales due to electric field fluctuations likely related to lower-hybrid drift waves. Our results suggest that the role of DF in the global energy cycle of the magnetosphere still deserves more investigation. In particular, statistical studies on DF are required to be carried out with caution due to these electron scale substructures.
  • Nakagawa, T, Takahashi, F, Shimizu, H, Saito, Y
    Radio Science, 57, 57(1) e2021RS007369 2022年1月  査読有り
    The solar wind particles reflected by the lunar magnetic field are the major energy source of electromagnetic wave activities, such as the 100 s magnetohydrodynamic waves and the 1 Hz whistler-mode waves generated by protons and the non-monochromatic whistler-mode waves generated by mirror-reflected electrons. Kaguya found a new type of whistler-mode waves at 100 km altitude above the polar regions of the Moon with a broad frequency range of 1–16 Hz. The waves appear diffuse in both the time and frequency domains, and their occurrence is less sensitive to the magnetic connection to the lunar surface. The polarization is right-handed with respect to the background magnetic field, and the wave number vector is nearly parallel to the magnetic field perpendicular to the solar wind flow. The diffuse waves are thought to be generated by the solar wind ions reflected by the lunar magnetic field through cyclotron resonance. The resonant ions are expected to have a velocity component parallel to the magnetic field larger than the solar wind bulk speed; however, such ions were not always simultaneously detected by Kaguya. The waves may have been generated above the dayside of the Moon and then propagated along the magnetic field being convected by the solar wind to reach the polar regions to be detected by Kaguya.
  • J. Benkhoff, G. Murakami, W. Baumjohann, S. Besse, E. Bunce, M. Casale, G. Cremosese, K. H. Glassmeier, H. Hayakawa, D. Heyner, H. Hiesinger, J. Huovelin, H. Hussmann, V. Iafolla, L. Iess, Y. Kasaba, M. Kobayashi, A. Milillo, I. G. Mitrofanov, E. Montagnon, M. Novara, S. Orsini, E. Quemerais, U. Reininghaus, Y. Saito, F. Santoli, D. Stramaccioni, O. Sutherland, N. Thomas, I. Yoshikawa, J. Zender
    Space Science Reviews 217(8) 2021年12月  
    BepiColombo is a joint mission between the European Space Agency, ESA, and the Japanese Aerospace Exploration Agency, JAXA, to perform a comprehensive exploration of Mercury. Launched on 20 th October 2018 from the European spaceport in Kourou, French Guiana, the spacecraft is now en route to Mercury. Two orbiters have been sent to Mercury and will be put into dedicated, polar orbits around the planet to study the planet and its environment. One orbiter, Mio, is provided by JAXA, and one orbiter, MPO, is provided by ESA. The scientific payload of both spacecraft will provide detailed information necessary to understand the origin and evolution of the planet itself and its surrounding environment. Mercury is the planet closest to the Sun, the only terrestrial planet besides Earth with a self-sustained magnetic field, and the smallest planet in our Solar System. It is a key planet for understanding the evolutionary history of our Solar System and therefore also for the question of how the Earth and our Planetary System were formed. The scientific objectives focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere, and magnetosphere. In addition, instrumentation onboard BepiColombo will be used to test Einstein’s theory of general relativity. Major effort was put into optimizing the scientific return of the mission by defining a payload such that individual measurements can be interrelated and complement each other.
  • H. Z. Wang, C. Xiao, Q. Q. Shi, R. L. Guo, C. Yue, L. H. Xie, J. Zhang, A. B. Zhang, M. Wieser, Y. Saito, M. N. Nishino, M. Nowada, Q. G. Zong, A. W. Degeling, A. M. Tian, S. Y. Fu, H. Zhang, J. Chen, T. X. Zhang, J. Liu, C. Y. Han, W. S. Shang, S. C. Bai
    Astrophysical Journal Letters 922(2) 2021年12月1日  
    The Advanced Small Analyzer for Neutrals (ASAN) on board the Chang'E-4 Yutu-2 rover first detected energetic neutral atoms (ENAs) originating from the lunar surface at various lunar local times on the lunar farside. In this work, we examine the ENA energy spectra, obtained in the first 23 lunar days from 2019 January 11 to 2020 October 12, and find a higher ENA differential flux on the lunar dawnside than on the duskside. Combined with Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) data, we analyze the correlation between the ENA differential flux and solar wind parameters, such as flux, density, dynamic pressure, and velocity, for each ASAN energy channel on the dawnside and duskside. The results show that ENA differential flux is positively correlated with solar wind flux, density, and dynamic pressure and relatively lower on the duskside than on the dawnside. To determine the relationship between solar wind energy and ENA energy, we analyze the correlation between solar wind energy and ENA cutoff energy and temperature on the dawnside and duskside. The results show that the ENA cutoff energy and temperature are lower on the duskside than on the dawnside at the same solar wind energy. The difference between the ENA-solar wind observation on the dawnside and duskside is possibly caused by solar wind deflection and deceleration on the duskside, which can be attributed to the interaction between solar wind and the lunar magnetic anomalies located nearby in the northwestern direction of the Chang'E-4 landing site.
  • Shoichiro Yokota, Naoki Terada, Ayako Matsuoka, Naofumi Murata, Yoshifumi Saito, Dominique Delcourt, Yoshifumi Futaana, Kanako Seki, Micah J. Schaible, Kazushi Asamura, Satoshi Kasahara, Hiromu Nakagawa, Masaki N. Nishino, Reiko Nomura, Kunihiro Keika, Yuki Harada, Shun Imajo
    Earth, Planets and Space 73(1) 2021年12月  
    The mass spectrum analyzer (MSA) will perform in situ observations of ions and magnetic fields around Phobos as part of the Martian Moons eXploration (MMX) mission to investigate the origin of the Martian moons and physical processes in the Martian environment. MSA consists of an ion energy mass spectrometer and two magnetometers which will measure velocity distribution functions and mass/charge distributions of low-energy ions and magnetic field vectors, respectively. For the MMX scientific objectives, MSA will observe solar wind ions, those scattered at the Phobos surface, water-related ions generated in the predicted Martian gas torus, secondary ions sputtered from Phobos, and escaping ions from the Martian atmosphere, while monitoring the surrounding magnetic field. MSA will be developed from previous instruments for space plasma missions such as Kaguya, Arase, and BepiColombo/Mio to contribute to the MMX scientific objectives. [Figure not available: see fulltext.]
  • Masaki N Nishino, Hiroshi Hasegawa, Yoshifumi Saito, Naritoshi Kitamura, Yukinaga Miyashita, Tsugunobu Nagai, shoichiro yokota, Daniel J Gershman, Christopher T. Russell, Barbara L. Giles
    2021年10月5日  
  • Martin Volwerk, Beatriz Sánchez-Cano, Daniel Heyner, Sae Aizawa, Nicolas André, Ali Varsani, Johannes Mieth, Stefano Orsini, Wolfgang Baumjohann, David Fischer, Yoshifumi Futaana, Richard Harrison, Harald Jeszenszky, Iwai Kazumasa, Gunter Laky, Herbert Lichtenegger, Anna Milillo, Yoshizumi Miyoshi, Rumi Nakamura, Ferdinand Plaschke, Ingo Richter, Sebastián Rojas Mata, Yoshifumi Saito, Daniel Schmid, Daikou Shiota, Cyril Simon Wedlund
    Annales Geophysicae 39(5) 811-831 2021年9月17日  
    Out of the two Venus flybys that BepiColombo uses as a gravity assist manoeuvre to finally arrive at Mercury, the first took place on 15 October 2020. After passing the bow shock, the spacecraft travelled along the induced magnetotail, crossing it mainly in the YVSO direction. In this paper, the BepiColombo Mercury Planetary Orbiter Magnetometer (MPO-MAG) data are discussed, with support from three other plasma instruments: the Planetary Ion Camera (SERENA-PICAM) of the SERENA suite, the Mercury Electron Analyser (MEA), and the BepiColombo Radiation Monitor (BERM). Behind the bow shock crossing, the magnetic field showed a draping pattern consistent with field lines connected to the interplanetary magnetic field wrapping around the planet. This flyby showed a highly active magnetotail, with e.g. strong flapping motions at a period of ĝ1/47ĝmin. This activity was driven by solar wind conditions. Just before this flyby, Venus's induced magnetosphere was impacted by a stealth coronal mass ejection, of which the trailing side was still interacting with it during the flyby. This flyby is a unique opportunity to study the full length and structure of the induced magnetotail of Venus, indicating that the tail was most likely still present at about 48 Venus radii.
  • Yuki Harada, Yoshiya Kasahara, Masaki N. Nishino, Satoshi Kurita, Yoshifumi Saito, Shoichiro Yokota, Atsushi Kumamoto, Futoshi Takahashi, Hisayoshi Shimizu
    Geophysical Research Letters 48(17) 2021年9月16日  
    The Moon drives observable perturbations in the upstream solar wind in a similar manner to the terrestrial foreshock. Recent observations suggested that lunar dayside electrostatic waves can arise from two different driving mechanisms, both involving reflected particles from lunar crustal magnetic fields. However, their association with the global distribution of lunar magnetic anomalies have not been fully characterized. Here we exploit polar orbiting Kaguya to generate first global maps of electrostatic waves and solar wind electron modification above the day side of the Moon. The maps clearly demonstrate that the two signatures are correlated with lunar crustal magnetic fields. Additionally, we observe different characteristics of electron modification for different interplanetary magnetic field orientations. The lunar crustal magnetic fields cause a wide range of reflected electron and ion intensities, thereby serving as a test bed to investigate the relative roles of reflected particles on wave excitation and particle heating.
  • Tomoko Nakagawa, Futoshi Takahashi, Yoshifumi Saito, Hisayoshi Shimizu
    Journal of Geophysical Research: Space Physics 126(8) 2021年8月  
    A structure of polarization of magnetic field variation in the frequency range from 0.01 to 0.3 Hz was found by Kaguya in the lunar wake. In a dawnward-directed magnetic field, the polarization was left-handed in the southern hemisphere and right-handed in the northern hemisphere of the lunar wake. The sense of rotation was consistent with vortices behind an obstacle in a fast stream, although no such vortices were detected by Kaguya. The direction of magnetic field variation was predominantly perpendicular to the background magnetic field, suggesting that the waves were of shear Alfvén mode. The same polarization structure was found in rotated magnetic fields. In a selenocentric coordinate system with x axis antiparallel to the solar wind flow and the magnetic field in x-z plane, the polarization was dependent only on y position of the spacecraft. The polarization structure was stable and unchanged in various solar wind conditions showing no preferences. It was observed in the magnetosheath as well as in the solar wind, but not in the terrestrial magnetosphere. The power density showed preferences to high-temperature, high-speed solar wind. The power density was higher at the wake boundary than in the center of the wake, suggesting that the magnetic fluctuations were generated at the wake boundary by ions refilling the wake, and propagate into the deep wake as shear Alfvén waves.
  • Yoshifumi Saito, Dominique Delcourt, Masafumi Hirahara, Stas Barabash, Nicolas André, Takeshi Takashima, Kazushi Asamura, Shoichiro Yokota, Martin Wieser, Masaki N. Nishino, Mitsuo Oka, Yoshifumi Futaana, Yuki Harada, Jean André Sauvaud, Philippe Louarn, Benoit Lavraud, Vincent Génot, Christian Mazelle, Iannis Dandouras, Christian Jacquey, Claude Aoustin, Alain Barthe, Alexandre Cadu, Andréi Fedorov, Anne Marie Frezoul, Catherine Garat, Eric Le Comte, Qiu Mei Lee, Jean Louis Médale, David Moirin, Emmanuel Penou, Mathieu Petiot, Guy Peyre, Jean Rouzaud, Henry Claude Séran, Zdenĕk Nĕmec̆ek, Jana S̆afránková, Maria Federica Marcucci, Roberto Bruno, Giuseppe Consolini, Wataru Miyake, Iku Shinohara, Hiroshi Hasegawa, Kanako Seki, Andrew J. Coates, Frédéric Leblanc, Christophe Verdeil, Bruno Katra, Dominique Fontaine, Jean Marie Illiano, Jean Jacques Berthelier, Jean Denis Techer, Markus Fraenz, Henning Fischer, Norbert Krupp, Joachim Woch, Ulrich Bührke, Björn Fiethe, Harald Michalik, Haruhisa Matsumoto, Tomoki Yanagimachi, Yoshizumi Miyoshi, Takefumi Mitani, Manabu Shimoyama, Qiugang Zong, Peter Wurz, Herman Andersson, Stefan Karlsson, Mats Holmström, Yoichi Kazama, Wing Huen Ip, Masahiro Hoshino, Masaki Fujimoto, Naoki Terada, Kunihiro Keika
    Space Science Reviews 217(5) 2021年8月  査読有り筆頭著者責任著者
    BepiColombo Mio (previously called MMO: Mercury Magnetospheric Orbiter) was successfully launched by Ariane 5 from Kourou, French Guiana on October 20, 2018. The Mercury Plasma/Particle Experiment (MPPE) is a comprehensive instrument package onboard Mio spacecraft used for plasma, high-energy particle and energetic neutral atom measurements. It consists of seven sensors including two Mercury Electron Analyzers (MEA1 and MEA2), Mercury Ion Analyzer (MIA), Mass Spectrum Analyzer (MSA), High Energy Particle instrument for electron (HEP-ele), High Energy Particle instrument for ion (HEP-ion), and Energetic Neutrals Analyzer (ENA). Significant efforts were made pre-flight to calibrate all of the MPPE sensors at the appropriate facilities on the ground. High voltage commissioning of MPPE analyzers was successfully performed between June and August 2019 and in February 2020 following the completion of the low voltage commissioning in November 2018. Although all of the MPPE analyzers are now ready to begin observation, the full service performance has been delayed until Mio’s arrival at Mercury. Most of the fields of view (FOVs) of the MPPE analyzers are blocked by the thermal shield surrounding the Mio spacecraft during the cruising phase. Together with other instruments on Mio including Magnetic Field Investigation (MGF) and Plasma Wave Investigation (PWI) that measure plasma field parameters, MPPE will contribute to the comprehensive understanding of the plasma environment around Mercury when BepiColombo/Mio begins observation after arriving at the planet Mercury in December 2025.
  • T. Namekawa, T. Mitani, K. Asamura, Y. Miyoshi, K. Hosokawa, Y. Ogawa, S. Saito, T. Hori, S. Sugo, O. Kawashima, S. Kasahara, R. Nomura, N. Yagi, M. Fukizawa, T. Sakanoi, Y. Saito, A. Matsuoka, I. Shinohara, Y. Fedorenko, A. Nikitenko, C. Koehler
    Journal of Geophysical Research: Space Physics 126(7) 2021年7月  
    An energy spectrum of electrons from 180 to 550 keV precipitating into the dayside polar ionosphere was observed under a geomagnetically quiet condition (AE ≤ 100 nT, Kp = 1-). The observation was carried out at 73–184 km altitudes by the HEP instrument onboard the RockSat-XN sounding rocket that has been launched from Andøya, Norway. The observed energy spectrum of precipitating electrons follows a power law of −4.9 ± 0.4 and the electron flux does not vary much over the observation period (∼274.4 s). A nearby ground-based VLF receiver observation at Lovozero, Russia shows the presence of whistler-mode wave activities during the rocket observation. A few minutes before the RockSat-XN observation, POES18/MEPED observed precipitating electrons, which also suggest whistler-mode chorus wave activities at the location close to the rocket trajectory. A test-particle simulation for wave-particle interactions was carried out using the data of the Arase satellite as the initial condition which was located on the duskside. The result of the simulation shows that whistler-mode waves can resonate with sub-relativistic electrons at high latitudes. These results suggest that the precipitation observed by RockSat-XN is likely to be caused by the wave-particle interactions between whistler-mode waves and sub-relativistic electrons.
  • N. Kitamura, M. Shoji, S. Nakamura, M. Kitahara, T. Amano, Y. Omura, H. Hasegawa, S. A. Boardsen, Y. Miyoshi, Y. Katoh, M. Teramoto, Y. Saito, S. Yokota, M. Hirahara, D. J. Gershman, B. L. Giles, C. T. Russell, R. J. Strangeway, N. Ahmadi, P. A. Lindqvist, R. E. Ergun, S. A. Fuselier, J. L. Burch
    Journal of Geophysical Research: Space Physics 126(5) 2021年5月  
    The Magnetospheric Multiscale (MMS) spacecraft observed many enhancements of electromagnetic ion cyclotron (EMIC) waves in an event in the late afternoon outer magnetosphere. These enhancements occurred mainly in the troughs of magnetic field intensity associated with a compressional ultralow frequency (ULF) wave. The ULF wave had a period of ∼2–5 min (Pc5 frequency range) and was almost static in the plasma rest frame. The magnetic and ion pressures were in antiphase. They are consistent with mirror-mode type structures. We apply the Wave-Particle Interaction Analyzer method, which can quantitatively investigate the energy transfer between hot anisotropic protons and EMIC waves, to burst-mode data obtained by the four MMS spacecraft. The energy transfer near the cyclotron resonance velocity was identified in the vicinity of the center of troughs of magnetic field intensity, which corresponds to the maxima of ion pressure in the compressional ULF wave. This result is consistent with the idea that the EMIC wave generation is modulated by ULF waves, and preferential locations for the cyclotron resonant energy transfer are the troughs of magnetic field intensity. In these troughs, relatively low resonance velocity due to the lower magnetic field intensity and the enhanced hot proton flux likely contribute to the enhanced energy transfer from hot protons to the EMIC waves by cyclotron resonance. Due to the compressional ULF wave, regions of the cyclotron resonant energy transfer can be narrow (only a few times of the gyroradii of hot resonant protons) in magnetic local time.
  • Masaki N Nishino, Yoshifumi Saito, Hiroshi Hasegawa, Naritoshi Kitamura, Yukinaga Miyashita, Tsugunobu Nagai, shoichiro yokota, Daniel J Gershman, Christopher T. Russell, Barbara L. Giles
    2021年2月  
  • Valeria Mangano, Melinda Dósa, Markus Fränz, Anna Milillo, Joana S. Oliveira, Yeon Joo Lee, Susan McKenna-Lawlor, Davide Grassi, Daniel Heyner, Alexander S. Kozyrev, Roberto Peron, Jörn Helbert, Sebastien Besse, Sara de la Fuente, Elsa Montagnon, Joe Zender, Martin Volwerk, Jean Yves Chaufray, James A. Slavin, Harald Krüger, Alessandro Maturilli, Thomas Cornet, Kazumasa Iwai, Yoshizumi Miyoshi, Marco Lucente, Stefano Massetti, Carl A. Schmidt, Chuanfei Dong, Francesco Quarati, Takayuki Hirai, Ali Varsani, Denis Belyaev, Jun Zhong, Emilia K.J. Kilpua, Bernard V. Jackson, Dusan Odstrcil, Ferdinand Plaschke, Rami Vainio, Riku Jarvinen, Stavro Lambrov Ivanovski, Ákos Madár, Géza Erdős, Christina Plainaki, Tommaso Alberti, Sae Aizawa, Johannes Benkhoff, Go Murakami, Eric Quemerais, Harald Hiesinger, Igor G. Mitrofanov, Luciano Iess, Francesco Santoli, Stefano Orsini, Herbert Lichtenegger, Gunther Laky, Stas Barabash, Richard Moissl, Juhani Huovelin, Yasumasa Kasaba, Yoshifumi Saito, Masanori Kobayashi, Wolfgang Baumjohann
    Space Science Reviews 217(1) 2021年2月  
    The dual spacecraft mission BepiColombo is the first joint mission between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA) to explore the planet Mercury. BepiColombo was launched from Kourou (French Guiana) on October 20th, 2018, in its packed configuration including two spacecraft, a transfer module, and a sunshield. BepiColombo cruise trajectory is a long journey into the inner heliosphere, and it includes one flyby of the Earth (in April 2020), two of Venus (in October 2020 and August 2021), and six of Mercury (starting from 2021), before orbit insertion in December 2025. A big part of the mission instruments will be fully operational during the mission cruise phase, allowing unprecedented investigation of the different environments that will encounter during the 7-years long cruise. The present paper reviews all the planetary flybys and some interesting cruise configurations. Additional scientific research that will emerge in the coming years is also discussed, including the instruments that can contribute.
  • H. Z. Wang, J. Zhang, Q. Q. Shi, Y. Saito, A. W. Degeling, I. J. Rae, Q. G. Zong, Y. Wei, J. Liu, R. L. Guo, Z. H. Yao, A. M. Tian, X. H. Fu, J. Z. Liu, Z. C. Ling, S. Y. Fu, W. J. Sun, S. C. Bai, J. Chen, S. T. Yao, H. Zhang, W. L. Liu, L. D. Xia, Y. Y. Feng, Z. Y. Pu
    Astrophysical Journal Letters 907(2) 2021年2月1日  
    © 2021. The American Astronomical Society. Understanding the sources of lunar water is crucial for studying the history of lunar evolution, as well as the interaction of solar wind with the Moon and other airless bodies. Recent orbital spectral observations revealed that the solar wind is a significant exogenous driver of lunar surficial hydration. However, the solar wind is shielded over a period of 3-5 days per month as the Moon passes through the Earth's magnetosphere, during which a significant loss of hydration is expected. Here we report the temporal and spatial distribution of polar surficial OH/H2O abundance, using Chandrayaan-1 Moon Mineralogy Mapper (M3) data, which covers the regions inside/ outside the Earth's magnetosphere. The data shows that polar surficial OH/H2O abundance increases with latitude, and that the probability of polar surficial OH/H2O abundance remains at the same level when in the solar wind and in the magnetosphere by controlling latitude, composition, and lunar local time. This indicates that the OH/H2O abundance in the polar regions may be saturated, or supplemented from other possible sources, such as Earth wind (particles from the magnetosphere, distinct from the solar wind), which may compensate for thermal diffusion losses while the Moon lies within the Earth's magnetosphere. This work provides some clues for studies of planet- moon systems, whereby the planetary wind serves as a bridge connecting the planet with its moons.
  • Alessandro Retinò, Yuri Khotyaintsev, Olivier Le Contel, Maria Federica Marcucci, Ferdinand Plaschke, Andris Vaivads, Vassilis Angelopoulos, Pasquale Blasi, Jim Burch, Johan De Keyser, Malcolm Dunlop, Lei Dai, Jonathan Eastwood, Huishan Fu, Stein Haaland, Masahiro Hoshino, Andreas Johlander, Larry Kepko, Harald Kucharek, Gianni Lapenta, Benoit Lavraud, Olga Malandraki, William Matthaeus, Kathryn McWilliams, Anatoli Petrukovich, Jean Louis Pinçon, Yoshifumi Saito, Luca Sorriso-Valvo, Rami Vainio, Robert Wimmer-Schweingruber
    Experimental Astronomy 2021年  
    This White Paper outlines the importance of addressing the fundamental science theme “How are charged particles energized in space plasmas” through a future ESA mission. The White Paper presents five compelling science questions related to particle energization by shocks, reconnection, waves and turbulence, jets and their combinations. Answering these questions requires resolving scale coupling, nonlinearity, and nonstationarity, which cannot be done with existing multi-point observations. In situ measurements from a multi-point, multi-scale L-class Plasma Observatory consisting of at least seven spacecraft covering fluid, ion, and electron scales are needed. The Plasma Observatory will enable a paradigm shift in our comprehension of particle energization and space plasma physics in general, with a very important impact on solar and astrophysical plasmas. It will be the next logical step following Cluster, THEMIS, and MMS for the very large and active European space plasmas community. Being one of the cornerstone missions of the future ESA Voyage 2050 science programme, it would further strengthen the European scientific and technical leadership in this important field.
  • W. J. Sun, J. A. Slavin, A. W. Smith, R. M. Dewey, G. K. Poh, X. Jia, J. M. Raines, S. Livi, Y. Saito, D. J. Gershman, G. A. DiBraccio, S. M. Imber, J. P. Guo, S. Y. Fu, Q. G. Zong, J. T. Zhao
    Geophysical Research Letters 47(21) 2020年11月16日  
    ©2020. American Geophysical Union. All Rights Reserved. Mercury's flux transfer event (FTE) showers are dayside magnetopause crossings accompanied by large numbers (≥10) of magnetic flux ropes (FRs). These shower events are common, occurring during 52% (1,953/3,748) of the analyzed crossings. Shower events are observed with magnetic shear angles (θ) from 0° to 180° across the magnetopause and magnetosheath plasma β from 0.1 to 10 but are most prevalent for high θ and low plasma β. Individual FR duration correlates positively, while spacing correlates negatively, with θ and plasma β. FR flux content and core magnetic field intensity correlate negatively with plasma β, but they do not correlate with θ. During shower intervals, FRs carry 60% to 85% of the magnetic flux required to supply Mercury's Dungey cycle. The FTE showers and the large amount of magnetic flux carried by the FTE-type FRs appear quite different from observations at Earth and other planetary magnetospheres visited thus far.
  • Go Murakami, Hajime Hayakawa, Hiroyuki Ogawa, Shoya Matsuda, Taeko Seki, Yasumasa Kasaba, Yoshifumi Saito, Ichiro Yoshikawa, Masanori Kobayashi, Wolfgang Baumjohann, Ayako Matsuoka, Hirotsugu Kojima, Satoshi Yagitani, Michel Moncuquet, Jan Erik Wahlund, Dominique Delcourt, Masafumi Hirahara, Stas Barabash, Oleg Korablev, Masaki Fujimoto
    Space Science Reviews 216(7) 2020年10月1日  
    © 2020, Springer Nature B.V. Mercury has a unique and complex space environment with its weak global magnetic field, intense solar wind, tenuous exosphere, and magnetospheric plasma particles. This complex system makes Mercury an excellent science target to understand effects of the solar wind to planetary environments. In addition, investigating Mercury’s dynamic magnetosphere also plays a key role to understand extreme exoplanetary environment and its habitability conditions against strong stellar winds. BepiColombo, a joint mission to Mercury by the European Space Agency and Japan Aerospace Exploration Agency, will address remaining open questions using two spacecraft, Mio and the Mercury Planetary Orbiter. Mio is a spin-stabilized spacecraft designed to investigate Mercury’s space environment, with a powerful suite of plasma instruments, a spectral imager for the exosphere, and a dust monitor. Because of strong constraints on operations during its orbiting phase around Mercury, sophisticated observation and downlink plans are required in order to maximize science outputs. This paper gives an overview of the Mio spacecraft and its mission, operations plan, and data handling and archiving.
  • A. Milillo, M. Fujimoto, G. Murakami, J. Benkhoff, J. Zender, S. Aizawa, M. Dósa, L. Griton, D. Heyner, G. Ho, S. M. Imber, X. Jia, T. Karlsson, R. M. Killen, M. Laurenza, S. T. Lindsay, S. McKenna-Lawlor, A. Mura, J. M. Raines, D. A. Rothery, N. André, W. Baumjohann, A. Berezhnoy, P. A. Bourdin, E. J. Bunce, F. Califano, J. Deca, S. de la Fuente, C. Dong, C. Grava, S. Fatemi, P. Henri, S. L. Ivanovski, B. V. Jackson, M. James, E. Kallio, Y. Kasaba, E. Kilpua, M. Kobayashi, B. Langlais, F. Leblanc, C. Lhotka, V. Mangano, A. Martindale, S. Massetti, A. Masters, M. Morooka, Y. Narita, J. S. Oliveira, D. Odstrcil, S. Orsini, M. G. Pelizzo, C. Plainaki, F. Plaschke, F. Sahraoui, K. Seki, J. A. Slavin, R. Vainio, P. Wurz, S. Barabash, C. M. Carr, D. Delcourt, K. H. Glassmeier, M. Grande, M. Hirahara, J. Huovelin, O. Korablev, H. Kojima, H. Lichtenegger, S. Livi, A. Matsuoka, R. Moissl, M. Moncuquet, K. Muinonen, E. Quèmerais, Y. Saito, S. Yagitani, I. Yoshikawa, J. E. Wahlund
    Space Science Reviews 216(5) 2020年8月1日  査読有り
    © 2020, The Author(s). The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury’s environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors.
  • R. Kieokaew, B. Lavraud, C. Foullon, S. Toledo-Redondo, N. Fargette, K. J. Hwang, K. Malakit, D. Ruffolo, M. Øieroset, T. D. Phan, H. Hasegawa, S. Fadanelli, L. Avanov, J. Burch, D. J. Gershman, B. Giles, J. Dorelli, V. Génot, C. Jacquey, T. Moore, W. Paterson, C. Pollock, A. Rager, Y. Saito, J. A. Sauvaud, C. Schiff, Y. Vernisse, E. Penou
    Journal of Geophysical Research: Space Physics 125(6) 2020年6月1日  
    ©2020. American Geophysical Union. All Rights Reserved. Magnetopause Kelvin-Helmholtz (KH) waves are believed to mediate solar wind plasma transport via small-scale mechanisms. Vortex-induced reconnection (VIR) was predicted in simulations and recently observed using NASA's Magnetospheric Multiscale (MMS) mission data. Flux Transfer Events (FTEs) produced by VIR at multiple locations along the periphery of KH waves were also predicted in simulations, but detailed observations were still lacking. Here we report MMS observations of an FTE-type structure in a KH wave trailing edge during KH activity on 5 May 2017 on the dawnside flank magnetopause. The structure is characterized by (1) bipolar magnetic BY variation with enhanced core field (BZ) and (2) enhanced total pressure with dominant magnetic pressure. The cross-section size of the FTE is found to be consistent with vortex-induced flux ropes predicted in the simulations. Unexpectedly, we observe an ion jet (VY); electron parallel heating, ion, and electron density enhancements; and other signatures that can be interpreted as a reconnection exhaust at the FTE central current sheet. Moreover, pitch angle distributions of suprathermal electrons on either side of the current sheet show different properties, indicating different magnetic connectivities. This FTE-type structure may thus alternatively be interpreted as two interlaced flux tubes with reconnection at the interface as reported by Kacem et al. (2018) and Øieroset et al. (2019s). The structure may be the result of interaction between two flux tubes, likely produced by multiple VIR at the KH wave trailing edge, and constitutes a new class of phenomenon induced by KH waves.
  • Y. Vernisse, B. Lavraud, M. Faganello, S. Fadanelli, M. Sisti, F. Califano, S. Eriksson, D. J. Gershman, J. Dorelli, C. Pollock, B. Giles, L. Avanov, J. Burch, J. Dargent, R. E. Ergun, C. J. Farrugia, V. Génot, H. Hasegawa, C. Jacquey, I. Kacem, R. Kieokaew, M. Kuznetsova, T. Moore, T. Nakamura, W. Paterson, E. Penou, T. D. Phan, C. T. Russell, Y. Saito, J. A. Sauvaud, S. Toledo-Redondo
    Journal of Geophysical Research: Space Physics 125(5) 2020年5月1日  
    ©2020. American Geophysical Union. All Rights Reserved. We investigate both large- and small-scale properties of a Kelvin-Helmholtz (KH) event at the dusk flank magnetopause using Magnetospheric Multiscale observations on 8 September 2015. We first use two types of 3-D simulations (global and local) to demonstrate that Magnetospheric Multiscale is close to the most KH unstable region, and so the occurrence of vortex-induced reconnection may be expected. Because they produce low-shear current sheets, KH vortices constitute a perfect laboratory to investigate magnetic reconnection with large guide field and low asymmetry. Recent works suggest that magnetic reconnection may be suppressed when a current sheet combines large guide field and pressure gradient (which induces a diamagnetic drift). We thus perform a statistical analysis of high-resolution data for the 69 KH-induced low-shear magnetic reconnection events observed on that day. We find that the suppression mechanism is not at work for most of the observed reconnecting current sheets, as predicted, but we also find that almost all nonreconnecting current sheets should be reconnecting according to this model. This confirms the fact that the model provides a necessary but not sufficient condition for reconnection to occur. Finally, based on the same data set, we study the latitudinal distribution of these magnetic reconnection events combined with global magnetospheric modeling. We find that reconnection associated with KH vortices occurs over a significant range of latitudes at the flank magnetopause. It is not confined to the plane where the growth rate is maximum, in agreement with recent 3-D simulations.
  • N. Kitamura, Y. Omura, S. Nakamura, T. Amano, S. A. Boardsen, N. Ahmadi, O. Le Contel, P. A. Lindqvist, R. E. Ergun, Y. Saito, S. Yokota, D. J. Gershman, W. R. Paterson, C. J. Pollock, B. L. Giles, C. T. Russell, R. J. Strangeway, J. L. Burch
    Journal of Geophysical Research: Space Physics 125(5) 2020年5月1日  査読有り
    ©2020. American Geophysical Union. All Rights Reserved. In the magnetosheath, intense whistler mode waves, called “Lion roars,” are often detected in troughs of magnetic field intensity in mirror mode structures. Using data obtained by the four Magnetospheric Multiscale (MMS) spacecraft, we show that reversals of gradient of magnetic field intensity along the magnetic field correspond to reversals of the field-aligned component of Poynting flux of whistler mode waves in the troughs. Such a characteristic is consistent with the idea that the whistler mode waves are effectively generated near the local minima of magnetic field intensity because of the smallest cyclotron resonance velocity and propagate toward regions of larger magnetic field intensity along the magnetic field lines on both sides. We use the reversal of the Poynting flux as an indicator of wave source regions. In these regions, we find that pancake or an outer edge of butterfly electron distributions above ~100 eV are good candidates for wave generation. Unclear correlations of phase difference and amplitude variations of whistler mode waves in cases of ~40 km spacecraft separation indicate that a simple plane wave approximation with a constant amplitude is not valid at this spatial scale that is much smaller than the ion gyroradius. The whistler mode waves consist of small coherent wave packets from multiple sources with spatial scales smaller than tens of electron gyroradii transverse to the background magnetic field in a mirror mode structure.
  • Shoichiro Yokota, Kentaro Terada, Yoshifumi Saito, Daiba Kato, Kazushi Asamura, Masaki N. Nishino, Hisayoshi Shimizu, Futoshi Takahashi, Hidetoshi Shibuya, Masaki Matsushima, Hideo Tsunakawa
    Science Advances 6(19) 2020年5月  査読有り
    Carbon is a volatile element that has a considerable influence on the formation and evolution of planetary bodies, although it was previously believed to be depleted in the Moon. We present observations by the lunar orbiter KAGUYA of carbon ions emitted from the Moon. These emissions were distributed over almost the total lunar surface, but amounts were differed with respect to lunar geographical areas. The estimated emission fluxes to space were similar to 5.0 x 10(4) per square centimeter per second, which is greater than possible ongoing supplies from the solar wind and micrometeoroids. Our estimates demonstrate that indigenous carbon exists over the entire Moon, supporting the hypothesis of a carbon-containing Moon, where the carbon was embedded at its formation and/or was transported billions of years ago.
  • Yukinaga Miyashita, Kanako Seki, Kaori Sakaguchi, Yasutaka Hiraki, Masahito Nose, Shinobu Machida, Yoshifumi Saito, William R. Paterson
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS 125(4) 2020年4月  
    We have statistically studied the average structure and properties of the plasma sheet in the Earth's magnetotail at radial distances between R similar to 8 and 32 RE on the basis of ion, electron, and magnetic field data from the Geotail spacecraft. Here we discuss the transition between the inner plasma sheet and the outer plasma sheet near the equatorial plane. The ion and electron number densities, pressures, and energy fluxes at high energies, as well as the magnetic field, generally decrease with increasing radial distance from the Earth. The characteristics of the flux changes are reflected in the radial pressure gradients. If the transition between the inner and outer plasma sheet is determined by the radial pressure gradient change, the ion and electron transitions are located, on average, at R similar to 11 to 13 RE and R similar to 11 to 17 RE, respectively, at the midnight meridian. It is possible that the ion transition is located earthward of the electron transition. Furthermore, we have estimated the electric field, the electric and diamagnetic drift velocities, and the.. parameter (the square root of the ratio of the minimum curvature radius of the magnetic field line to the maximum gyroradius), which differ between the ion inner and outer
  • Yasumasa Kasaba, Takeshi Takashima, Shoya Matsuda, Sadatoshi Eguchi, Manabu Endo, Takeshi Miyabara, Masahiro Taeda, Yoshikatsu Kuroda, Yoshiya Kasahara, Tomohiko Imachi, Hirotsugu Kojima, Satoshi Yagitani, Michel Moncuquet, Jan Erik Wahlund, Atsushi Kumamoto, Ayako Matsuoka, Wolfgang Baumjohann, Shoichiro Yokota, Kazushi Asamura, Yoshifumi Saito, Dominique Delcourt, Masafumi Hirahara, Stas Barabash, Nicolas Andre, Masanori Kobayashi, Ichiro Yoshikawa, Go Murakami, Hajime Hayakawa
    Space Science Reviews 216(3) 2020年4月  査読有り
    © 2020, Springer Nature B.V. BepiColombo Mio, also known as the Mercury Magnetospheric Orbiter (MMO), is intended to conduct the first detailed study of the magnetic field and environment of the innermost planet, Mercury, alongside the Mercury Planetary Orbiter (MPO). This orbiter has five payload groups; the MaGnetic Field Investigation (MGF), the Mercury Plasma Particle Experiment (MPPE), the Plasma Wave Investigation (PWI), the Mercury Sodium Atmosphere Spectral Imager (MSASI), and the Mercury Dust Monitor (MDM). These payloads operate through the Mission Data Processor (MDP) that acts as an integrated system for Hermean environmental studies by the in situ observation of charged and energetic neutral particles, magnetic and electric fields, plasma waves, dust, and the remote sensing of radio waves and exospheric emissions. The MDP produces three kinds of coordinated data sets: Survey (L) mode for continuous monitoring, Nominal (M) mode for standard analyses of several hours in length (or more), and Burst (H) mode for analysis based on 4–20-min-interval datasets with the highest cadence. To utilize the limited telemetry bandwidth, nominal- and burst-mode data sets are partially downlinked after selections of data based on L- or L/M-mode data, respectively. Burst-mode data can be taken at preset timings, or by onboard automatic triggering. The MDP functions are implemented and tested on the ground as well as cruising spacecraft; they are responsible for conducting full scientific operations aboard spacecraft.
  • N. Fargette, B. Lavraud, M. Øieroset, T. D. Phan, S. Toledo-Redondo, R. Kieokaew, C. Jacquey, S. A. Fuselier, K. J. Trattner, S. Petrinec, H. Hasegawa, P. Garnier, V. Génot, Q. Lenouvel, S. Fadanelli, E. Penou, J. A. Sauvaud, D. L.A. Avanov, J. Burch, M. O. Chandler, V. N. Coffey, J. Dorelli, J. P. Eastwood, C. J. Farrugia, D. J. Gershman, B. L. Giles, E. Grigorenko, T. E. Moore, W. R. Paterson, C. Pollock, Y. Saito, C. Schiff, S. E. Smith
    Geophysical Research Letters 47(6) 2020年3月28日  
    ©2020. American Geophysical Union. All Rights Reserved. Flux transfer events (FTEs) are transient phenomena frequently observed at the Earth's magnetopause. Their usual interpretation is a flux rope moving away from the reconnection region. However, the Magnetospheric Multiscale Mission revealed that magnetic reconnection sometimes occurs inside these structures, questioning their flux rope configuration. Here we investigate 229 FTE-type structures and find reconnection signatures inside 19% of them. We analyze their large-scale magnetic topology using electron heat flux and find that it is significantly different across the FTE reconnecting current sheets, demonstrating that they are constituted of two magnetically disconnected structures. We also find that the interplanetary magnetic field (IMF) associated with reconnecting FTEs presents a strong By component. We discuss several formation mechanisms to explain these observations. In particular, the maximum magnetic shear model predicts that for large IMF By, two spatially distinct X lines coexist at the magnetopause. They can generate separate magnetic flux tubes that may become interlaced.

MISC

 241

講演・口頭発表等

 202

共同研究・競争的資金等の研究課題

 32

● 指導学生等の数

 4
  • 年度
    2021年度(FY2021)
    博士課程学生数
    1
    修士課程学生数
    2
  • 年度
    2020年度(FY2020)
    博士課程学生数
    1
    修士課程学生数
    2
  • 年度
    2019年度(FY2019)
    博士課程学生数
    2
    修士課程学生数
    2
  • 年度
    2018年度(FY2018)
    博士課程学生数
    2
    修士課程学生数
    3

● 専任大学名

 1
  • 専任大学名
    東京大学(University of Tokyo)