研究者業績

橋本 博文

ハシモト ヒロフミ  (Hirofumi Hashimoto)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 准教授
総合研究大学院大学 先端学術院 宇宙科学コース 准教授
学位
博士(工学)(1995年3月 東京大学)
修士(工学)(1992年3月 東京大学)

J-GLOBAL ID
200901024470094960
researchmap会員ID
1000186076

外部リンク

東京生まれ。筑波大講師を経て2008年より現職。専門は機械工学、宇宙環境工学、アストロバイオロジー。

主要な論文

 88
  • Yusuke Tanimura, Atsushi Mabuchi, Kouichi Soga, Kazuyuki Wakabayashi, Hirofumi Hashimoto, Sachiko Yano, Shohei Matsumoto, Haruo Kasahara, Motoshi Kamada, Toru Shimazu, Takashi Hashimoto, Takayuki Hoson
    Biological Sciences in Space 36 1-8 2022年  査読有り
  • Kaori Tomita-Yokotani, Shunta Kimura, Midori Ong, Miku Tokita, Hiroshi Katoh, Tomoko Abe, Hirofumi Hashimoto, Kintake Sonoike, Masayuki Ohmori
    Astrobiology 21(12) 1505-1514 2021年12月1日  査読有り
  • Kensei Kobayashi, Hajime Mita, Yoko Kebukawa, Kazumichi Nakagawa, Takeo Kaneko, Yumiko Obayashi, Tomohito Sato, Takuya Yokoo, Saaya Minematsu, Hitoshi Fukuda, Yoshiyuki Oguri, Isao Yoda, Satoshi Yoshida, Kazuhiro Kanda, Eiichi Imai, Hajime Yano, Hirofumi Hashimoto, Shin-ichi Yokobori, Akihiko Yamagishi
    Astrobiology 21(12) 1479-1493 2021年12月1日  査読有り
  • Daisuke Fujiwara, Yuko Kawaguchi, Iori Kinoshita, Jun Yatabe, Issay Narumi, Hirofumi Hashimoto, Shin-ichi Yokobori, Akihiko Yamagishi
    Astrobiology 21(12) 1494-1504 2021年12月1日  査読有り
    To investigate microbial viability and DNA damage, dried cell pellets of the radiation-resistant bacterium Deinococcus radiodurans were exposed to various space environmental conditions at the Exposure Facility of the International Space Station (ISS) as part of the Tanpopo mission. Mutation analysis was done by sequencing the rpoB gene encoding RNA polymerase β-subunit of the rifampicin-resistant mutants. Samples included bacteria exposed to the space environment with and without exposure to UV radiation as well as control samples held in the ISS cabin and at ground. The mutation sites of the rpoB gene obtained from the space-exposed and ISS/ground control samples were similar to the rpoB mutation sites previously reported in D. radiodurans. Most mutations were found at or near the rifampicin binding site in the RNA polymerase β-subunit. Mutation sites found in UV-exposed samples were mostly shared with non-exposed and ISS/ground control samples. These results suggest that most mutations found in our experiments were induced during procedures that were applied across all treatments: preparation, transfer from our laboratory to the ISS, return from the ISS, and storage before analysis. Some mutations may be enhanced by specific factors in the space experiments, but the mutations were also found in the spontaneous and control samples. Our experiment suggests that the dried cells of the microorganism D. radiodurans can travel without space-specific deterioration that may induce excess mutations relative to travel at Earth's surface. However, upon arrival at a recipient location, they must still be able to survive and repair the general damage induced during travel.
  • Akihiko Yamagishi, Hirofumi Hashimoto, Hajime Yano, Eiichi Imai, Makoto Tabata, Masumi Higashide, Kyoko Okudaira
    Astrobiology 21(12) 1461-1472 2021年12月1日  査読有り
    The Tanpopo experiment was the first Japanese astrobiology mission on board the International Space Station. It included exposure experiments of microbes and organic compounds as well as a capture experiment of hypervelocity impacting microparticles. We deployed three Exposure Panels, each consisting of 20 Exposure Units that contained microbes, organic compounds, an alanine UV dosimeter or an ionizing radiation dosimeter. The three Exposure Panels were situated on the zenith face of the Exposed Experiment Handrail Attachment Mechanism (ExHAM) that was pointing in zenith direction toward space, which was attached on a handrail of the Japanese Experiment Module (Kibo) Exposed Facility (JEM-EF) outside the International Space Station. The three Exposure Panels were one by one retrieved and returned to the ground after approximately 1, 2, and 3 years of exposure to the space environment. Capture Panels, each of which contained one or two blocks of amorphous silica aerogel, were exposed to collect hypervelocity impact microparticles. Possible captured particles may include micrometeoroids, human-made orbital debris, and natural terrestrial particles. Each year, Capture Panels containing from 11 to 12 aerogel blocks were attached to the three faces of the ExHAM (pointing to zenith, ram, and port); they remained in place for about 1 year and were then returned to the laboratory. This process was repeated three times, in total, during 2015-2018. Additional exposure of a Capture Panel facing ram was conducted between 2018 and 2019. Once the aerogel blocks were returned to the laboratory, they were encapsulated in dedicated transparent plastic cases and optically inspected by a specially designed microscopic system. Once located and recorded, hypervelocity impact signatures were excavated one by one and distributed for further detailed analyses. The apparatus, operation, and environmental factors of all the Tanpopo experiments are summarized in this article.
  • Satoshi Kodaira, Masayuki Naito, Yukio Uchihori, Hirofumi Hashimoto, Hajime Yano, Akihiko Yamagishi
    Astrobiology 21(12) 1473-1478 2021年12月1日  査読有り
    Radiation dosimetry was carried out at the exposure facility (EF) and the pressurized module (PM) of the Japanese Kibo module installed in the International Space Station as one study on environmental monitoring for the Tanpopo mission. Three exposure panels and three references including biological and organic samples and luminescence dosimeters were launched to obtain data for different exposure durations during 3 years from May 2015 to July 2018. The dosimeters were equipped with additional shielding materials (0.55, 2.95, and 6.23 g/cm2 mass thickness). The relative dose variation, as a function of shielding mass thickness, was observed and compared with Monte Carlo simulations with respect to galactic cosmic rays (GCRs) and typical solar energetic particles (SEPs). The mean annual dose rates were DEF = 231 ± 5 mGy/year at the EF and DPM = 82 ± 1 mGy/year at the PM during the 3 years. The PM is well shielded, and the GCR simulation indicated that the measured mean dose reduction ratio inside the module (DPM/DEF = 0.35) required ∼26 g/cm2 additional shielding mass thickness. Observed points of the dose reduction tendency could be explained by the energy ranges of protons (10-100 MeV), where the protons passed through, or were absorbed in, the shielding materials of different mass thickness that surrounded dosimeters.
  • Yuko Kawaguchi, Mio Shibuya, Iori Kinoshita, Jun Yatabe, Issay Narumi, Hiromi Shibata, Risako Hayashi, Daisuke Fujiwara, Yuka Murano, Hirofumi Hashimoto, Eiichi Imai, Satoshi Kodaira, Yukio Uchihori, Kazumichi Nakagawa, Hajime Mita, Shin-ichi Yokobori, Akihiko Yamagishi
    Frontiers in Microbiology 11 2020年8月26日  査読有り
    © Copyright © 2020 Kawaguchi, Shibuya, Kinoshita, Yatabe, Narumi, Shibata, Hayashi, Fujiwara, Murano, Hashimoto, Imai, Kodaira, Uchihori, Nakagawa, Mita, Yokobori and Yamagishi. The hypothesis called “panspermia” proposes an interplanetary transfer of life. Experiments have exposed extremophilic organisms to outer space to test microbe survivability and the panspermia hypothesis. Microbes inside shielding material with sufficient thickness to protect them from UV-irradiation can survive in space. This process has been called “lithopanspermia,” meaning rocky panspermia. We previously proposed sub-millimeter cell pellets (aggregates) could survive in the harsh space environment based on an on-ground laboratory experiment. To test our hypothesis, we placed dried cell pellets of the radioresistant bacteria Deinococcus spp. in aluminum plate wells in exposure panels attached to the outside of the International Space Station (ISS). We exposed microbial cell pellets with different thickness to space environments. The results indicated the importance of the aggregated form of cells for surviving in harsh space environment. We also analyzed the samples exposed to space from 1 to 3 years. The experimental design enabled us to get and extrapolate the survival time course to predict the survival time of Deinococcus radiodurans. Dried deinococcal cell pellets of 500 μm thickness were alive after 3 years of space exposure and repaired DNA damage at cultivation. Thus, cell pellets 1 mm in diameter have sufficient protection from UV and are estimated to endure the space environment for 2–8 years, extrapolating the survival curve and considering the illumination efficiency of the space experiment. Comparison of the survival of different DNA repair-deficient mutants suggested that cell aggregates exposed in space for 3 years suffered DNA damage, which is most efficiently repaired by the uvrA gene and uvdE gene products, which are responsible for nucleotide excision repair and UV-damage excision repair. Collectively, these results support the possibility of microbial cell aggregates (pellets) as an ark for interplanetary transfer of microbes within several years.
  • 横谷香織, 木村駿太, オン碧, 味岡令子, 五十嵐裕一, 藤代華歌, 加藤浩, 橋本博文, 三田肇, 横堀慎一, 大森正之
    Eco-engineering 32(3) 47-53 2020年7月  査読有り
  • 橋本博文、今井栄一、矢野 創、横堀伸一、山岸明彦
    Viva Origino 47(4) 2019年10月  査読有り筆頭著者
  • Akihiko Yamagishi, Yuko Kawaguchi, Hirofumi Hashimoto, Hajime Yano, Eiichi Imai, Satoshi Kodaira, Yukio Uchihori, Kazumichi Nakagawa
    Astrobiology 18(11) 1369-1374 2018年11月  査読有り
    The Tanpopo mission has two objectives: (1) test the panspermia hypothesis and (2) test whether organic compounds may have been transferred to Earth before the origin of life. We developed an exposure panel (EP) designed to expose microbes and organic compounds to the space environment and a capture panel designed to capture high-velocity particles on the International Space Station (ISS) using aerogel contained in an aluminum container. The panels returned after 1 year of exposure at the Exposure Facility of the Japan Experimental Module, ISS. In this communication, we report the measurements of temperature, radiation dosimeter and vacuum ultraviolet dosimeter in the EP, and survival data of Deinococcus aetherius. The environmental data are consistent with survival data of microbes and organic compounds, which will be presented elsewhere in detail.
  • 山岸明彦, 河口優子, 横堀伸一, 橋本博文, 矢野創, 今井栄一, 田端誠, 小林憲正, 三田肇
    日本航空宇宙学会誌 66(6) 173-179 2018年6月  査読有り招待有り
  • Ayako Tokuda, Yoshiaki Kitaya, Hiroaki Hirai, Hirofumi Hashimoto, Yuko Inatomi
    INTERNATIONAL JOURNAL OF MICROGRAVITY SCIENCE AND APPLICATION 35(3) 2018年  査読有り
    Plants play an important role in bio-regenerative life support systems (BLSSs) for long-term manned space missions. During parabolic airplane flights, we investigated stem sap flow without forced air movement and water vapor conductance with forced air movement using sweetpotato plants. Stem sap flow was promoted under microgravity, but only when forced air movement was applied to the plants. The water vapor conductance of the plant leaves increased under microgravity at an air velocity of 0.25 m.s(-1). Leaf temperatures also increased under microgravity at an air velocity of 0.02 m.s(-1). This suggests that forced air movement is important in maintaining long-term, healthy plant growth in BLSSs.
  • Yuko Kawaguchi, Shin-ichi Yokobori, Hirofumi Hashimoto, Hajime Yano, Makoto Tabata, Hideyuki Kawai, Akihiko Yamagishi
    ASTROBIOLOGY 16(5) 363-376 2016年5月  査読有り
    The Tanpopo mission will address fundamental questions on the origin of terrestrial life. The main goal is to test the panspermia hypothesis. Panspermia is a long-standing hypothesis suggesting the interplanetary transport of microbes. Another goal is to test the possible origin of organic compounds carried from space by micrometeorites before the terrestrial origin of life. To investigate the panspermia hypothesis and the possible space origin of organic compounds, we performed space experiments at the Exposed Facility (EF) of the Japanese Experiment Module (JEM) of the International Space Station (ISS). The mission was named Tanpopo, which in Japanese means dandelion. We capture any orbiting microparticles, such as micrometeorites, space debris, and terrestrial particles carrying microbes as bioaerosols, by using blocks of silica aerogel. We also test the survival of microbial species and organic compounds in the space environment for up to 3 years. The goal of this review is to introduce an overview of the Tanpopo mission with particular emphasis on the investigation of the interplanetary transfer of microbes. The Exposed Experiment Handrail Attachment Mechanism with aluminum Capture Panels (CPs) and Exposure Panels (EPs) was exposed on the EF-JEM on May 26, 2015. The first CPs and EPs will be returned to the ground in mid-2016. Possible escape of terrestrial microbes from Earth to space will be evaluated by investigating the upper limit of terrestrial microbes by the capture experiment. Possible mechanisms for transfer of microbes over the stratosphere and an investigation of the effect of the microbial cell-aggregate size on survivability in space will also be discussed.
  • 橋本博文, 今井栄一, 矢野創, 渡辺英幸, 横堀伸一, 山岸明彦
    日本機械学会論文集 82(835) 2016年3月  査読有り
  • Makoto Tabata, Hideyuki Kawai, Hajime Yano, Eiichi Imai, Hirofumi Hashimoto, Shin-ichi Yokobori, Akihiko Yamagishi
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 77(2) 325-334 2016年2月  査読有り
    The fabrication of an ultralow-density hydrophobic silica aerogel for the intact capture cosmic dust during the Tanpopo mission is described. The Tanpopo experiment performed on the International Space Station orbiting the Earth includes the collection of terrestrial and interplanetary dust samples on a silica aerogel capture medium exposed to space for later ground-based biological and chemical analyses. The key to the mission's success is the development of high-performance capture media, and the major challenge is to satisfy the mechanical requirements as a spacecraft payload while maximizing the performance for intact capture. To this end, an ultralow-density (0.01 g cm(-3)) soft aerogel was employed in combination with a relatively robust 0.03 g cm(-3) aerogel. A procedure was also established for the mass production of double-layer aerogel tiles formed with a 0.01 g cm(-3) surface layer and a 0.03 g cm(-3) open-topped, box-shaped base layer, and 60 aerogel tiles were manufactured. The fabricated aerogel tiles have been demonstrated to be suitable as flight hardware with respect to both scientific and safety requirements. [GRAPHICS] .
  • Makoto Tabata, Hajime Yano, Hideyuki Kawai, Eiichi Imai, Yuko Kawaguchi, Hirofumi Hashimoto, Akihiko Yamagishi
    ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES 45(1-2) 225-229 2015年6月  査読有り
    In this paper, we report the progress in developing a silica-aerogel-based cosmic dust capture panel for use in the Tanpopo experiment on the International Space Station (ISS). Previous studies revealed that ultralow-density silica aerogel tiles, comprising two layers with densities of 0.01 and 0.03 g/cm(3) developed using our production technique, were suitable for achieving the scientific objectives of the astrobiological mission. A special density configuration (i.e., box framing) aerogel with a holder was designed to construct the capture panels. Qualification tests for an engineering model of the capture panel as an instrument aboard the ISS were successful. Sixty box-framing aerogel tiles were manufactured in a contamination-controlled environment.
  • Yuko Kawaguchi, Tomohiro Sugino, Makoto Tabata, Kyoko Okudaira, Eichi Imai, Hajime Yano, Sunao Hasegawa, Hirofumi Hashimoto, Hikaru Yabuta, Kensei Kobayashi, Hideyuki Kawai, Hajime Mita, Shin-ichi Yokobori, Akihiko Yamagishi
    ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES 44(1) 43-60 2014年2月  査読有り
    We have proposed an experiment (the Tanpopo mission) to capture microbes on the Japan Experimental Module of the International Space Station. An ultra low-density silica aerogel will be exposed to space for more than 1 year. After retrieving the aerogel, particle tracks and particles found in it will be visualized by fluorescence microscopy after staining it with a DNA-specific fluorescence dye. In preparation for this study, we simulated particle trapping in an aerogel so that methods could be developed to visualize the particles and their tracks. During the Tanpopo mission, particles that have an orbital velocity of similar to 8 km/s are expected to collide with the aerogel. To simulate these collisions, we shot Deinococcus radiodurans-containing Lucentite particles into the aerogel from a two-stage light-gas gun (acceleration 4.2 km/s). The shapes of the captured particles, and their tracks and entrance holes were recorded with a microscope/camera system for further analysis. The size distribution of the captured particles was smaller than the original distribution, suggesting that the particles had fragmented. We were able to distinguish between microbial DNA and inorganic compounds after staining the aerogel with the DNA-specific fluorescence dye SYBR green I as the fluorescence of the stained DNA and the autofluorescence of the inorganic particles decay at different rates. The developed methods are suitable to determine if microbes exist at the International Space Station altitude.
  • Hoson T, Kato S, Murakami M, Soga K, Wakabayashi K, Hashimoto H, Yamashita M, Hasegawa K, Higashibata A, Yano S, Hoshide A, Matsumoto S, Kasahara H, Osada I, Kamada M, Shimazu T, Muranaka T, Hashimoto T
    Journal of Gravitational Physiology 2014年  査読有り
  • Makoto TABATA, Eiichi IMAI, Hajime YANO, Hirofumi HASHIMOTO, Hideyuki KAWAI, Yuko KAWAGUCHI, Kensei KOBAYASHI, Hajime MITA, Kyoko OKUDAIRA, Satoshi SASAKI, Hikaru YABUTA, Shin-ichi YOKOBORI, Akihiko YAMAGISHI
    Trans. JSASS Aerospace Tech. Japan 12(ists29) Pk_29-Pk_34 2014年  査読有り
  • Kensei KOBAYASHI, Hajime MITA, Hikaru YABUTA, Kazumichi NAKAGAWA, Yukinori KAWAMOTO, Takeo KANEKO, Yumiko OBAYASHI, Kazuhiro KANDA, Satoshi YOSHIDA, Issay NARUMI, Eiichi IMAI, Hirofumi HASHIMOTO, Shin-ichi YOKOBORI, Akihiko YAMAGISHI, Tanpopo WG
    Trans. JSASS Aerospace Tech. Japan 12(ists29) Pp_1-Pp_6 2014年  査読有り
    A wide variety of organic compounds have been found in space, and their relevance to the origin of life is discussed. Interplanetary dust particles (IDPs) are most promising carriers of extraterrestrial organic compounds, but presence of bioorganic compounds are controversial since they are so small and were collected in the terrestrial biosphere. In addition, IDPs are directly exposed to cosmic and solar radiation. Thus, it is important to evaluate the stability of organics in IDPs in space environment. We are planning a novel astrobiology mission named Tanpopo by utilizing the Exposed Facility of Japan Experimental Module (JEM/EF) of the International Space Station (ISS). Two types of experiments will be done: Capture experiments and exposure experiments. In the exposure experiments, organics and microbes will be exposed to the space environments to examine possible alteration of organic compounds and survivability of microbes. Selected targets for the exposure experiments of organic compounds are as follows: Amino acids (glycine and isovaline), their possible precursors (hydantoin and 5-ethyl-5-methyl hydantoin) and complex precursors "CAW" synthesized from a mixture of carbon monoxide, ammonia and water by proton irradiation. In addition to them, powder of the Murchison meteorite will be exposed to examine possible alteration of meteoritic organics in space. We will show the results of preparatory experiments on ground by using a UV lamp, a 60Co source, synchrotron facilities, and a heavy ion irradiation facility.
  • Akihiko YAMAGISHI, Shin-ichi YOKOBORI, Hirofumi HASHIMOTO, Hajime YANO, Masumi HIGASHIDE, Makoto TABATA, Eiichi IMAI, Hikaru YABUTA, Kensei KOBAYASHI, Hideyuki KAWAI
    Trans. JSASS Aerospace Tech. Japan 12(ists29) Tk_49-Tk_55 2014年  査読有り
  • Yuko Kawaguchi, Yinjie Yang, Narutoshi Kawashiri, Keisuke Shiraishi, Masako Takasu, Issay Narumi, Katsuya Satoh, Hirofumi Hashimoto, Kazumichi Nakagawa, Yoshiaki Tanigawa, Yoh-Hei Momoki, Maiko Tanabe, Tomohiro Sugino, Yuta Takahashi, Yasuyuki Shimizu, Satoshi Yoshida, Kensei Kobayashi, Shin-Ichi Yokobori, Akihiko Yamagishi
    Origins of life and evolution of the biosphere : the journal of the International Society for the Study of the Origin of Life 43(4-5) 411-28 2013年10月  査読有り
    To investigate the possible interplanetary transfer of life, numerous exposure experiments have been carried out on various microbes in space since the 1960s. In the Tanpopo mission, we have proposed to carry out experiments on capture and space exposure of microbes at the Exposure Facility of the Japanese Experimental Module of the International Space Station (ISS). Microbial candidates for the exposure experiments in space include Deinococcus spp.: Deinococcus radiodurans, D. aerius and D. aetherius. In this paper, we have examined the survivability of Deinococcus spp. under the environmental conditions in ISS in orbit (i.e., long exposure to heavy-ion beams, temperature cycles, vacuum and UV irradiation). A One-year dose of heavy-ion beam irradiation did not affect the viability of Deinococcus spp. within the detection limit. Vacuum (10(-1) Pa) also had little effect on the cell viability. Experiments to test the effects of changes in temperature from 80 °C to -80 °C in 90 min (± 80 °C/90 min cycle) or from 60 °C to -60 °C in 90 min (± 60 °C/90 min cycle) on cell viability revealed that the survival rate decreased severely by the ± 80 °C/90 min temperature cycle. Exposure of various thicknesses of deinococcal cell aggregates to UV radiation (172 nm and 254 nm, respectively) revealed that a few hundred micrometer thick aggregate of deinococcal cells would be able to withstand the solar UV radiation on ISS for 1 year. We concluded that aggregated deinococcal cells will survive the yearlong exposure experiments. We propose that microbial cells can aggregate as an ark for the interplanetary transfer of microbes, and we named it 'massapanspermia'.
  • A. Yamagishi, S. Yokobori, H. Hashimoto, H. Yano, M. Higashide, M. Tabata, E. Imai, H. Yabuta, K. Kobayashi, H. Kawai
    ISTS Web Paper Archive 2013(k-49) 1-7 2013年  
  • 橋本 博文
    生態工学 25 111-116 2013年  査読有り
  • Yuichi Takahashi, Shinpei Shibata, Jun Yokoyama, Hirofumi Hashimoto, Shin-ichi Yokobori, Akihiko Yamagishi
    Biological Sciences in Space 27 9-18 2013年  査読有り
  • Daiki D. Horikawa, Ayami Yamaguchi, Tetsuya Sakashita, Daisuke Tanaka, Nobuyuki Hamada, Fumiko Yukuhiro, Hirokazu Kuwahara, Takekazu Kunieda, Masahiko Watanabe, Yuichi Nakahara, Seiichi Wada, Tomoo Funayama, Chihiro Katagiri, Seigo Higashi, Shin-Ichi Yokobori, Mikinori Kuwabara, Lynn J. Rothschild, Takashi Okuda, Hirofumi Hashimoto, Yasuhiko Kobayashi
    ASTROBIOLOGY 12(4) 283-289 2012年4月  査読有り
    Tardigrades are tiny (less than 1 mm in length) invertebrate animals that have the potential to survive travel to other planets because of their tolerance to extreme environmental conditions by means of a dry ametabolic state called anhydrobiosis. While the tolerance of adult tardigrades to extreme environments has been reported, there are few reports on the tolerance of their eggs. We examined the ability of hydrated and anhydrobiotic eggs of the tardigrade Ramazzottius varieornatus to hatch after exposure to ionizing irradiation (helium ions), extremely low and high temperatures, and high vacuum. We previously reported that there was a similar pattern of tolerance against ionizing radiation between hydrated and anhydrobiotic adults. In contrast, anhydrobiotic eggs (50% lethal dose; 1690 Gy) were substantially more radioresistant than hydrated ones (50% lethal dose; 509 Gy). Anhydrobiotic eggs also have a broader temperature resistance compared with hydrated ones. Over 70% of the anhydrobiotic eggs treated at either -196 degrees C or +50 degrees C hatched successfully, but all the hydrated eggs failed to hatch. After exposure to high-vacuum conditions (5.3 x 10(-4) Pa to 6.2 x 10(-5) Pa), the hatchability of the anhydrobiotic eggs was comparable to that of untreated control eggs.
  • Hoson T, Akamatsu H, Soga K, Wakabayashi K, Hashimoto H, Yamashita M, Hasegawa K, Yano S, Omori K, Ishioka N, Matsumoto S, Kasahara H, Shimazu T, Baba SA, Hashimoto T
    Trans. JSASS Aerospace Tech. Japan 10(ists28) Tp_1-Tp_5 2012年  査読有り
    Gravity resistance is a principal graviresponse in plants. In resistance to hypergravity, the gravity signal may be perceived by the mechanoreceptors located on the plasma membrane, and then transformed and transduced via the structural continuum or physiological continuity of cortical microtubules-plasma membrane-cell wall, leading to an increase in the cell wall rigidity as the final response. The Resist Tubule experiment, which will be conducted in the Kibo Module on the International Space Station, aims to confirm that this hypothesis is applicable to resistance to 1 G gravity. There are two major objectives in the Resist Tubule experiment. One is to quantify the contributions of cortical microtubules to gravity resistance using Arabidopsis tubulin mutants with different degrees of defects. Another objective is to analyze the modifications to dynamics of cortical microtubules and membrane rafts under microgravity conditions on-site by observing green fluorescent protein (GFP)-expressing Arabidopsis lines with the fluorescence microscope in the Kibo. We have selected suitable mutants, developed necessary hardware, and fixed operation procedure for the experiment.
  • A. Yamagishi, S. Yokobori, M. Yoshimura, H. Hashimoto, T. Kubota, H. Yano, J. Haruyama, M. Tabata, K. Kobayashi, H. Honda, Y. Utsumi, T. Saiki, T. Itoh, A. Miyakawa, K. Hamase, T. Naganuma, H. Mita, K. Tonokura, S. Sasaki, H. Miyamoto
    ISTS Web Paper Archives 2001(k-15) 1-6 2011年  査読有り
    JAXAが検討している火星探査において,生命探査を行う意義について述べ,具体的方法を提案した。
  • Motohashi, K, Tomita-Yokotani, K, Sato, S, Baba, K, Suzuki, T, Sakurai, N, Hashimoto, H, Yamashita, M, Tree RT
    Biological Sciences in Space 25(2-4) 93-97 2011年  査読有り
  • Takahashi, Y, Hashimoto, H, Nakagawa, T, Shibata, S
    Biological Sciences in Space 25(2-4) 83-92 2011年  査読有り
  • S. Yokobori, Y. Yang, K. Fujisaki, Y. Kawaguchi, T. Sugino, H. Hashimoto, K. Okudaira, M. Tabata, H. Kawai, Y. Yoshimura, T. Tsuji, I. Narumi, N. Hayashi, H. Yan, M. Yamashita, K. Kobayashi, A. Yamagishi
    Origins of Life and Evolution of Biospheres 40(6) 547-548 2010年12月  
    微生物の惑星間移動および地球外有機物の地球への伝搬を検証するための宇宙実験「たんぽぽ」について,その目的と準備状況について述べた。
  • YAMAGISHI Akihiko, YOKOBORI Shin‐ichi, YOSHIMURA Yoshitaka, YAMASHITA Masamichi, HASHIMOTO Hirofumi, KUBOTA Takashi, YANO Hajime, HARUYAMA Junichi, TABATA Makoto, KOBAYASHI Kensei, HONDA Hajime, UTSUMI Yuichi, SAIKI Tsunemasa, ITOH Takashi, MIYAKAWA Atsuo, HAMASE Kenji, NAGANUMA Takeshi, MITA Hajime, TONOKURA Kenichi, SASAKI Sho, MIYAMOTO Hideaki
    Biol Sci Space 24(2) 67-82 2010年10月  
  • Hajime Mita, Akihiko Yamagishi, Hajime Yano, Kyoko Okudaira, Kensei Kobayashi, Shin-ichi Yokobori, Makoto Tabata, Hideyuki Kawai, Hirofumi Hashimoto
    ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES 39(3-4) 371-372 2009年8月  査読有り
  • Shin-ichi Yokobori, Akihiko Yamagishi, Yinjie Yang, Kenta Fujisaki, Hirofumi Hashimoto, Hideyuki Kawai, Kensei Kobayashi, Hajime Mita, Kyoko Okudaira, Makoto Tabata, Hajime Yano, Masamichi Yamashita, Yoshitaka Yoshimura
    ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES 39(3-4) 377-378 2009年8月  査読有り
  • V. I. Burkov, L. A. Goncharova, G. A. Gusev, H. Hashimoto, F. Kaneko, T. Kaneko, K. Kobayashi, H. Mita, E. V. Moiseenko, T. Ogawa, N. G. Poluhina, T. Saito, S. Shima, J. Takahashi, M. Tanaka, Y. Tao, V. A. Tsarev, J. Xu, H. Yabuta, K. Yagi-Watanabe, H. Yan, G. Zhang
    Origins of Life and Evolution of Biospheres 39(3-4) 295-296 2009年6月  
  • M. Yamashita, K. Tomita-Yokotani, H. Hashimoto, N. Sawaki, M. Notoya
    Advances in Space Research 43(8) 1220-1223 2009年4月  査読有り
  • H. Hashimoto, T. Kaneko, H. Mita, S. Nakashima, H. Naraoka, K. Okudaira, J. Takahashi, Y. Takano, A. Yamagishi, M. Yamashita, H. Yano, S. Yokobori
    Origins of Life and Evolution of Biospheres 39(1) 4 2009年2月  
  • S. Yokobori, A. Yamagishi, Y. Yang, K. Fujisaki, H. Hashimoto, H. Kawai, H. Mita, K. Okudaira, M. Tabata, H. Yano, M. Yamashita, Y. Yoshimura
    Origins of Life and Evolution of Biospheres 39(1) 64-65 2009年2月  
  • Hirofumi Hashimoto, Hidenori Wada
    Mars: Prospective Energy and Material Resources 517-542 2009年  査読有り
    Overview of Space Agriculture on Mars: Mars is the second target of our manned space flight next to the Moon, and possibly the most distant extraterrestrial body to which we could travel, land and explore within the next half century. The requirements and design of life support for a Mars mission are quite different from those being operated on near Earth orbit or prepared for a lunar mission, because of the long mission duration. A Mars mission must include at least 2.5 years for round trip travel, and a restricted opening of the launch window, both for forward and return flights once every two years. Precursor manned mission to Mars might be conducted with a small number of crew and a conservative life support system on the space ship. Once the scale of the manned mission is enlarged, an advanced bio-regenerative life support system provides an economical advantage over the open loop life support, based on cost comparison between the cumulative sum of consumables with the open loop system versus the initial investment for a recycling system. We further propose use of on-site resources to supplement loss of component materials in the recycling process. Reproducing recycling materials on an expanded scale is another advantage of the use of on-site resources for space agriculture. © 2009 Springer-Verlag Berlin Heidelberg.
  • 石川洋二, 今井栄一, 内海裕一, 大石雅寿, 奥平恭子, 河合秀幸, 河崎行繁, 癸生川陽子, 小池惇平, 斉藤香織, 鈴木彰子, 高橋淳一, 中川和道, 中嶋 悟, 長沼 毅, 奈良岡浩, 橋本博文, 福島和彦, 本多 元, 丸茂克美, 三田 肇, 宮川厚夫, 藪田ひかる, 山岸明彦, 山下雅道, 吉村義隆
    Space Utilization Research 25 in press 2009年  
  • 増野陽一, 中井亮祐, 長谷川剛史, 中村慶子, 幸村基世, 渋谷絵里, 右山絵里, 長沼毅, 伊村智, 岩月輝希, 小林克己, 三枝誠行, 嶋田和人, 白壁義久, 高野淑識, 高山健, 俵裕子, 橋本博文, 森田洋平, 山下雅道
    Space Utilization Research 25(25) in press 2009年  
    第25回宇宙利用シンポジウム(2009年1月14日-15日, 宇宙航空研究開発機構宇宙科学研究本部相模原キャンパス)形態: カラー図版あり資料番号: AA0064297069

MISC

 193
  • 山岸明彦, 横堀伸一, YINJIE Yang, 河口優子, 杉野朋弘, 小林憲正, 伏見英彦, 河合純, 大林由美子, 山下雅道, 橋本博文, 矢野創, 長谷川直, 田端誠, 丸茂克美, 中嶋悟, 藪田ひかる, 河合秀幸, 奥平恭子, 三田肇, 奈良岡浩, 今井栄一
    スペース・プラズマ研究会 2009(CD-ROM) ROMBUNNO.32 2010年  
  • 伏見 英彦, 河合 純, 平子 智章, 大林 由美子, 金子 竹男, 小林 憲正, 三田 肇, 藪田 ひかる, 今井 栄一, 奥平 恭子, 田端 誠, 長谷川 直, 河合 秀幸, 丸茂 克美, 橋本 博文, 矢野 創, 山下 雅道, 横堀 伸一, 山岸 明彦
    Viva origino 38 26-26 2010年  
  • 河口 優子, 河合 秀幸, 奥平 恭子, 山下 雅道, 矢野 創, 横堀 伸一, 山岸 明彦, 杉野 朋弘, 楊 印杰, 吉村 義隆, 辻 尭, 小林 憲正, 田端 誠, 橋本 博文, 今井 栄一
    日本地球化学会年会要旨集 57 190-190 2010年  
    私たちのグループは、地球低軌道 (400 km) を周回する国際宇宙ステーション(ISS)のきぼうの曝露部を利用して微生物の捕集実験を行う宇宙実験(たんぽぽ計画)を提案している。低密度エアロゲルを宇宙空間に一定期間曝露し、衝突する微粒子を捕集する。地上でエアロゲル表面と衝突トラックの顕微鏡観察を行った後、微粒子をエアロゲルから単離する。微粒子内もしくは微粒子に付着していると考えられる微生物のDNAを鋳型としてPolymerase chain reaction (PCR)で特定の遺伝子の増幅を試みる。増幅が認められたのであれば塩基配列を決定し、地上の生物と比較する事で種の同定を行う予定である。本研究では、捕集される微生物を検出するためのPCR法の確立する事を目的とする。模擬サンプルを用いて、捕集したサンプルを解析するための条件検討を行った結果を報告する。
  • 河口 優子, 杉野 朋弘, Yang Yinjie, 吉村 義隆, 辻 尭, 小林 憲正, 橋本 博文, 田端 誠, 山下 雅道, 矢野 創, 河合 秀幸, 三田 肇, 奥平 恭子, 横堀 伸一, 山岸 明彦, TANPOPO WG
    Viva origino 38 25-25 2010年  
  • 小林 憲正, 伏見 英彦, 金子 竹男, 田端 誠, 河合 秀幸, 三田 肇, 林 宣宏, 藪田 ひかる, 矢野 創, 奥平 恭子, 橋本 博文, 横堀 伸一, 山岸 明彦, たんぽぽWG
    日本惑星科学会秋期講演会予稿集 2009 53-53 2009年9月28日  
  • 山岸 明彦, 矢野 創, 小林 憲正, 横堀 伸一, 橋本 博文, 山下 雅道, 田端 誠, 河合 秀幸
    Viva origino 36(1) 72-76 2009年6月1日  
    たんぽぽ(蒲公英,dandelion)は綿毛のついた種子を風に乗せて頒布し,その生息域を広げる多年草である.我々は,この名前のもと,国際宇宙ステーション-JEM(日本実験棟)上での微生物と生命材料となり得る有機化合物の天体間の移動の可能性の検討と微小隕石の検出および解析実験を提案する.我々は,超低密度エアロゲルを用いることで,微小隕石やその他の微粒子を捕集することが可能であると考えている.低軌道上で超低密度エアロゲルを一定期間曝露することで宇宙空間で微粒子を捕集する.エアロゲル表面と衝突トラックの顕微観察の後,エアロゲルの様々な解析を行う.衝突トラックの詳細な検討により,国際宇宙ステーション周辺のデブリのサイズと速度が明らかにできると期待される.エアロゲル中に残存した粒子に関して,鉱物学的,有機化学的,及び微生物学的な検討を行う.一方,宇宙環境下での微生物の生存可能性について検討するため,微生物を直接宇宙空間に曝露する実験も行う.同様に,宇宙環境下での有機化合物の変性の可能性を検討するため,有機化合物の宇宙空間への直接曝露実験も行う.これらの実験を行うための装置はすべて受動的な装置であり,そのための装置の基本構造,装置回収後の解析法も,既に確立されている.
  • 山岸 明彦, 横堀 伸一, 小林 憲正, 山下 雅道, 橋本 博文, 矢野 創, 長谷川 直, 河合 秀幸, 田端 誠, 中嶋 悟, Yamagishi Akihiko, Yokobori Shinichi, Kobayashi Kensei, Yamashita Masamichi, Hashimoto Hirofumi, Yano Hajime, Hasegawa Sunao, Kawai Hideyuki, Tabata Makoto, Nakashima Satoru
    宇宙利用シンポジウム = Space Utilization Research: Proceedings of Space Utilization Symposium 6th(25) 11-12 2009年3月  
    第25回宇宙利用シンポジウム(2009年1月14日-15日, 宇宙航空研究開発機構宇宙科学研究本部相模原キャンパス)著者人数: 16人資料番号: AA0064297070
  • 山岸 明彦, 横堀 伸一, 小林 憲正, 山下 雅道, 橋本 博文, 矢野 創, 長谷川 直, 河合 秀幸, 田端 誠, 中嶋 悟, Yamagishi Akihiko, Yokobori Shinichi, Kobayashi Kensei, Yamashita Masamichi, Hashimoto Hirofumi, Yano Hajime, Hasegawa Sunao, Kawai Hideyuki, Tabata Makoto, Nakashima Satoru
    宇宙利用シンポジウム = Space Utilization Research: Proceedings of Space Utilization Symposium 7(25) TK.49-TK.55 (J-STAGE) 2009年3月  
    第25回宇宙利用シンポジウム(2009年1月14日-15日, 宇宙航空研究開発機構宇宙科学研究本部相模原キャンパス)著者人数: 16人資料番号: AA0064297070
  • 小林 憲正, 伏見 英彦, 元山 拓也, 谷内 俊範, 金子 竹男, 吉田 聡, 藪田 ひかる, 長谷川 紀昭, キルコイン デイヴィッド, 高野 淑識, 高橋 淳一, 三田 肇, 橋本 博文, 横堀 伸一, 山岸 明彦
    日本地球化学会年会要旨集 56 268-268 2009年  
    星間でのアミノ酸前駆体の生成を検証するため、模擬星間物質(メタノール・アンモニア・水の凍結混合物)に高エネルギー重粒子線を照射し、生成物の特性化を行った。生成物は高分子量を有する複雑有機物であり、加水分解によりアミノ酸を生じた。本実験生成物は隕石や彗星中の有機物と比較して芳香族炭素の割合が低いため、その増加のメカニズムを検討中である。このような有機物が宇宙塵の形で地球に供給された可能性を検証するため、国際宇宙ステーション上での宇宙塵の捕集と分析を計画している。
  • 河口 優子, 河合 秀幸, 鳴海 一成, 林 宣宏, 吉田 聡, 矢野 創, 橋本 博文, 山下 雅道, 小林 憲正, 山岸 明彦, 楊 印杰, 杉野 朋弘, 藤崎 健太, 横堀 伸一, 吉村 義隆, 辻 尭, 奥平 恭子, 田端 誠
    日本地球化学会年会要旨集 56 211-211 2009年  
    たんぽぽ計画では、ISS(国際宇宙ステーション)上での微生物と生命の材料になりうる有機化合物の天体間の移動の可能性の検証と、微小隕石の検出および解析実験を行うことを提案する。低軌道上で超低密度エアロゲルを一定期間曝露することで宇宙空間での微小隕石やその他の微粒子を捕集することを計画している。エアロゲルを回収後地上にて、エアロゲル表面と衝突トラックの顕微鏡観察の後、様々な解析を行う。エアロゲル中に残存した粒子に関して、鉱物学的、有機化学的、および微生物学的な検討を行う。一方、宇宙環境下での微生物の生存可能について検証するため、微生物の宇宙曝露実験も行う。我々は、エアロゲルで捕集された微粒子からの微生物の検出手法について現在検討している。また微生物の宇宙曝露実験について、宇宙の極限環境を模擬した条件下での微生物の生存率等の検討をしている。
  • 河口 優子, 横堀 伸一, 吉村 義隆, 辻 尭, Yang Yinjie, 藤崎 健太, 小林 憲正, 橋本 博文, 河合 秀幸, 三田 肇, 奥平 恭子, 田端 誠, 山下 雅道, 矢野 創, 山岸 明彦
    Viva origino 37 33-33 2009年  
  • 横堀 伸一, Yang Yinjie, 藤崎 健太, 河口 優子, 小林 憲正, 橋本 博文, 河合 秀幸, 三田 肇, 鳴海 一成, 奥平 恭子, 田端 誠, 山下 雅道, 矢野 創, 吉村 義隆, 山岸 明彦
    Viva origino 37 32-32 2009年  
  • 山岸 明彦, 小林 憲正, 横堀 伸一, 矢野 創, 橋本 博文, 「たんぽぽ」WG
    Viva origino 37 31-31 2009年  
  • Kobayashi, K, Hashimoto, H, Kawai, H, Mita, H, Okudaira, K, Yamagishi, A, Yamashita, M, Yano, H, Yokobori, S
    CAREX Workshop: Priority for Environment-Specific Technological Developments and Infrastructures 2008年12月  
  • 山下 雅道, 橋本 博文
    Thermophysical properties 29 217-219 2008年10月8日  
  • Kobayashi, K, Mita, H, Nakashima, S, Naraoka, H, Hashimoto, H, Okudaira, K, Yano, H, Yamashita, M, Yokobori, S, Yamagishi, A
    37th Committee on Space Research(COSPAR) Scientific Assembly 2008年7月  
  • 小林憲正, 藪下さやか, 藤崎健太, 金子竹男, 三田肇, 奥平恭子, 矢野創, 橋本博文, 横堀伸一, 山岸明彦
    分析化学討論会講演要旨集 69th 3 2008年5月1日  
  • 小林憲正, 石川洋二, 内海裕一, 奥平恭子, 河合秀幸, 河崎行繁, 癸生川陽子, 小池惇平, 鈴木彰子, 高橋淳一, 中嶋悟, 長沼毅, 奈良岡浩, 橋本博文, 丸茂克美, 三田肇, 山岸明彦, 山下雅道, 今井栄一, 中川和道, 福島和彦, 吉村義隆
    Space Utiliz. Res 24 318-321 2008年  
  • 山岸 明彦, 矢野 創, 小林 憲正, 横堀 伸一, 河合 秀幸, 橋本 博文, 山下 雅道
    日本地球化学会年会要旨集 55 3-3 2008年  
    「TANPOPO」(たんぽぽ、蒲公英、dandelion)は綿毛のついた種子を風に乗せて頒布し、その生息域を広げる多年草である。我々は、この名前のもと、ISS-JEM(国際宇宙ステーション・日本実験棟)上での微生物と生命材料となり得る有機化合物の天体間の移動の可能性の検討と微小隕石の検出および解析実験を提案する。我々は、超低密度エアロゲルを用いることで、微小隕石やその他の微粒子を捕集することが可能であると考えている。低軌道上で超低密度エアロゲルを一定期間曝露することで宇宙空間で微粒子を捕集する。エアロゲル表面と衝突トラックの顕微観察の後、エアロゲルの様々な解析を行う。。衝突トラックの詳細な検討により、ISS周辺のデブリのサイズと速度が明らかにできると期待される。エアロゲル中に残存した粒子に関して、鉱物学的、有機化学的、及び微生物学的な検討を行う。一方、宇宙環境下での微生物の生存可能性について検討するため、微生物を直接宇宙空間に曝露する実験も行う。同様に、宇宙環境下での有機化合物の変性の可能性を検討するため、有機化合物の宇宙空間への直接曝露実験も行う。これらの実験を行うための装置はすべて受動的な装置であり、そのための装置の基本構造、装置回収後の解析法も、既に確立されている。
  • 山岸 明彦, 横堀 伸一, 矢野 創, 奥平 恭子, 橋本 博文, 山下 雅道, 小林 憲正, 田端 誠, 河合 秀幸
    大気環境学会年会講演要旨集 (49) 67-68 2008年  
  • 小林憲正, 三田肇, 石川洋二, 山岸明彦, 内海裕一, 山下雅道, 奥平恭子, 高橋淳一, 河崎行繁, 癸生川陽子, 小池惇平, 鈴木彰子, 長沼毅, 杉浦桂, 奈良岡浩, 加藤政博, 橋本博文, 小林克己, 丸茂克美, 矢野創
    宇宙利用シンポジウム 23rd 2007年  
  • 宇宙利用シンポジウム(第23回) 23 400-401 2007年  
  • 長沼 毅, 伊村 智, 岩月 輝希, 川久保 忠通, 小林 憲正, 三枝 誠行, 佐藤 皓, 嶋田 和人, 白壁 義久, 高野 淑識, Naganuma Takeshi, Imura Satoshi, Iwatsuki Teruki, Kawakubo Tadamichi, Kobayashi Kensei, Saigusa Masayuki, Sato Hikaru, Shimada Kazuhito, Shirakabe Yoshihisa, Takano Yoshinori
    宇宙利用シンポジウム(第23回) 23 406-409 2007年  
    資料番号: AA0063349116
  • Masamichi Yamashita, Yoji Ishikawa, Yoshiaki Kitaya, Eiji Goto, Mayumi Arai, Hirofumi Hashimoto, Kaori Tomita-Yokotani, Masayuki Hirafuji, Katsunori Omori, Atsushi Shiraishi, Akira Tani, Kyoichiro Toki, Hiroki Yokota, Osamu Fujita
    INTERDISCIPLINARY TRANSPORT PHENOMENA IN THE SPACE SCIENCES 1077 232-243 2006年  
    Engineering a life-support system for living on Mars requires the modeling of heat and mass transfer. This report describes the analysis of heat and mass transfer phenomena in a greenhouse dome, which is being designed as a pressurized life-support system for agricultural production on Mars. In this Martian greenhouse, solar energy will be converted into chemical energy in plant biomass. Agricultural products will be harvested for food and plant cultivation, and waste materials will be processed in a composting microbial ecosystem. Transpired water from plants will be condensed and recycled. In our thermal design and analysis for the Martian greenhouse, we addressed the question of whether temperature and pressure would be maintained in the appropriate range for humans as well as plants. Energy flow and material circulation should be controlled to provide an artificial ecological system on Mars. In our analysis, we assumed that the greenhouse would be maintained at a subatmospheric pressure under 1/3-G gravitational force with 1/2 solar light intensity on Earth. Convection of atmospheric gases will be induced inside the greenhouse, primarily by heating from sunlight. Microclimate (thermal and gas species structure) could be generated locally around plant bodies, which would affect gas transport. Potential effects of those environmental factors are discussed on the phenomena including plant growth and plant physiology and focusing on transport processes. Fire safety is a crucial issue and we evaluate its impact on the total gas pressure in the greenhouse dome.
  • 日本宇宙生物科学会 第20回大会 プログラム・予稿集 57 2006年  
  • 山下雅道
    宇宙利用シンポジウム(第22回) 22 333-336 2006年  
  • 宇宙利用シンポジウム(第22回) 22 307 2006年  
  • Masamichi Yamashita, Yoji Ishikawa, Yoshiaki Kitaya, Eiji Goto, Mayumi Arai, Hirofumi Hashimoto, Kaori Tomita-Yokotani, Masayuki Hirafuji, Katsunori Omori, Atsushi Shiraishi, Akira Tani, Kyoichiro Toki, Hiroki Yokota, Osamu Fujita
    INTERDISCIPLINARY TRANSPORT PHENOMENA IN THE SPACE SCIENCES 1077 232-243 2006年  
    Engineering a life-support system for living on Mars requires the modeling of heat and mass transfer. This report describes the analysis of heat and mass transfer phenomena in a greenhouse dome, which is being designed as a pressurized life-support system for agricultural production on Mars. In this Martian greenhouse, solar energy will be converted into chemical energy in plant biomass. Agricultural products will be harvested for food and plant cultivation, and waste materials will be processed in a composting microbial ecosystem. Transpired water from plants will be condensed and recycled. In our thermal design and analysis for the Martian greenhouse, we addressed the question of whether temperature and pressure would be maintained in the appropriate range for humans as well as plants. Energy flow and material circulation should be controlled to provide an artificial ecological system on Mars. In our analysis, we assumed that the greenhouse would be maintained at a subatmospheric pressure under 1/3-G gravitational force with 1/2 solar light intensity on Earth. Convection of atmospheric gases will be induced inside the greenhouse, primarily by heating from sunlight. Microclimate (thermal and gas species structure) could be generated locally around plant bodies, which would affect gas transport. Potential effects of those environmental factors are discussed on the phenomena including plant growth and plant physiology and focusing on transport processes. Fire safety is a crucial issue and we evaluate its impact on the total gas pressure in the greenhouse dome.
  • Kaori Tomita-Yokotani, Takako Kato, Hirofumi Hashimoto, Masamichi Yamashita
    Biological Sciences in Space 19(3) 143-147 2006年  
  • HASHIMOTO Hirofumi, KOIKE Junpei, YAMASHITA Masamichi, OSHIMA Tairo, Space Agriculture Saloon
    宇宙生物科学 = Biological sciences in space 19(2) 112-113 2005年6月1日  
  • KOBAYASHI Kensei, ISHIKAWA Yoji, OISHI Masatoshi, KATO Kenji, KAWASAKI Yukishige, KOIKE Junpei, KOUCHI Akira, TAKANO Yoshinori, NAKAGAWA Kazumichi, NAGANUMA Takeshi, NARAOKA Hiroshi, HASHIMOTO Hirofumi, MITA Hajime, YAMAGISHI Akihiko, YAMASHITA Masamichi
    宇宙生物科学 = Biological sciences in space 19(2) 114-115 2005年6月1日  
  • Journal of Geophysical Research - Planet 110(E3) doi:10. 1029/2004JE002306 2005年3月  
  • MM Marinova, CP McKay, H Hashimoto
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS 110(E3) doi:10. 1029/2004JE002306 2005年3月  
    Artificial greenhouse gases could be used to warm Mars in order to make it habitable. Here we present new laboratory measurements of the thermal infrared absorption spectra of seven artificial greenhouse gases (CF4, C2F6, C3F8, SF6, CF3Cl, CF3Br, CF2Cl2) at concentrations from 10(-7) up to unity. We used a radiative-convective multilayer model to compute the warming caused by a mixture of the four fluorine-based greenhouse gases. The results show that for current Mars, C3F8 produces the largest warming: 0.56 K and 33.5 K for partial pressures of 10(-3) Pa and 1 Pa, respectively. Averaged over partial pressures from 0.01 to 1 Pa, the range of most interest for planetary ecosynthesis, CF4, C2F6, and SF6 were 17%, 49%, and 48% as effective as C3F8, respectively. The optimal mixture of the four fluorine-based greenhouse gases, taking into account the overlapping of their absorption bands, was 16% more effective than pure C3F8, averaged over the range 0.01 Pa to 1 Pa. Energy balance calculations suggest that the addition of similar to 0.2 Pa of the best greenhouse gases mixture or similar to 0.4 Pa of C3F8 would shift the equilibrium to the extent that CO2 would no longer be stable at the Martian poles and a runaway greenhouse effect would result.
  • Hashimoto Hirofumi, KOIKE Junpei, YAMASHITA Masamichi, OSHIMA Tairo
    Viva origino 33(2) 79-79 2005年  
  • 第49回 宇宙科学技術連合講演会講演集 CD-ROM 1C10 2005年  
  • ISOLAB’05 Book of Program and Abstracts 13 2005年  
  • Biological Sciences in Space 19(2) 111 2005年  
  • TOMITA YOKOTANI Kaori, HASHIMOTO Hirofumi, FUJII Yoshiharu, NAKAMURA Teruko, YAMASHITA Masamichi
    宇宙生物科学 = Biological sciences in space 18(3) 165-166 2004年11月1日  
  • TOMITA YOKOTANI Kaori, HASHIMOTO Hirofumi, FUJII Yoshiharu, NAKAMURA Teruko, YAMASHITA Masamichi
    宇宙生物科学 = Biological sciences in space 18(3) 91-91 2004年11月1日  
  • K Tomita-Yokotani, K Baba, Y Fujii, H Hashimoto, M Yamashita
    PLANT AND CELL PHYSIOLOGY 45 S183-S183 2004年  
  • M Yamashita, K Tomita-Yokotani, H Hashimoto, M Takai, M Tsushima, T Nakamura
    SPACE LIFE SCIENCES: LIFE SUPPORT SYSTEMS AND BIOLOGICAL SYSTEMS UNDER INFLUENCE OF PHYSICAL FACTORS 34(7) 1575-1578 2004年  
    Space is not only a place to study biological effects of gravity, but also provides unique opportunities to examine other environmental factors, where the biological actions are masked by gravity on the ground. Even the earth's magnetic field is steadily acting on living systems, and is known to influence many biological processes. A systematic survey and assessment of its action are difficult to conduct in the presence of dominant factors, such as gravity. Investigation of responses of biological systems against the combined environment of zero-gravity and zero-magnetic field might establish the baseline for the analysis of biological effects of magnetic factors. We propose, in this paper, an experimental concept in this context, together with a practical approach of the experiments, both in orbit and on the ground, with a thin magnetic shielding film. Plant epicotyl growth was taken as an exemplar index to evaluate technical and scientific feasibility of the proposed system concept. (C) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • K Kobayashi, Y Takano, H Masuda, H Tonishi, T Kaneko, H Hashimoto, T Saito
    SPACE LIFE SCIENCES: SEARCH FOR SIGNATURES OF LIFE, AND SPACE FLIGHT ENVIRONMENTAL EFFECTS ON THE NERVOUS SYSTEM 33(8) 1277-1281 2004年  
    Various organic compounds including complex organic compounds have been detected in comets. Cometary organics are supposed to be formed in interstellar dust (ISD) environments. We examined possible formation of bioorganic compounds in ISDs through simulation experiments and compared with that in primitive Earth atmosphere. It was shown that a wide variety of amino acids were formed in simulated ISD environments in the form of precursors. Pyrimidine bases (uracil, cytosine and thymine) were also formed from the possible interstellar media. These results suggest that comets can bring no less types of bioorganics to planets than those formed in primitive Earth atmosphere. Not only Earth, but also other planetary bodies like Mars and Europa received cometary organics during the late heavy bombardment era. They can be included in possible habitable areas whatever primitive planetary atmosphere they had. (C) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • 地球惑星科学関連学会 2004年合同大会 CD-ROM B069-P005 2004年  
  • M Yamashita, K Tomita-Yokotani, H Hashimoto, M Takai, M Tsushima, T Nakamura
    SPACE LIFE SCIENCES: LIFE SUPPORT SYSTEMS AND BIOLOGICAL SYSTEMS UNDER INFLUENCE OF PHYSICAL FACTORS 34(7) 1575-1578 2004年  
    Space is not only a place to study biological effects of gravity, but also provides unique opportunities to examine other environmental factors, where the biological actions are masked by gravity on the ground. Even the earth's magnetic field is steadily acting on living systems, and is known to influence many biological processes. A systematic survey and assessment of its action are difficult to conduct in the presence of dominant factors, such as gravity. Investigation of responses of biological systems against the combined environment of zero-gravity and zero-magnetic field might establish the baseline for the analysis of biological effects of magnetic factors. We propose, in this paper, an experimental concept in this context, together with a practical approach of the experiments, both in orbit and on the ground, with a thin magnetic shielding film. Plant epicotyl growth was taken as an exemplar index to evaluate technical and scientific feasibility of the proposed system concept. (C) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • K Kobayashi, Y Takano, H Masuda, H Tonishi, T Kaneko, H Hashimoto, T Saito
    SPACE LIFE SCIENCES: SEARCH FOR SIGNATURES OF LIFE, AND SPACE FLIGHT ENVIRONMENTAL EFFECTS ON THE NERVOUS SYSTEM 33(8) 1277-1281 2004年  
    Various organic compounds including complex organic compounds have been detected in comets. Cometary organics are supposed to be formed in interstellar dust (ISD) environments. We examined possible formation of bioorganic compounds in ISDs through simulation experiments and compared with that in primitive Earth atmosphere. It was shown that a wide variety of amino acids were formed in simulated ISD environments in the form of precursors. Pyrimidine bases (uracil, cytosine and thymine) were also formed from the possible interstellar media. These results suggest that comets can bring no less types of bioorganics to planets than those formed in primitive Earth atmosphere. Not only Earth, but also other planetary bodies like Mars and Europa received cometary organics during the late heavy bombardment era. They can be included in possible habitable areas whatever primitive planetary atmosphere they had. (C) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • Yoshinori Takano, Kentaro Ushio, Takeo Kaneko, Kensei Kobayashi, Hirofumi Hashimoto
    Chemistry Letters 32(7) 612-613 2003年7月5日  
    An ice mantle mixture of carbon monoxide, ammonia (or dinitrogen), and water was irradiated in a highly vacuumed cryostat with ultraviolet light at 10 K. The primary products were identified as amino acid precursors when ammonia was used as a nitrogen source, which strongly suggested abiotic formation of bioorganic compounds in ice mantle of interstellar dusts in molecular clouds. The present results have significant implication for organic formation in interstellar dust ice mantles and the energetics of nitrogen fixation.

書籍等出版物

 9

講演・口頭発表等

 102

担当経験のある科目(授業)

 9

所属学協会

 13

共同研究・競争的資金等の研究課題

 7

● 所属する所内委員会

 1
  • 所内委員会名
    宇宙環境利用専門委員会