研究者業績

大槻 真嗣

オオツキ マサツグ  (Masatsugu Otsuki)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 准教授
学位
工学(2005年3月 慶應義塾大学)

J-GLOBAL ID
200901089082425739
researchmap会員ID
5000041736

論文

 112
  • Masatsugu Otsuki, Junji Kikuchi, Tetsuo Yoshimitsu, Tatsuaki Hashimoto
    Acta Astronautica 224 309-324 2024年11月  
    This study presents technologies of the triple hybrid landing gear for the OMOTENASHI(Outstanding Moon exploration Technologies demonstrated by Nano Semi-Hard Impactor) spacecraft, which consists of an airbag, a crushable material as a shock absorber, and an impact resistance structure. The inflated airbag has capability to possibly mitigate impact acceleration at the instant of landing and submergence into regolith that covers a planetary surface. The crushable material with lattice structures, manufactured by a metal 3D printer, serves a dual purpose: it dissipates kinetic energy and controls the impact acceleration at landing by compressing itself within a designed deceleration distance. Further, in the impact resistance structure, the protective object is filled with resin and hollow glass beads, and the impact resistance is improved while the weight reduction is maintained. This paper provides the technical details such as the required specification, verification test results, and assembly result of the surface probe as the smallest lander of the OMOTENASHI spacecraft.
  • Takafumi Fujii, Masaki Takahashi, Kent Yoshikawa, Masatsugu Otsuki
    AIAA SciTech 2024 2024年1月  
  • Toshiki Fukui, Masaki Takahashi, Masatsugu Otsuki
    AIAA SciTech 2024 2024年1月  
  • Tetsuo Yoshimitsu, Atsushi Tomiki, Wataru Torii, Naoto Usami, Masatsugu Otsuki, Takao Maeda, Kent Yoshikawa, Yasuharu Kunii, Hiroaki Akiyama
    The 18th International Conference on Space, Aeronautical and Navigational Electronics 2023年12月  
  • S. Ozaki, G. Ishigami, M. Otsuki, H. Miyamoto, K. Wada, Y. Watanabe, T. Nishino, H. Kojima, K. Soda, Y. Nakao, M. Sutoh, T. Maeda, T. Kobayashi
    npj Microgravity 9(1) 2023年12月  
    The updated Table 1 with a comment indicating that micrographs #05 and #08 at the bottom of the images should be replaced. However, in the response to author query 4, Micrographs #4 and #8 were changed in Table 1. While processing the suggested changes based on the eProofing comments, the correction team updated the existing table figures and replaced image #05 with the micrograph of image #08 and image #08 with the micrograph of image #04 in the revised table. As a result, the changes got reverted and images were incorrect and duplicated.

MISC

 95

書籍等出版物

 1

講演・口頭発表等

 335
  • 吉光徹雄, 大槻真嗣, 冨木淳史, 宇佐美尚人, 吉川健人, 鳥居航, 前田孝雄, 國井康晴
    第8回重力天体(月火星)着陸探査シンポジウム 2024年3月7日
  • 吉光徹雄, 大槻真嗣, 吉川健人, 前田孝雄, 國井康晴, 冨木淳史, 宇佐美尚人, 廣瀬智之, 秋山演亮
    第29回ロボティクスシンポジア 2024年3月5日
  • Ryo Hirasawa, Tatsuaki Hashimoto, Kakeru Tokunaga, Nakajima Shintaro, Kota Miyoshi, Chikako Hirose, Junji Kikuchi, Nobutaka Bando, Naoki Morishita, Atsushi Tomiki, Wataru Torii, Taichi Ito, Masatsugu Otsuki, Tetsuo Yoshimitsu, Yasuo Ishige, Hiroshi Takeuchi, Yukio Yamamoto
    17th International Conference on Space Operations
  • 藤田和央, 大槻真嗣, 馬場満久, 佐藤泰貴, 尾川順子, 池田人, 奥村哲平, 小澤宇志, 山中理代
    第23回宇宙科学シンポジウム 2023年1月5日
  • 菅原佳城, 久保勇貴, 中条俊大, 佐藤泰貴, 剱持伸朗, 藤田雅大, 楠本哲也, 杉原アフマッド清志, 森治, 秋月祐樹, 澤田健一郎, 鳥阪綾子, 杉浦圭佑, 小林紗也, 小林寛之, 大槻真嗣, 松浦周二, 小谷隆行, 津村耕司, 松永三郎
    第23回宇宙科学シンポジウム 2023年1月5日
  • 吉光徹雄, 佐伯孝尚, 森治, 田邊宏太, 古賀勝, 目黒裕章, 狩谷和季, 山田亨, 田中智, 諸田智克, 大槻真嗣, 國井康晴, 前田孝雄, 宇佐美尚人, 仲内悠祐
    第23回宇宙科学シンポジウム 2023年1月5日
  • 大槻真嗣, 馬場満久, 藤田和央, 今田高峰, 姫野武洋, 尾崎伸吾, 石上玄也, 前田孝雄, 高橋正樹, 小林泰三, 北薗幸一, 竹澤晃弘, 能見公博
    第23回宇宙科学シンポジウム 2023年1月5日
  • 吉光徹雄, 佐伯孝尚, 森治, 古賀勝, 目黒裕章, 狩谷和季, 田邊宏太, 山田亨, 田中智, 諸田智克, 大槻真嗣, 國井康晴, 前田孝雄, 宇佐美尚人, 仲内悠祐
    日本航空宇宙学会年会講演会講演集(CD-ROM) 2023年
  • 吉光徹雄, 佐伯孝尚, 森治, 田中智, 諸田智克, 山田亨, 古賀勝, 目黒裕章, 田邊宏太, 狩谷和季, 大槻真嗣, 國井康晴, 前田孝雄, 宇佐美尚人
    日本惑星科学会秋季講演会予稿集(Web) 2023年
  • 大和光輝, 大橋太朗, 金子慶久, 早崎弘茂, 大槻真嗣, 馬場満久, 今田高峰
    宇宙科学技術連合講演会講演集(CD-ROM) 2023年
  • 吉光徹雄, 佐伯孝尚, 森治, 古賀勝, 目黒裕章, 狩谷和季, 田邊宏太, 山田亨, 田中智, 諸田智克, 大槻真嗣, 國井康晴, 前田孝雄, 宇佐美尚人, 仲内悠祐
    宇宙科学技術連合講演会講演集(CD-ROM) 2023年
  • 藤井崇史, 高橋正樹, 大槻真嗣
    宇宙科学技術連合講演会講演集(CD-ROM) 2023年
  • 福井稔基, 高橋正樹, 大槻真嗣
    宇宙科学技術連合講演会講演集(CD-ROM) 2023年
  • 須藤真琢, 若林幸子, 勝又雄史, 島田潤, 星野健, 大槻真嗣, 平澤遼, 藤岡夏, 大平真, 小薗江啓介, 橋本剛志
    宇宙科学技術連合講演会講演集(CD-ROM) 2023年
  • 須崎祐多, HONG Peng K., 石橋高, 宮原剛, 太田方之, 細沼貴之, 尾崎直哉, 豊田裕之, 西山和孝, 大槻真嗣, 奥平修, 佐藤峻介, 高島健, 豊永洸大, 藤島早織, 萩原啓司
    宇宙科学技術連合講演会講演集(CD-ROM) 2023年
  • 和田浩二, 中村智樹, 宮本英昭, 松本晃治, 平田成, 菊地紘, 逸見良道, 清水俊輔, 菊地翔太, 森田朋代, 小林真輝人, 清水雄太, 竹村知洋, VARSHA Natarajan, 堀田啓貴, 平田直之, 松岡萌, 巽瑛理, 黒川宏之, 長勇一郎, 田畑陽久, 倉本圭, 諸田智克, 永峰健太, 大槻真嗣, 馬場満久, 小川和律, 巳谷真司, 岡田尚基, 尾川順子, 池田人, 竹尾洋介, 松本祐樹, 大野剛, 吉川健人, 安光亮一郎
    宇宙科学技術連合講演会講演集(CD-ROM) 2023年
  • 岡本 朔弥, 髙橋 正樹, 古市 侑太郎, 姫野 武洋, 前田 孝雄, 藤田 和央, 大槻 真嗣, 馬場 満久
    第66回宇宙科学技術連合講演会 2022年11月4日
  • 藤田 和央, 大槻 真嗣, 馬場 満久, 佐藤 泰貴, 上住 昂
    第66回宇宙科学技術連合講演会 2022年11月4日
  • 馬場 満久, 金城 富宏, 西野 巧留, 尾崎 伸吾, 石上 玄也, 前田 孝雄, 大槻 真嗣
    第66回宇宙科学技術連合講演会 2022年11月4日
  • 洪 鵬, 石橋 高, 須崎 裕多, 宮原 剛, 太田 方之, 細沼 貴之, 尾崎 直哉, 豊田 裕之, 西山 和孝, 大槻 真嗣, 奥平 修, 佐藤 峻介, 高島 健
    第66回宇宙科学技術連合講演会 2022年11月4日
  • 宮本 英昭, Michel Patrick, 和田 浩二, 逸見 良道, 小川 和律, 新原 隆史, 坂谷 尚哉, 大槻 真嗣, 臼井 寛, 裕, 菊池 紘, 平田 直之, 亀田 真吾, 村 智樹, 諸田 智克, 寺田 直樹, 佐々木 晶, 千秋 博紀, 横田 勝一郎, 木村 智樹, 臼井 英之, 三宅 洋平, 西野 真木, 長 勇一郎, 二穴 喜文, Asphaug Eric, Ballouz Ronald-Louis, Biele Jens, Böttger Ute, Erns Carolyn, Barnouin Olivier, Grott Matthias, 小林 真輝人, 清水 雄太, 竹村 知洋, 清水 俊輔, SSG-SST グループ
    第66回宇宙科学技術連合講演会 2022年11月3日
  • 草部 将吾, 剱持 伸朗, 松本 康司, 小原 新吾, 清澤 芳, 秀, 小林 優, 黒木 潤一, 赤坂 拓也, 大槻 真嗣, 須藤 真琢, 若林 幸子, 勝又 雄史, 星野 健
    第66回宇宙科学技術連合講演会 2022年11月3日
  • 大槻 真嗣, 馬場 満久, 藤田 和央, 今田 高峰, 姫野 武洋, 尾崎 伸吾, 石上 玄也, 前田 孝雄, 高橋 正樹, 小林 泰三, 北薗 幸一, 竹澤 晃弘, 能見 公博
    第66回宇宙科学技術連合講演会 2022年11月2日
  • Takuru Nishino, Kenta Takase, Shingo Ozaki, Takao Maeda, Mitsuhisa Baba, Masatsugu Otsuki
    ISTVS2022 2022年9月27日
  • 河合優太, 大槻真嗣, 尾崎伸吾, 石上玄也, 前田孝雄, 須藤真琢, 小林泰三, 宮本英昭, 和田浩二, 黒澤茅広, 笠原春夫, 坂下哲也, 土井忍, 内川英明
    JASMAC-34 2022年9月15日
  • 大槻 真嗣, 馬場 満久, 藤田 和央, 今田 高峰, 姫野 武洋, 尾崎 伸吾, 石上 玄也, 前田 孝雄, 高橋 正樹, 小林 泰三, 北薗 幸一, 竹澤 晃弘, 能見 公博
    第32回アストロダイナミクスシンポジウム 2022年7月25日
  • 大槻 真嗣, 吉光 徹雄, 前田 孝雄, 吉川 健人, 國井 康晴, 宇佐美 尚人
    第32回アストロダイナミクスシンポジウム 2022年7月25日
  • Hideaki Miyamoto, Takafumi Niihara, Koji Wada, Kazunori Ogawa, Hiroki Senshu, Patrick Michel, Hiroshi Kikuchi, Ryodo Hemmi, Tomoki Nakamura, Akiko M Nakamura, Naoyuki Hirata, Sho Sasaki, Erik Asphaug, Dan T. Britt, Paul A. Abell, Ronald-Louis Ballouz, Olivier S. Barnouin, Nicola Barsei, Maria A. Barucci, Jens Biele, Matthias Grott, Hideitsu Hino, Peng K. Hong, Takane Imada, Shingo Kameda, Makito Kobayashi, Guy Libourel, Katsuro Mogi, Naomi Murdoch, Yuki Nishio, Shogo Okamoto, Yuichiro Ota, Masatsugu Otsuki, Katharina A. Otto, Naoya Sakaani, Yuta Shimizu, Tomohiro Takemura, Naoki Terada, Masafumi Tsukamoto, Tomohiro Usui, Konrad Willner
    2021年1月20日 Research Square
    <title>Abstract</title> The Martian Moons eXploration (MMX) mission will study the Martian moons Phobos and Deimos, Mars, and their environments. The mission scenario includes both landing on the surface of Phobos to collect samples and deploying a small rover for in-situ observations. Engineering safeties and scientific planning for these operations require appropriate evaluations of the surface environment of Phobos. Thus, the mission team organized the Landing Operation Working Team (LOWT) and Surface Science and Geology Sub-Science Team (SSG-SST), whose view of the Phobos environment is summarized in this paper. While orbital and large-scale characteristics of Phobos are relatively well known, characteristics of the surface regolith, including the particle size-distributions, the packing density, and the mechanical properties, are difficult to constrain. Therefore, we developed several types of simulated soil materials (simulant), such as UTPS-TB (University of Tokyo Phobos Simulant, Tagish-lake based), UTPS-IB (Impact-hypothesis based), and UTPS-S (Simpler version) for engineering and scientific evaluation experiments.
  • Manato Nozaki, Kikuko Miyata, Susumu Hara, Masatsugu Otsuki
    AIAA Scitech 2021 Forum 2021年
    © 2021, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved. Shape memory alloys (SMAs), well-known as the force source in space-use nonexplosive actuators, generate force through temperature-based phase transitions. The force amount is related to the volume and mass of the SMA. This study presents a method to improve the force-generation profile of the SMA actuator, which consists of an SMA tube, a mechanical restraint, and a heater. The high SMA mass ratio of the actuator allows it to achieve high power density; however, its force trajectories are affected by the environmental temperature variance because of its huge heat capacity. The uncertainties of the force trajectories limit the applications of the actuator. This paper proposes a method to achieve the required force trajectories under temperature variance to enlarge the application of the high power density SMA actuators. In addition, a suitable model is established for the force-trajectory control method based on the thermo-mechanical coupling response characteristics. A thermal balance model is constructed under vacuum environment. Furthermore, a hysteresis characteristic model of the phase transformation is introduced, and it reduces the heating profile limitation. The force trajectory is designed based on the model predictive control method. The designed trajectory is realized using a simple temperature-measurement feedback control method based on the proportional-integral-derivative method. To illustrate the system design, the holding– release mechanism application is selected. The effectiveness of the proposed methods is verified through specific test piece system identification and control simulations, which are performed both numerically and experimentally under temperature variance.
  • 三谷純平, 大槻真嗣, 小林泰三
    Kansai Geo-Symposium2020講演論文集 2020年11月
  • 寺沢和洋, 寺沢和洋, 岸本祐二, 佐々木慎一, 高橋一智, 俵裕子, 齋藤究, 身内賢太朗, 永松愛子, 勝田真登, 桝田大輔, 中村裕広, 松本晴久, 込山立人, 池田直美, 布施哲人, 藤田康信, 谷森達, 窪秀利, 明石小百合, 福山誠二郎, 北村尚, 小平聡, 吉光徹雄, 山田哲哉, 大槻真嗣, 中手直哉, 関谷優太, 池田俊民
    量子科学技術研究開発機構研究報告書(Web) 2020年
  • J. Kikuchi, T. Hashimoto, M. Otsuki, N. Morishita, W. Torii, T. Kuhara, K. Nakamura
    AIAA Scitech 2020 Forum 2020年
  • Yoshiki Sugawara, Toshihiro Chujo, Yuki Kubo, Yasutaka Sato, Masatsugu Otsuki, Ryota Ikeda, Kotaro Ikeda, Masahiro Fujita, Kenichiro Sawada, Kohji Tsumura, Shuji Matsuura, Takayuki Kotani, Ahmed Kiyoshi Sugihara, Ayako Torisaka, Osamu Mori, Shigeo Kawasaki, Junichiro Kawaguchi
    Proceedings of the International Astronautical Congress, IAC 2020年
    Copyright © 2020 by the International Astronautical Federation (IAF). All rights reserved. Transformable spacecraft under development is an innovative system that consists of several structural components, such as panels, connected together by internal force actuators. The spacecraft can change its structure drastically by driving installed actuators and achieve the following four features simultaneously. The first feature is "attitude change by internal force using non-holonomic characteristic of the system". It is possible to orient the spacecraft to an arbitrary direction by repeating the deployment of the panel in an appropriate order by the internal force actuator. The second feature is that "change of the structure enables the multiple functions by switching modes". Two telescopes will be installed for scientific missions utilizing the features of the transformable spacecraft and used to realize two different observation modes. One is a mode in which each telescope is oriented to different directions to perform wide-field observation (single telescope mode). The other is a mode in which two telescopes are pointed in the same direction. This mode enables the spacecraft to work as an interferometer (interferometer mode). The third feature is "orbit control and orbit keeping by controlling the solar radiation pressure on the spacecraft with the use of change of spacecraft structure". Since the spacecraft can change its structure by the internal force actuator, the orbit control and orbit keeping are achieved without fuel consumption. By utilizing this feature, the spacecraft will be injected into an artificial halo orbit around Sun-Earth Lagrangian point L2, and the technology demonstration of the transformable spacecraft and the observation mission will be performed in the orbit. The fourth feature is "passive cooling of observation equipment by use of panels as sunlight shield". In the observation mode, observation in the infrared region is performed and sufficient cooling is required. Appropriate arrangement of panels enables shielding of sunlight, and then the passive cooling of the observation equipment is realized. As a result, disturbance due to refrigerator is eliminated, which contributes to precise observation in addition to the contribution by non-holonomic attitude control without disturbance. This paper shows the analysis and experimental results for feasibility studies and conceptual designs of above four features. Furthermore, development status of the system and each subsystem to realize the spacecraft are introduced.
  • Tatsuaki Hashimoto, Junji Kikuchi, Ryo Hirasawa, Naoki Morishita, Nobutaka Bando, Atsushi Tomiki, Wataru Torii, Yuta Kobayashi, Shintaro Nakajima, Masatsugu Otsuki, Tetsuo Yoshimitsu, Tetsuya Yamada, Kota Miyoshi, Hiroyuki Toyota, Kakeru Tokunaga, Chikako Hirose, Toshinori Ikenaga, Aiko Nagamatsu, Hitoshi Morimoto
    Proceedings of the International Astronautical Congress, IAC 2020年
    Copyright © 2020 by the International Astronautical Federation (IAF). All rights reserved. A 6U CubeSat “OMOTENASHI” will be the world's smallest moon lander which is launched by NASA SLS Artemis-1. Because of its severe mass and size limitation, it will adopt semi-hard landing scheme. That is, OMOTENASHI is decelerated from orbital velocity to less than 50 m/s by a small solid rocket motor and shock absorption mechanism has been developed to withstand the high-speed impact. Ultra small communication system (X-band and P-band) is also developed. It observes radiation environment of Earth and moon region with portable dosimeters. This paper shows the mission outline, the design, and the development results of OMOTENASHI.
  • Yasuhiro Kawakatsu, Kiyoshi Kuramoto, Tomohiro Usui, Hitoshi Ikeda, Kent Yoshikawa, Hirotaka Sawada, Naoya Ozaki, Takane Imada, Hisashi Otake, Kenichiro Maki, Masatsugu Otsuki, Robert Muller, Kris Zacny, Yasutaka Satoh, Stephane Mary, Markus Grebenstein, Ayumu Tokaji, Liang Yuying, Ferran Gonzalez Franquesa, Nishanth Pushparaj, Takuya Chikazawa
    Proceedings of the International Astronautical Congress, IAC 2020年
    Copyright © 2020 by the International Astronautical Federation (IAF). All rights reserved. Martian Moons eXploration (MMX) is a mission to Martian moons under development in JAXA with international partners to be launched in 2024. This paper introduces the system definition and the latest status of MMX program. “How was water delivered to rocky planets and enabled the habitability of the solar system?” This is the key question to which MMX is going to answer in the context of our minor body exploration strategy preceded by Hayabusa and Hayabusa2. Solar system formation theories suggest that small bodies as comets and asteroids were delivery capsules of water, volatiles, organic compounds etc. from outside of the snow line to entitle the rocky planet region to be habitable. Mars was at the gateway position to witness the process, which naturally leads us to explore two Martian moons, Phobos and Deimos, to answer to the key question. The goal of MMX is to reveal the origin of the Martian moons, and then to make a progress in our understanding of planetary system formation and of primordial material transport around the border between the inner- and the outer-part of the early solar system. The mission is to survey two Martian moons, and return samples from one of them, Phobos. In view of the launch in 2024, the phase-A study was completed in February, 2020. The mission definition, mission scenario, system definition, critical technologies and programmatic framework are introduced int this paper.
  • Hiroki Kato, Yasutaka Satou, Kent Yoshikawa, Masatsugu Otsuki, Hirotaka Sawada, Takeshi Kuratomi, Nana Hidaka
    2020年
  • 尾川順子, 池田人, 今井茂, 澤田弘崇, 小川和律, 巳谷真司, 大野剛, 大槻真嗣, 馬場満久, 舟生豊朗, 今田高峰, 川勝康弘
    宇宙科学技術連合講演会講演集(CD-ROM) 2020年
  • 馬場満久, 大槻真嗣, 大和光輝
    宇宙科学技術連合講演会講演集(CD-ROM) 2020年
  • 前田孝雄, 吉川健人, 大槻真嗣, 吉光徹雄, 國井康晴, 冨木淳史, 澤田弘崇, 平野大地, 須藤真琢, 久保田孝
    宇宙科学技術連合講演会講演集(CD-ROM) 2020年
  • 勝又雄史, 若林幸子, 星野健, 林貴大, 井上博夏, 島田潤, 大槻真嗣, 保中志元, 須藤真琢, 平澤遼, 白澤洋次, 水野浩靖, 麻生大
    宇宙科学技術連合講演会講演集(CD-ROM) 2020年
  • 春山純一, 岩田隆浩, 岡田達明, 庄司大悟, 諸田智克, 清水久芳, 内藤雅之, 本多力, 河野功, 角有司, 安光亮一郎, 西堀敏幸, 大槻真嗣, 石上玄也
    日本惑星科学会秋季講演会予稿集(Web) 2020年
  • 春山純一, 河野功, 西堀俊幸, 岩田隆浩, 桜井誠人, 大槻真嗣, 山本幸生, 角有司, 安光亮一郎, 石上玄也
    宇宙科学技術連合講演会講演集(CD-ROM) 2020年
  • HONG Peng K., 石橋高, 佐藤峻介, 奥平修, 大槻真嗣, 豊田裕之, 西山和孝, 高島健
    宇宙科学技術連合講演会講演集(CD-ROM) 2020年
  • 山川真以子, 渡辺健太郎, 丸祐介, 藤田和央, 谷洋海, 馬場満久, 大槻真嗣, 森治, 澤井秀次郎, 津田雄一
    宇宙科学技術連合講演会講演集(CD-ROM) 2020年
  • HONG Peng, 石橋高, 佐藤峻介, 藤原航太郎, 町井佳菜子, 豊田裕之, 西山和孝, 大槻真嗣, 奥平修, 高島健
    日本地球惑星科学連合大会予稿集(Web) 2020年
  • 須藤真琢, 大槻真嗣, 尾崎伸吾, 石上玄也, 前田孝雄, 小林泰三, 宮本英昭, 和田浩二, 黒澤茅広, 河合優太, 笠原春夫, 坂下哲也, 土井忍, 間野晃光, 内川英明
    日本マイクログラビティ応用学会 第31回学術講演会講演論文集 2019年10月
  • 大槻真嗣, 尾崎伸吾, 石上玄也, 前田孝雄, 須藤真琢, 小林泰三, 宮本英昭, 和田浩二, 黒澤茅広, 河合優太, 笠原春夫, 坂下哲也, 土井 忍, 内川英明, 間野晃充
    日本マイクログラビティ応用学会 第31回学術講演会講演論文集 2019年10月
  • 菅原 佳城, 中条 俊大, 津村 耕司, 松浦 周二, 大槻 真嗣, 佐藤 泰貴, 池田 崚太, 川口 淳一郎, SUGAWARA Yoshiki, CHUJO Toshihiro, TSURUMA Koji, MATSUURA Shuji, OTSUKI Masatsugu, SATOH Yasutaka, IKEDA Ryota, KAWAGUCHI Junichiro
    [第29回アストロダイナミクスシンポジウム講演後刷り集] = The 29th Workshop on JAXA Astrodynamics and Flight Mechanics 2019年7月 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)
    第29回アストロダイナミクスシンポジウム (2019年7月22-23日. 宇宙航空研究開発機構宇宙科学研究所), 相模原市, 神奈川県資料番号: SA6000153031レポート番号: B-5
  • Takao Maeda, Masatsugu Otsuki, Tatsuaki Hashimoto
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING 2019年2月 SAGE PUBLICATIONS LTD
    This paper describes an attitude control method to prevent the overturning of lunar and planetary landers. The proposed control method that is based on a variable-damping shock absorber for the landing gear is experimentally validated. Conventionally, the landing gear of lunar and planetary landers has a fixed shock attenuation parameter that is not used proactively for attitude control of the lander during the touchdown sequence. The proposed method suppresses any disturbance to the attitude of the lander by adjusting the damping coefficient of each landing leg independently, based on the angular velocity and displacement velocity of each landing leg. First, the control method for the variable damper is presented. Second, the result of a landing experiment conducted in a two-dimensional plane is shown. These results indicate that the proposed semi-active landing gear system is effective for preventing the overturning of the lander on inclined terrain.

共同研究・競争的資金等の研究課題

 15

主要な産業財産権

 9