研究者業績

逸見 良道

ヘンミ リョウドウ  (Ryodo Hemmi)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 研究開発員

ORCID ID
 https://orcid.org/0000-0002-9638-6926
J-GLOBAL ID
201701019513699984
Researcher ID
AAU-1566-2020
researchmap会員ID
B000274755

論文

 21
  • Sho SASAKI, Shiho KANDA, Hiroshi KIKUCHI, Tatsuhiro MICHIKAMI, Tomokatsu MOROTA, Chikatoshi HONDA, Hideaki MIYAMOTO, Ryodo HEMMI, Seiji SUGITA, Eri TATSUMI, Masanori KANAMARU, Sei-ichiro WATANABE, Noriyuki NAMIKI, Patrick MICHEL, Masatoshi HIRABAYASHI, Naru HIRATA, Tomoki NAKAMURA, Takaaki NOGUCHI, Takahiro HIROI, Naoya SAKATANI, Koji MATSUMOTO, Hirotomo NODA, Shingo KAMEDA, Tohru KOUYAMA, Hidehiko SUZUKI, Manabu YAMADA, Rie HONDA, Yuichiro CHO, Kazuo YOSHIOKA, Masahiko HAYAKAWA, Moe MATSUOKA, Rina NOGUCHI, Hirotaka SAWADA, Yasuhiro YOKOTA, Makoto YOSHIKAWA
    Journal of Evolving Space Activities 2023年  
  • Miyamoto, Hideaki, Niihara, Takafumi, Wada, Koji, Ogawa, Kazunori, Senshu, Hiroki, Michel, Patrick, Kikuchi, Hiroshi, Hemmi, Ryodo, Nakamura, Tomoki, Nakamura, Akiko M., Hirata, Naoyuki, Sasaki, Sho, Asphaug, Erik, Britt, Daniel T., Abell, Paul A., Ballouz, Ronald-Louis, Banouin, Olivier S., Baresi, Nicola, Barucci, Maria A., Biele, Jens, Grott, Matthias, Hino, Hideitsu, Hong, Peng K., Imada, Takane, Kameda, Shingo, Kobayashi, Makito, Libourel, Guy, Mogi, Katsuro, Murdoch, Naomi, Nishio, Yuki, Okamoto, Shogo, Ota, Yuichiro, Otsuki, Masatsugu, Otto, Katharina A., Sakatani, Naoya, Shimizu, Yuta, Takemura, Tomohiro, Terada, Naoki, Tsukamoto, Masafumi, Usui, Tomohiro, Willner, Konrad
    Earth, Planets and Space 73(1) 2021年12月  
    The Martian Moons eXploration (MMX) mission will study the Martian moons Phobos and Deimos, Mars, and their environments. The mission scenario includes both landing on the surface of Phobos to collect samples and deploying a small rover for in situ observations. Engineering safeties and scientific planning for these operations require appropriate evaluations of the surface environment of Phobos. Thus, the mission team organized the Landing Operation Working Team (LOWT) and Surface Science and Geology Sub-Science Team (SSG-SST), whose view of the Phobos environment is summarized in this paper. While orbital and large-scale characteristics of Phobos are relatively well known, characteristics of the surface regolith, including the particle size-distributions, the packing density, and the mechanical properties, are difficult to constrain. Therefore, we developed several types of simulated soil materials (simulant), such as UTPS-TB (University of Tokyo Phobos Simulant,Tagish Lake based), UTPS-IB (Impact-hypothesis based), and UTPS-S (Simpler version) for engineering and scientific evaluation experiments.
  • Takemura, Tomohiro, Miyamoto, Hideaki, Hemmi, Ryodo, Niihara, Takafumi, Michel, Patrick
    Earth, Planets and Space 73(1) 2021年12月  
    The mothership of the Martian Moons eXploration (MMX) will perform the first landing and sampling on the surface of Phobos. For the safe landing, the 2.1-m-wide mothership of the MMX should find a smooth surface with at most 40 cm topographic irregularity, however, whose abundance or even existence is not guaranteed based on current knowledge. We studied the highest resolution (a few meters per pixel) images of Phobos for possible topographic irregularities in terms of boulder (positive relief feature) and crater distributions. We find that the spatial number densities of positive relief features and craters can vary significantly, indicating that the surface irregularities vary significantly over the entire surface. We extrapolate the size-frequency distributions of positive relief features to evaluate the surface roughness below the image resolution limit. We find that the probabilities that topographic irregularities are < 40 cm for the areas of 4 × 4 m and 20 × 20 m are > 33% and < 1% for boulder-rich areas and > 88% and > 13% for boulder-poor areas, respectively, even for the worst-case estimates. The estimated probabilities largely increase when we reduce the assumed number of positive relief features, which are more realistic cases. These indicate high probabilities of finding a smooth enough place to land on Phobos' surface safely....
  • Cho, Y., Morota, T., Kanamaru, M., Takaki, N., Yumoto, K., Ernst, C. M., Hirabayashi, M., Barnouin, O. S., Tatsumi, E., Otto, K. A., Schmitz, N., Wagner, R. J., Jaumann, R., Miyamoto, H., Kikuchi, H., Hemmi, R., Honda, R., Kameda, S., Yokota, Y., Kouyama, T., Suzuki, H., Yamada, M., Sakatani, N., Honda, C., Hayakawa, M., Yoshioka, K., Matsuoka, M., Michikami, T., Hirata, N., Sawada, H., Ogawa, K., Sugita, S.
    Journal of Geophysical Research (Planets) 2021年8月  
    Crater morphology and surface age of asteroid (162173) Ryugu are characterized using the high-resolution images obtained by the Hayabusa2 spacecraft. Our observations reveal that the abundant boulders on and under the surface of the rubble-pile asteroid affect crater morphology. Most of the craters on Ryugu exhibit well-defined circular depressions, unlike those observed on asteroid Itokawa. The craters are typically outlined by boulders remaining on the rim. Large craters (diameter > 100 m) host abundant and sometimes unproportionally large boulders on their floors. Small craters (<20 m) are characterized by smooth circular floors distinguishable from the boulder-rich exterior. Such small craters tend to have dark centers of unclear origin. The correlation between crater size and boulder number density suggests that some processes sort the size of boulders in the shallow (<30 m) subsurface. Furthermore, the crater size-frequency distributions (CSFDs) of different regions on Ryugu record multiple geologic events, revealing the diverse geologic history on this 1-km asteroid. Our crater-counting analyses indicate that the equatorial ridge is the oldest structure of Ryugu and was formed 23-30 Myr ago. Then, Ryugu was partially resurfaced, possibly by the impact that formed the Urashima crater 5-12 Myr ago. Subsequently, a large-scale resurfacing event formed the western bulge and the fossae 2-9 Myr ago. Following this process, the spin of Ryugu slowed down plausibly due to the YORP effect. The transition of isochrons in a CSFD suggests that Ryugu was decoupled from the main belt and transferred to a near-Earth orbit 0.2-7 Myr ago....
  • Hemmi, Ryodo, Miyamoto, Hideaki
    Transactions of the Japan Society for Aeronautical and Space Sciences 2020年7月  
    Estimating the regolith properties of Phobos' surface is of critical importance for the landing and performance of the Martian Moons eXploration (MMX) sample return mission. Regolith physical properties such as strength, regolith thickness, and the presence of regolith layers are related to morphologies of superposing impact craters. However, the accurate depths of Phobos' sub-kilometer-diameter craters including irregularly shaped craters have not yet been fully characterized. Here, by using our high-resolution (20 m/pixel) digital elevation model of the nearside (or the sub-Mars side) of Phobos, we investigate the topographic profiles of the sub-kilometer craters. We confirm the presence of crater rims, and bowl-shaped, central-mound, and flat-floored crater geometries. The topography of one flat-floored crater is consistent with a boundary of regolith layers at a depth of ~160-180 meters. Morphometric measurements of 35 sub-kilometer craters show that their depth-to-diameter (d/D) ratios are in the range of 0.037 and 0.174 (mean value = 0.089, median value = 0.093). This suggests either a surface layer composed of rocky debris that effectively dissipates impact energy and causes a reduction in crater depth, or subsequent resurfacing events changed the original crater topography....
  • Hemmi, Ryodo, Miyamoto, Hideaki
    Japan Society of Aeronautical Space Sciences Transactions 2020年7月  査読有り
    Estimating the regolith properties of Phobos' surface is of critical importance for the landing and performance of the Martian Moons eXploration (MMX) sample return mission. Regolith physical properties such as strength, regolith thickness, and the presence of regolith layers are related to morphologies of superposing impact craters. However, the accurate depths of Phobos' sub-kilometer-diameter craters including irregularly shaped craters have not yet been fully characterized. Here, by using our high-resolution (20 m/pixel) digital elevation model of the nearside (or the sub-Mars side) of Phobos, we investigate the topographic profiles of the sub-kilometer craters. We confirm the presence of crater rims, and bowl-shaped, central-mound, and flat-floored crater geometries. The topography of one flat-floored crater is consistent with a boundary of regolith layers at a depth of ~160-180 meters. Morphometric measurements of 35 sub-kilometer craters show that their depth-to-diameter (d/D) ratios are in the range of 0.037 and 0.174 (mean value = 0.089, median value = 0.093). This suggests either a surface layer composed of rocky debris that effectively dissipates impact energy and causes a reduction in crater depth, or subsequent resurfacing events changed the original crater topography....
  • Tatsumi, E., Domingue, D., Schröder, S., Yokota, Y., Kuroda, D., Ishiguro, M., Hasegawa, S., Hiroi, T., Honda, R., Hemmi, R., Le Corre, L., Sakatani, N., Morota, T., Yamada, M., Kameda, S., Koyama, T., Suzuki, H., Cho, Y., Yoshioka, K., Matsuoka, M., Honda, C., Hayakawa, M., Hirata, N., Hirata, N., Yamamoto, Y., Vilas, F., Takato, N., Yoshikawa, M., Abe, M., Sugita, S.
    Astronomy and Astrophysics 639 2020年7月  査読有り
    Context. The Hayabusa2 spacecraft launched by Japan Aerospace Exploration Agency has been conducting observations of the asteroid (162173) Ryugu since June 2018. The Telescopic Optical Navigation Camera (ONC-T) onboard Hayabusa2 has obtained thousands of images under a variety of illumination and viewing conditions. <BR /> Aims: Our objective is to examine and validate the camera calibration, derive a photometric correction for creating global albedo maps, and to interpret the photometric modeling results to characterize the surface of Ryugu. <BR /> Methods: We observed (162173) Ryugu with the Gemini-South telescope, and combined these measurements with other published ground-based observations of the asteroid. The ground-based observations were compared with the data obtained by ONC-T in order to validate the radiometric calibration mutually. We used a combination of the Hapke disk-integrated and disk-resolved model equations to simultaneously analyze the combined ground- and spacecraft-based data. <BR /> Results: The average spectrum of Ryugu was classified as Cb-type following the SMASSII taxonomy and C/F-type following the Tholen taxonomy based on spacecraft observations. We derived Hapke model parameters for all seven color filters, which allowed us to photometrically correct images to within an error of &lt;10% for ~80% of the image pixels used in the modeling effort. Using this model, we derived a geometric albedo of 4.0 ± 0.5% (v band) for Ryugu. The average reflectance factor at the standard illumination condition was 1.87 ± 0.14% in the v band. Moreover we measured a phase reddening of (2.0 ± 0.7) × 10-3 μm-1 deg-1 for Ryugu, similar to that observed for the asteroid (101955) Bennu. <BR /> Conclusions: The global color map showed that the general trend was for darker regions to also be redder regions, however there were some distinct exceptions to this trend. For example, Otohime Saxum was bright and red while Kibidango crater was dark and blue. The darkness and flatness of Ryugu's reflectance might be caused by a high abundance of organic materials....
  • Parsons, Reid A., Kanzaki, Tomohiro, Hemmi, Ryodo, Miyamoto, Hideaki
    Progress in Earth and Planetary Science 7(1) 2020年3月  査読有り
    The three large volcanoes in the Tharsis region of Mars: Arsia, Pavonis, and Ascraeus Montes all have fan-shaped deposits (FSDs) on their northern or western flanks consisting of a combination of parallel ridges, knobby/hummocky terrain, and a smooth, viscous flow-like unit. The FSDs are hypothesized to have formed in the Amazonian during a period of high spin-axis obliquity which redistributed polar ice to the equatorial Tharsis region resulting in thick (&gt; 2 km), flowing ice deposits. Based on previous ice flow simulations and crater surveys, the ridges are interpreted to be recessional drop moraines formed as debris on the ice sheet surface was transported to the ice margin—forming a long ridge sequence over an extended (∼100 Myr) period of ice sheet retreat. We test this hypothesis using a high-resolution, thermomechanical ice sheet model assuming a lower ice loss rate (~ 0.5 mm/year) than prior work based on new experimental results of ice sublimation below a protective debris layer. Our ice flow simulation results, when combined with topographic observations from a long sequence of ridges located interior of the Pavonis FSD, show that the ridged units were more likely deposited during one or more periods of glacial advance (instead of retreat) when repetitive pulses (approx. 120 kyr periodicity) of ice accumulation during high obliquity produced kinematic waves which advected a large volume of surface debris to the ice margin. If ridge deposition does occur during glacial advance, it could explain the cyclic pattern of ridge spacing and would link the dominant, 120 kyr periodicity in obliquity to the time interval between adjacent ridges. By measuring the spacing between these ridges and applying this timescale, we constrain the velocity of glacial margin to be between 0.2 and 4 cm/Earth year—in close agreement with the numerical simulation. This re-interpretation of the FSD ridged unit suggests that the timescale of FSD formation (and perhaps the duration of the Amazonian high obliquity period) was shorter than previously reported....
  • Morota, T., Sugita, S., Cho, Y., Kanamaru, M., Tatsumi, E., Sakatani, N., Honda, R., Hirata, N., Kikuchi, H., Yamada, M., Yokota, Y., Kameda, S., Matsuoka, M., Sawada, H., Honda, C., Kouyama, T., Ogawa, K., Suzuki, H., Yoshioka, K., Hayakawa, M., Hirata, N., Hirabayashi, M., Miyamoto, H., Michikami, T., Hiroi, T., Hemmi, R., Barnouin, O.S., Ernst, C.M., Kitazato, K., Nakamura, T., Riu, L., Senshu, H., Kobayashi, H., Sasaki, S., Komatsu, G., Tanabe, N., Fujii, Y., Irie, T., Suemitsu, M., Takaki, N., Sugimoto, C., Yumoto, K., Ishida, M., Kato, H., Moroi, K., Domingue, D., Michel, P., Pilorget, C., Iwata, T., Abe, M., Ohtake, M., Nakauchi, Y., Tsumura, K., Yabuta, H., Ishihara, Y., Noguchi, R., Matsumoto, K., Miura, A., Namiki, N., Tachibana, S., Arakawa, M., Ikeda, H., Wada, K., Mizuno, T., Hirose, C., Hosoda, S., Mori, O., Shimada, T., Soldini, S., Tsukizaki, R., Yano, H., Ozaki, M., Takeuchi, H., Yamamoto, Y., Okada, T., Shimaki, Y., Shirai, K., Iijima, Y., Noda, H., Kikuchi, S., Yamaguchi, T., Ogawa, N., Ono, G., Mimasu, Y., Yoshikawa, K., Takahashi, T., Takei, Y., Fujii, A., Nakazawa, S., Terui, F., Tanaka, S., Yoshikawa, M., Saiki, T., Watanabe, S., Tsuda, Y.
    Science 368(6491) 654-659 2020年5月8日  査読有り
    © 2020 American Association for the Advancement of Science. All rights reserved. The near-Earth asteroid (162173) Ryugu is thought to be a primitive carbonaceous object that contains hydrated minerals and organic molecules. We report sample collection from Ryugu’s surface by the Hayabusa2 spacecraft on 21 February 2019. Touchdown images and global observations of surface colors are used to investigate the stratigraphy of the surface around the sample location and across Ryugu. Latitudinal color variations suggest the reddening of exposed surface material by solar heating and/or space weathering. Immediately after touchdown, Hayabusa2’s thrusters disturbed dark, fine grains that originate from the redder materials. The stratigraphic relationship between identified craters and the redder material indicates that surface reddening occurred over a short period of time. We suggest that Ryugu previously experienced an orbital excursion near the Sun.
  • Morota, T., Cho, Y., Kanamaru, M., Honda, R., Kameda, S., Tatsumi, E., Yokota, Y., Kouyama, T., Suzuki, H., Yamada, M., Sakatani, N., Honda, C., Hayakawa, M., Yoshioka, K., Matsuoka, M., Michikami, T., Miyamoto, H., Kikuchi, H., Hemmi, R., Hirabayashi, M., Ernst, C. M., Barnouin, O., Hirata, N., Hirata, N., Ogawa, K., Sawada, H., Sugita, S., Hayabusa2 Team
    LPI Contributions 2019年11月  
    Based on these proximity observations and global observations, we infer the nature of stratigraphy expressed in color and albedo of Ryugu....
  • Michikami, Tatsuhiro, Honda, Chikatoshi, Miyamoto, Hideaki, Hirabayashi, Masatoshi, Hagermann, Axel, Irie, Terunori, Nomura, Keita, Ernst, Carolyn M., Kawamura, Masaki, Sugimoto, Kiichi, Tatsumi, Eri, Morota, Tomokatsu, Hirata, Naru, Noguchi, Takaaki, Cho, Yuichiro, Kameda, Shingo, Kouyama, Toru, Yokota, Yasuhiro, Noguchi, Rina, Hayakawa, Masahiko, Hirata, Naoyuki, Honda, Rie, Matsuoka, Moe, Sakatani, Naoya, Suzuki, Hidehiko, Yamada, Manabu, Yoshioka, Kazuo, Sawada, Hirotaka, Hemmi, Ryodo, Kikuchi, Hiroshi, Ogawa, Kazunori, Watanabe, Sei-ichiro, Tanaka, Satoshi, Yoshikawa, Makoto, Tsuda, Yuichi, Sugita, Seiji
    Icarus 331 179-191 2019年10月  査読有り
    © 2019 The Authors In 2018, the Japanese spacecraft Hayabusa2, arrived at the small asteroid Ryugu. The surface of this C-type asteroid is covered with numerous boulders whose size and shape distributions are investigated in this study. Using a few hundred Optical Navigation Camera (ONC) images with a pixel scale of approximately 0.65 m, we focus on boulders greater than 5 m in diameter. Smaller boulders are also considered using five arbitrarily chosen ONC close-up images with pixel scales ranging from 0.7 to 6 cm. Across the entire surface area (~2.7 km2) of Ryugu, nearly 4400 boulders larger than 5 m were identified. Boulders appear to be uniformly distributed across the entire surface, with some slight differences in latitude and longitude. At ~50 km−2, the number density of boulders larger than 20 m is twice as large as on asteroid Itokawa (or Bennu). The apparent shapes of Ryugu's boulders resemble laboratory impact fragments, with larger boulders being more elongated. The ratio of the total volume of boulders larger than 5 m to the total excavated volume of craters larger than 20 m on Ryugu can be estimated to be ~94%, which is comparatively high. These observations strongly support the hypothesis that most boulders found on Ryugu resulted from the catastrophic disruption of Ryugu's larger parent body, as described in previous papers (Watanabe et al., 2019; Sugita et al., 2019). The cumulative size distribution of boulders larger than 5 m has a power-index of −2.65 ± 0.05, which is comparatively shallow compared with other asteroids visited by spacecraft. For boulders smaller than 4 m, the power-index is even shallower and ranges from −1.65 ± 0.05 to −2.01 ± 0.06. This particularly shallow power-index implies that some boulders are buried in Ryugu's regolith. Based on our observations, we suggest that boulders near the equator might have been buried by the migration of finer material and, as a result, the number density of boulders larger than 5 m in the equatorial region is lower than at higher latitudes.
  • Sugita, S., Honda, R., Morota, T., Kameda, S., Sawada, H., Tatsumi, E., Yamada, M., Honda, C., Yokota, Y., Kouyama, T., Sakatani, N., Ogawa, K., Suzuki, H., Okada, T., Namiki, N., Tanaka, S., Iijima, Y., Yoshioka, K., Hayakawa, M., Cho, Y., Matsuoka, M., Hirata, N., Hirata, N., Miyamoto, H., Domingue, D., Hirabayashi, M., Nakamura, T., Hiroi, T., Michikami, T., Michel, P., Ballouz, R. -L., Barnouin, O. S., Ernst, C. M., Schröder, S. E., Kikuchi, H., Hemmi, R., Komatsu, G., Fukuhara, T., Taguchi, M., Arai, T., Senshu, H., Demura, H., Ogawa, Y., Shimaki, Y., Sekiguchi, T., Müller, T. G., Hagermann, A., Mizuno, T., Noda, H., Matsumoto, K., Yamada, R., Ishihara, Y., Ikeda, H., Araki, H., Yamamoto, K., Abe, S., Yoshida, F., Higuchi, A., Sasaki, S., Oshigami, S., Tsuruta, S., Asari, K., Tazawa, S., Shizugami, M., Kimura, J., Otsubo, T., Yabuta, H., Hasegawa, S., Ishiguro, M., Tachibana, S., Palmer, E., Gaskell, R., Le Corre, L., Jaumann, R., Otto, K., Schmitz, N., Abell, P. A., Barucci, M. A., Zolensky, M. E., Vilas, F., Thuillet, F., Sugimoto, C., Takaki, N., Suzuki, Y., Kamiyoshihara, H., Okada, M., Nagata, K., Fujimoto, M., Yoshikawa, M., Yamamoto, Y., Shirai, K., Noguchi, R., Ogawa, N., Terui, F., Kikuchi, S., Yamaguchi, T., Oki, Y., Takao, Y., Takeuchi, H., Ono, G., Mimasu, Y., Yoshikawa, K., Takahashi, T., Takei, Y., Fujii, A., Hirose, C., Nakazawa, S., Hosoda, S., Mori, O., Shimada, T., Soldini, S., Iwata, T., Abe, M., Yano, H., Tsukizaki, R., Ozaki, M., Nishiyama, K., Saiki, T., Watanabe, S., Tsuda, Y.
    Science 364(6437) 2019年4月  査読有り
    © 2019 American Association for the Advancement of Science. All rights reserved. The near-Earth carbonaceous asteroid 162173 Ryugu is thought to have been produced from a parent body that contained water ice and organic molecules. The Hayabusa2 spacecraft has obtained global multicolor images of Ryugu. Geomorphological features present include a circum-equatorial ridge, east-west dichotomy, high boulder abundances across the entire surface, and impact craters. Age estimates from the craters indicate a resurfacing age of ≤ 106 years for the top 1-meter layer. Ryugu is among the darkest known bodies in the Solar System. The high abundance and spectral properties of boulders are consistent with moderately dehydrated materials, analogous to thermally metamorphosed meteorites found on Earth. The general uniformity in color across Ryugu's surface supports partial dehydration due to internal heating of the asteroid's parent body.
  • Watanabe, S., Hirabayashi, M., Hirata, N., Hirata, Na., Noguchi, R., Shimaki, Y., Ikeda, H., Tatsumi, E., Yoshikawa, M., Kikuchi, S., Yabuta, H., Nakamura, T., Tachibana, S., Ishihara, Y., Morota, T., Kitazato, K., Sakatani, N., Matsumoto, K., Wada, K., Senshu, H., Honda, C., Michikami, T., Takeuchi, H., Kouyama, T., Honda, R., Kameda, S., Fuse, T., Miyamoto, H., Komatsu, G., Sugita, S., Okada, T., Namiki, N., Arakawa, M., Ishiguro, M., Abe, M., Gaskell, R., Palmer, E., Barnouin, O. S., Michel, P., French, A. S., McMahon, J. W., Scheeres, D. J., Abell, P. A., Yamamoto, Y., Tanaka, S., Shirai, K., Matsuoka, M., Yamada, M., Yokota, Y., Suzuki, H., Yoshioka, K., Cho, Y., Tanaka, S., Nishikawa, N., Sugiyama, T., Kikuchi, H., Hemmi, R., Yamaguchi, T., Ogawa, N., Ono, G., Mimasu, Y., Yoshikawa, K., Takahashi, T., Takei, Y., Fujii, A., Hirose, C., Iwata, T., Hayakawa, M., Hosoda, S., Mori, O., Sawada, H., Shimada, T., Soldini, S., Yano, H., Tsukizaki, R., Ozaki, M., Iijima, Y., Ogawa, K., Fujimoto, M., Ho, T. -M., Moussi, A., Jaumann, R., Bibring, J. -P., Krause, C., Terui, F., Saiki, T., Nakazawa, S., Tsuda, Y.
    Science 364(6437) 268-272 2019年4月  査読有り
    © 2019 American Association for the Advancement of Science. All rights reserved. The Hayabusa2 spacecraft arrived at the near-Earth carbonaceous asteroid 162173 Ryugu in 2018.We present Hayabusa2 observations of Ryugu's shape, mass, and geomorphology. Ryugu has an oblate "spinning top" shape, with a prominent circular equatorial ridge. Its bulk density, 1.19 ± 0.02 grams per cubic centimeter, indicates a high-porosity (>50%) interior. Large surface boulders suggest a rubble-pile structure. Surface slope analysis shows Ryugu's shape may have been produced from having once spun at twice the current rate. Coupled with the observed global material homogeneity, this suggests that Ryugu was reshaped by centrifugally induced deformation during a period of rapid rotation. From these remote-sensing investigations, we identified a suitable sample collection site on the equatorial ridge.
  • Ryodo Hemmi
    Planetary People - The Japanese Society for Planetary Sciences 27(3) 152-162 2018年9月25日  査読有り
    <p>火星の表面進化史の理解に重要となる地質区分のうち,アマゾニアンは約30億年前から現在までに相当する.しかし,現在の地質現象はアマゾニアンに分類されない地域でも活発に起こっている.現在の火星の活動度を理解するには,まずこうした個々の現象の詳細を理解することが重要である.そこで本稿では,火星周回機によって近年観測された現在の表面変化を概観する.さらに現在の帯水層やメタンの放出に関与する可能性がある地形的特徴を検討し今後の火星探査ミッションの展望を概観する.</p>
  • Hideaki Miyamoto, Peng K Hong, Takafumi Niihara, Takeshi Kuritani, Kenji Fukumizu, Hideitsu Hino, Kenji Nagata, Shotaro Akaho, J Alexis P Rodriguez, Hemmi Ryodo, Seiji Sugita, Masato Okada
    Journal of Physics: Conference Series 1036(1) 012003-012003 2018年6月  査読有り
    © Published under licence by IOP Publishing Ltd. Asteroids have been observed both from the ground and through space missions for decades, which accumulated large amount of their observational data. These data are used to estimate the sizes, orbits, and even possible chemical compositions of asteroids. Even though the chemical composition is generally difficult to be accurately determined without a sample return or in-situ observation by a spacecraft, asteroids are classified based on their reflectance spectra, which are compared with those of meteorites, which are known to be mostly originated from asteroids. This scheme works reasonably well for some asteroid types, but others, mostly featureless ones in reflectance spectra, remained controversial due to the fact that the observational data of asteroids and measured data of meteorites are different in terms of the data coverage, precision and resolution. Our aim is to connect asteroids with meteorites based on sparse modelling in order to search for the optimal integration scheme for two different databases without relying on preliminary knowledge. For the above purpose, we develop large databases of asteroids and meteorites for easy application of sparse modelling. Through our analyses including principal component analysis, Bayesian spectral deconvolution and dimensionality reduction, we found that our data-driven approach can extract potential information without using empirical knowledge. Our methods show a new type of data handling scheme for asteroid and meteorite data, potentially having a significant contribution for future missions.
  • Hemmi, Ryodo, Miyamoto, Hideaki
    Geosciences 8(5) 2018年4月  査読有り
    A northern ocean of Mars is still debated and, if it existed, it may have accompanied valley networks and/or outflow channels, which may have led to the emplacement of a large amount of water to the northern lowlands during the Noachian and/or Hesperian times. However, it is unclear how and under what conditions (submarine or subaerial) geologic features such as mounds and giant polygons formed in the northern lowlands. The densely-distributed mounds in Chryse and Acidalia Planitia, &gt 1000 km-wide basins of the northern plains, were suggested to be ancient mud volcanoes formed in an aqueous setting, which is controversial (i.e., mud vs. igneous and submarine vs. subaerial). However, these mounds have not been quantitatively well characterized, particularly with respect to their detailed topography. Here we generated forty digital elevation models (DEMs) with resolution of up to 1 m/pixel from High Resolution Imaging Science Experiment (HiRISE) stereo image pairs, and we accurately measured the morphometric parameters of ~1300 mounds within the southern part of the Acidalia basin. Their heights and diameters resulted in good accordance with those of mud and igneous volcanoes in submarine/subaerial settings on Earth. Maximum depths of their source reservoirs vary from ~30 to ~450 m for a subaqueous setting and from ~110 to ~860 m for a subaerial setting, both of which are consistent with fluid expulsion from the ~100–4500 m-thick flood deposits (Vastitas Borealis Formation, VBF). On the basis of the morphometric values, we estimated rheological properties of materials forming the mounds and found them consistent with a mud flow origin, which does not rule out an igneous origin. The conditions of possible submarine mud or igneous volcanoes may have harbored less hazardous environments for past life on Mars than those on an ocean-free surface.
  • Hemmi, R., Miyamoto, H.
    Progress in Earth and Planetary Science 4(1) 2017年12月  査読有り
    ...
  • 宮本 英昭, Dohm James M., 逸見 良道, 田中 宏幸, 新谷 昌人, 西堀 俊幸, 熊本 篤志, 春山 純一, 小松 吾郎, 臼井 寛裕, 新原 隆史, 火星地下構造探査チーム, Miyamoto Hideaki, Dohm James M., Hemmi Ryodo, Tanaka Hiroyuki, Araya Akihito, Nisibori Toshiyuki, Kumamoto Atsushi, Haruyama Junichi, Komatsu Goro, Usui Tomohiro, Niihara Takafumi, Mars subsurface exploration team
    第49回月・惑星シンポジウム = Proceedings of the 49th ISAS Lunar and Planetary Symposium 2016年7月  査読有り
    第49回月・惑星シンポジウム (2016年7月20-21日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)), 相模原市, 神奈川県著者人数: 11名資料番号: SA6000059021
  • 宮本 英昭, 小松 吾郎, ドーム ジェームズ, 逸見 良道, 臼井 寛裕, 山岸 明彦
    地學雜誌 125(1) 171-184 2016年  査読有り
    &emsp;Ancient Mars is now considered to have had an environment somewhat similar to that of Earth in terms of the existence of large bodies of water, a wide range of surface oxidation states, an active dynamo and associated magnetic field, magmatism and tectonism which includes mountain building and basin formation, and appearances of variety of chemical components potentially building blocks of life. Similar to habitable Earth, ancient Mars included hydrological cycling among the atmosphere, ocean, and landmass (southern cratered highlands), and plate tectonism cannot be ruled out. Endogenic activities have continued until even very recently, and recent water-related geological features indicate prolonged existence of aquifer systems, where habitable environments may exist for a significant period of time. Occasional releases of volatiles from such aquifer systems may ultimately account for the detection of methane by the Curiosity rover in the Gale crater and the inconclusive result (i.e., not unambiguous denial) of metabolism-detection instrument onboard Viking landers. Unequivocal evidence of the existence of subsurface aquifers or extant endogenic activity is, however, still lacking possibly due to the existence of homogeneous regolith materials covering the surface of Mars. Also, even if a habitable environment exists at depth, accessing the environment by a spacecraft (either a lander or a rover) has been considered to be challenging especially because such an environment has been generally thought to exist more than several kilometers below the Martian surface. Recent findings of a recurring slope lineae (RSL) point to traces of possible seasonal liquid water flows along slopes, findings of which will likely change the above prevailing view; some of these features might result from the partial discharges from an aquifer. In other words, RSLs might provide a natural bridge between a subsurface aquifer and the surface accessible by a rover. Thus, subsurface structures near such features become prime targets to be explored through future missions. Once the presence of ground water is confirmed, especially an aquifer, mapping and characterizing the distribution of subsurface water would significantly help address the ever-important question of whether life exists on Mars.<br>&emsp;Given this view, we have selected possible landing sites for a future landing mission to detect life on Mars. Our selection is based on the possibility of the existence of near-surface water and recent geological and hydrological activities; specifically areas with (1) a higher possibility of releases of volatiles, (2) a relatively high water activity (Aw>0.6), (3) a relatively higher maximum environmental temperature (T>250K), and (4) an existence of gradients of free energy. We propose Melas Chasma in Valles Marineris as a prime candidate because of its long-term water enrichment and energy conditions as evidenced through it: (1) comprising confirmed recurring slope lineae (RSL); (2) being the widest and deepest part of the Valles Marineris and thus a major catchment basin of Mars since its formation; (3) being connected to the outflow channels; (4) possible fog for at least part of a Martian day; (5) containing Interior Layered Deposits (ILDs) which comprise various sulfates deposits, as well as phyllosilicates among the canyon units, both of which are suggestive of abundant past water; (6) comprising a volcanic field in its southeast part; and (7) being cut by deep-seated basement structures that served as conduits for the migration of both groundwater and heat. We also propose Tharsis/Elysium Corridor region as among the best candidates, which shows evidence of long-lived water enrichment and recent geologic activity.
  • 宮本 英昭, 菊地 紘, 新原 隆史, Hong Peng, 逸見 良道, Miyamoto Hideaki, Kikuchi Hiroshi, Niihara Takafumi, Hong Peng, Hemmi Ryodo
    第48回月・惑星シンポジウム = Proceedings of the 48th ISAS Lunar and Planetary Symposium 2015年7月  査読有り
    第48回月・惑星シンポジウム (2015年7月29-31日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)), 相模原市, 神奈川県資料番号: SA6000045003
  • 宮本 英昭, 菊地 紘, 平田 直之, 洪 恒夫, 関岡 裕之, Dohm James M., 新原 隆史, 洪 鵬, 逸見 良道, 清田 馨, 小熊 みどり
    日本惑星科学会誌遊星人 23(4) 323-329 2014年12月  査読有り
    猛烈な勢いで進む太陽系探査の成果を一般に紹介することは,若い世代の知的好奇心を鼓舞するのに有効であるし,探査の意義に関する一般の理解を深める一助にもなりえる.そこで私たちは大学博物館の一員として,太陽系科学/探査に関するアウトリーチ活動を試みた.若い世代に対象を特化したスクール・モバイルミュージアムと,より多くの人材にアプローチできるアミューズメント施設における展示活動を通じて,産学官の連携によって互いにメリットがあるアウトリーチの形が存在しうることを示した.

MISC

 5
  • 和田浩二, 中村智樹, 宮本英昭, 松本晃治, 平田成, 菊地紘, 逸見良道, 清水俊輔, 菊地翔太, 森田朋代, 小林真輝人, 清水雄太, 竹村知洋, VARSHA Natarajan, 堀田啓貴, 平田直之, 松岡萌, 巽瑛理, 黒川宏之, 長勇一郎, 田畑陽久, 倉本圭, 諸田智克, 永峰健太, 大槻真嗣, 馬場満久, 小川和律, 巳谷真司, 岡田尚基, 尾川順子, 池田人, 竹尾洋介, 松本祐樹, 大野剛, 吉川健人, 安光亮一郎
    宇宙科学技術連合講演会講演集(CD-ROM) 67th 2023年  
  • 和田浩二, 中村智樹, 宮本英昭, 松本晃治, 平田成, 菊地紘, 逸見良道, 清水俊輔, 菊地翔太, 倉本圭, 諸田智克, 小川和律, 巳谷真司, 岡田尚基, 尾川順子, 池田人, 竹尾洋介, 松本祐樹, 大野剛, 吉川健人, 安光亮一郎
    宇宙科学技術連合講演会講演集(CD-ROM) 66th 2022年  
  • 宮本英昭, MICHEL Patrick, MICHEL Patrick, 和田浩二, 逸見良道, 小川和律, 新原隆史, 坂谷尚哉, 大槻真嗣, 臼井寛裕, 菊地紘, 平田直之, 亀田真吾, 中村智樹, 諸田智克, 寺田直樹, 佐々木晶, 千秋博紀, 横田勝一郎, 木村智樹, 臼井英之, 三宅洋平, 西野真木, 長勇一郎, 二穴喜文, ASPHAUG Erik, BALLOUZ Ronald-Louis, BIELE Jens, BOETTGER Ute, ERNST Carolyn, BARNOUIN Olivier, GROTT Matthias, 小林真輝人, 清水雄太, 竹村知洋, 清水俊輔
    宇宙科学技術連合講演会講演集(CD-ROM) 66th 2022年  
  • 和田浩二, 中村智樹, 宮本英昭, 松本晃治, 平田成, 菊地紘, 逸見良道, 菊地翔太, 倉本圭, 小川和律, 巳谷真司, 岡田尚基, 尾川順子, 池田人, 竹尾洋介
    宇宙科学技術連合講演会講演集(CD-ROM) 65th 2021年  
  • 佐々木晶, 神田志穂, 菊地紘, 道上達広, 諸田智克, 本田親寿, 宮本英昭, 逸見良道, 杉田精司, 巽瑛理, 渡邊誠一郎, 竝木則行, 平林正稔, 平田成, 中村智樹, 野口高明, 廣井孝弘, 松本晃治, 野田寛大, 坂谷尚哉, 亀田真吾, 神山徹, 鈴木秀彦, 山田学, 本田理恵, 横田康弘, 長勇一郎, 吉岡和夫, 早川雅彦, 松岡萌, 金丸仁明, 澤田弘崇, 吉川真
    日本惑星科学会秋季講演会予稿集(Web) 2020 2020年  

共同研究・競争的資金等の研究課題

 2