Curriculum Vitaes
Profile Information
- Affiliation
- Assistant professor, Institute of Space and Astronautical Science / Department of Solar System Sciences, Japan Aerospace Exploration Agency
- Degree
- Ph. D.(Mar, 2019, Tokyo Institute of Technology)
- Contact information
- fukai.ryohta
jaxa.jp - Researcher number
- 10848469
- ORCID ID
https://orcid.org/0000-0002-1477-829X- J-GLOBAL ID
- 201901013277717727
- Researcher ID
- I-1911-2016
- researchmap Member ID
- B000354117
- External link
Research Interests
16Research Areas
2Major Research History
13-
Dec, 2025 - Present
-
Apr, 2022 - Present
-
Mar, 2022 - Present
-
Apr, 2021 - Mar, 2024
Education
3Awards
5-
Sep, 2017
-
Mar, 2016
-
Sep, 2015
-
May, 2015
Papers
49-
Meteoritics & Planetary Science, Nov 25, 2025
-
Meteoritics & Planetary Science, Oct 23, 2025
-
Journal of Geophysical Research: Planets, Oct, 2025
-
Icarus, 439 116648-116648, Oct, 2025 Peer-reviewedLead authorCorresponding author
-
GEOCHEMICAL JOURNAL, 2025
-
Meteoritics & Planetary Science, Nov 25, 2024Abstract Nucleosynthetic isotope variations are powerful tracers to determine genetic relationships between meteorites and planetary bodies. They can help to link material collected by space missions to known meteorite groups. The Hayabusa 2 mission returned samples from the Cb‐type asteroid (162173) Ryugu. The mineralogical, chemical, and isotopic characteristics of these samples show strong similarities to carbonaceous chondrites and in particular CI chondrites. The nucleosynthetic isotope compositions of Ryugu overlap with CI chondrites for several elements (e.g., Cr, Ti, Fe, and Zn). In contrast to these isotopes, which are of predominately supernovae origin, s‐process variations in Mo isotope data are similar to those of carbonaceous chondrites, but even more s‐process depleted. To further constrain the origin of this depletion and test whether this signature is also present for other s‐process elements, we report Zr isotope compositions for three bulk Ryugu samples (A0106, A0106‐A0107, C0108) collected from the Hayabusa 2 mission. The data are complemented with that of terrestrial rock reference materials, eucrites, and carbonaceous chondrites. The Ryugu samples are characterized by distinct 96Zr enrichment relative to Earth, indicative of a s‐process depletion. Such depletion is also observed for carbonaceous chondrites and eucrites, in line with previous Zr isotope work, but it is more extreme in Ryugu, as observed for Mo isotopes. Since s‐process Zr and Mo are coupled in mainstream SiC grains, these distinct s‐process variations might be due to SiC grain depletion in the analyzed materials, potentially caused by incomplete sample digestion, because the Ryugu samples were dissolved on a hotplate only to avoid high blank levels for other elements (e.g., Cr). However, local depletion of SiC grains cannot be excluded. An alternative, equally possible scenario is that aqueous alteration redistributed anomalous, s‐process‐depleted, Zr on a local scale, for example, into Ca‐phosphates or phyllosilicates.
-
Publications of the Astronomical Society of Japan, Oct 3, 2024 Peer-reviewed
-
Science Advances, 10(39), Sep 27, 2024The isotopic compositions of samples returned from Cb-type asteroid Ryugu and Ivuna-type (CI) chondrites are distinct from other carbonaceous chondrites, which has led to the suggestion that Ryugu/CI chondrites formed in a different region of the accretion disk, possibly around the orbits of Uranus and Neptune. We show that, like for Fe, Ryugu and CI chondrites also have indistinguishable Ni isotope anomalies, which differ from those of other carbonaceous chondrites. We propose that this unique Fe and Ni isotopic composition reflects different accretion efficiencies of small FeNi metal grains among the carbonaceous chondrite parent bodies. The CI chondrites incorporated these grains more efficiently, possibly because they formed at the end of the disk’s lifetime, when planetesimal formation was also triggered by photoevaporation of the disk. Isotopic variations among carbonaceous chondrites may thus reflect fractionation of distinct dust components from a common reservoir, implying CI chondrites/Ryugu may have formed in the same region of the accretion disk as other carbonaceous chondrites.
-
Geochimica et Cosmochimica Acta, 379 172-183, Aug, 2024
-
Meteoritics & Planetary Science, Apr, 2024Abstract Oxygen 3‐isotope ratios of magnetite and carbonates in aqueously altered carbonaceous chondrites provide important clues to understanding the evolution of the fluid in the asteroidal parent bodies. We conducted oxygen 3‐isotope analyses of magnetite, dolomite, and breunnerite in two sections of asteroid Ryugu returned samples, A0058 and C0002, using a secondary ion mass spectrometer (SIMS). Magnetite was analyzed by using a lower primary ion energy that reduced instrumental biases due to the crystal orientation effect. We found two groups of magnetite data identified from the SIMS pit morphologies: (1) higher δ18O (from 3‰ to 7‰) and ∆17O (~2‰) with porous SIMS pits mostly from spherulitic magnetite, and (2) lower δ18O (~ −3‰) and variable ∆17O (0‰–2‰) mostly from euhedral magnetite. Dolomite and breunnerite analyses were conducted using multi‐collection Faraday cup detectors with precisions ≤0.3‰. The instrumental bias correction was applied based on carbonate compositions in two ways, using Fe and (Fe + Mn) contents, respectively, because Ryugu dolomite contains higher amounts of Mn than the terrestrial standard. Results of dolomite and breunnerite analyses show a narrow range of ∆17O; 0.0‰–0.3‰ for dolomite in A0058 and 0.2‰–0.8‰ for dolomite and breunnerite in C0002. The majority of breunnerite, including large ≥100 μm grains, show systematically lower δ18O (~21‰) than dolomite (25‰–30‰ and 23‰–27‰ depending on the instrumental bias corrections). The equilibrium temperatures between magnetite and dolomite from the coarse‐grained lithology in A0058 are calculated to be 51 ± 11°C and 78 ± 14°C, depending on the instrumental bias correction scheme for dolomite; a reliable temperature estimate would require a Mn‐bearing dolomite standard to evaluate the instrumental bias corrections, which is not currently available. These results indicate that the oxygen isotope ratios of aqueous fluids in the Ryugu parent asteroid were isotopically heterogeneous, either spatially, or temporary. Initial water ice accreted to the Ryugu parent body might have ∆17O > 2‰ that was melted and interacted with anhydrous solids with the initial ∆17O < 0‰. In the early stage of aqueous alteration, spherulitic magnetite and calcite formed from aqueous fluid with ∆17O ~ 2‰ that was produced by isotope exchange between water (∆17O > 2‰) and anhydrous solids (∆17O < 0‰). Dolomite and breunnerite, along with some magnetite, formed at the later stage of aqueous alteration under higher water‐to‐rock ratios where the oxygen isotope ratios were nearly at equilibrium between fluid and solid phases. Including literature data, δ18O of carbonates decreased in the order calcite, dolomite, and breunnerite, suggesting that the temperature of alteration might have increased with the degree of aqueous alteration.
-
Icarus, 409 115884-115884, Feb, 2024 Peer-reviewed
-
Meteoritics & Planetary Science, Jan 26, 2024 Peer-reviewedAbstract In order to gain insights on the conditions of aqueous alteration on asteroid Ryugu and the origin of water in the outer solar system, we developed the measurement of water content in magnetite at the micrometer scale by secondary ion mass spectrometry (NanoSIMS) and determined the H and Si content of coarse‐grained euhedral magnetite grains (polyhedral magnetite) and coarse‐grained fibrous (spherulitic) magnetite from the Ryugu polished section A0058‐C1001. The hydrogen content in magnetite ranges between ~900 and ~3300 wt ppm equivalent water and is correlated with the Si content. Polyhedral magnetite has low and homogenous silicon and water content, whereas fibrous magnetite shows correlated Si and water excesses. These excesses can be explained by the presence of hydrous Si‐rich amorphous nanoinclusions trapped during the precipitation of fibrous magnetite away from equilibrium and testify that fibrous magnetite formed from a hydrous gel with possibly more than 20 wt% water. An attempt to determine the water content in sub‐μm framboids indicates that additional calibration and contamination issues must be addressed before a safe conclusion can be drawn, but hints at elevated water content as well. The high water content in fibrous magnetite, expected to be among the first minerals to crystallize at low water–rock ratio, points to the control of water content by local conditions of magnetite precipitation rather than large‐scale alteration conditions. Systematic lithological variations associated with water‐rich and water‐poor magnetite suggest that the global context of alteration may be better understood if local water concentrations are compared with millimeter‐scale distribution of the various morphologies of magnetite. Finally, the high water content in the magnetite precursor gel indicates that the initial O isotopic composition in alteration water must not have been very different from that of the earliest magnetite crystals.
-
Meteoritics and Planetary Science, Jan 11, 2024 Peer-reviewedLead authorCorresponding authorAbstract Japan Aerospace Exploration Agency's Martian Moons eXploration (MMX) mission will launch a spacecraft in 2024 to return samples from Phobos in 2029. Curatorial work for the returned Phobos samples is critical for the sample allocation without degrading the sample integrity and subsequent sample analysis that will provide new constraints on the origin of Phobos and the evolution of the circum‐Mars environment. The Sample Analysis Working Team of the MMX is designing the sample curation protocol. The curation protocol consists of three phases: (1) quick analysis (extraction and mass spectrometry for gases), (2) pre‐basic characterization (bulk‐scale observation), and (3) basic characterization (grain‐by‐grain observation and allocation of the sample aliquots). Nondestructive analyses within the clean chamber (e.g., visible and near‐infrared spectral imaging) and outside the chamber (e.g., gas mass spectrometry) are incorporated into the curation flow in coordination with the MMX mission instrument teams for ground‐truthing the remote‐sensing data sets. The MMX curation/sample analysis flow enables the seamless integration between the sample and remote‐sensing data sets to maximize the scientific value of the collected Phobos samples.
-
Analytical Chemistry, Dec 28, 2023
-
Meteoritics & Planetary Science, Dec 7, 2023Abstract We report Nd and Sm isotopic compositions of four samples of Ryugu returned by the Hayabusa2 mission, including “A” (first touchdown) and “C” (second touchdown) samples, and several carbonaceous chondrites to evaluate potential genetic relationships between Ryugu and known chondrite groups and track the cosmic ray exposure history of Ryugu. We resolved Nd and Sm isotopic anomalies in small (<20 ng Nd and Sm) sample sizes via thermal ionization mass spectrometer using 1013 Ω amplifiers. Ryugu samples exhibit resolvable negative μ142Nd values consistent with carbonaceous chondrite values, suggesting that Ryugu is related to the parent bodies of carbonaceous chondrites. Ryugu's negative μ149Sm values are the result of exposure to galactic cosmic rays, as demonstrated by the correlation between 150Sm/152Sm and 149Sm/152Sm ratios that fall along the expected neutron capture correlation line. The neutron fluence calculated in the “A” samples (2.75 ± 1.94 × 1015 n cm−2) is slightly higher compared to the “C” samples (0.95 ± 2.04 × 1015 n cm−2), though overlapping within measurement uncertainty. The Sm results for Ryugu, at this level of precision, thus are consistent with a well‐mixed surface layer at least to the depths from which the “A” and “C” samples derive.
-
32(4) 288-295, Dec, 2023 Peer-reviewedLead authorCorresponding author
-
Geochemical Perspectives Letters, 28 31-36, Dec, 2023
-
The Astrophysical Journal Letters, 958(2) L25-L25, Nov 24, 2023Abstract The nucleosynthetic isotope composition of planetary materials provides a record of the heterogeneous distribution of stardust within the early solar system. In 2020 December, the Japan Aerospace Exploration Agency Hayabusa2 spacecraft returned to Earth the first samples of a primitive asteroid, namely, the Cb-type asteroid Ryugu. This provides a unique opportunity to explore the kinship between primitive asteroids and carbonaceous chondrites. We report high-precision μ26Mg* and μ25Mg values of Ryugu samples together with those of CI, CM, CV, and ungrouped carbonaceous chondrites. The stable Mg isotope composition of Ryugu aliquots defines μ25Mg values ranging from –160 ± 20 ppm to –272 ± 30 ppm, which extends to lighter compositions relative to Ivuna-type (CI) and other carbonaceous chondrite groups. We interpret the μ25Mg variability as reflecting heterogeneous sampling of a carbonate phase hosting isotopically light Mg (μ25Mg ∼ –1400 ppm) formed by low temperature equilibrium processes. After correcting for this effect, Ryugu samples return homogeneous μ26Mg* values corresponding to a weighted mean of 7.1 ± 0.8 ppm. Thus, Ryugu defines a μ26Mg* excess relative to the CI and CR chondrite reservoirs corresponding to 3.8 ± 1.1 and 11.9 ± 0.8 ppm, respectively. These variations cannot be accounted for by in situ decay of 26Al given their respective 27Al/24Mg ratios. Instead, it requires that Ryugu and the CI and CR parent bodies formed from material with a different initial 26Al/27Al ratio or that they are sourced from material with distinct Mg isotope compositions. Thus, our new Mg isotope data challenge the notion that Ryugu and CI chondrites share a common nucleosynthetic heritage.
-
Science Advances, 9(45), Nov 10, 2023Studies of material returned from Cb asteroid Ryugu have revealed considerable mineralogical and chemical heterogeneity, stemming primarily from brecciation and aqueous alteration. Isotopic anomalies could have also been affected by delivery of exogenous clasts and aqueous mobilization of soluble elements. Here, we show that isotopic anomalies for mildly soluble Cr are highly variable in Ryugu and CI chondrites, whereas those of Ti are relatively uniform. This variation in Cr isotope ratios is most likely due to physicochemical fractionation between 54 Cr-rich presolar nanoparticles and Cr-bearing secondary minerals at the millimeter-scale in the bulk samples, likely due to extensive aqueous alteration in their parent bodies that occurred after Solar System birth. In contrast, Ti isotopes were marginally affected by this process. Our results show that isotopic heterogeneities in asteroids are not all nebular or accretionary in nature but can also reflect element redistribution by water.
-
The Planetary Science Journal, 4(8) 144-144, Aug 1, 2023Abstract We present oxygen isotopic analyses of fragments of the near-Earth Cb-type asteroid Ryugu returned by the Hayabusa2 spacecraft that reinforce the close correspondence between Ryugu and CI chondrites. Small differences between Ryugu samples and CI chondrites in ${ { \rm{\Delta } } }^{ { \prime} 17}{\rm{O } }$ can be explained at least in part by contamination of the latter by terrestrial water. The discovery that a randomly sampled C-complex asteroid is composed of CI-chondrite-like rock, combined with thermal models for formation prior to significant decay of the short-lived radioisotope 26Al, suggests that if lithified at the time of alteration, the parent body was small (≪50 km radius). If the parent planetesimal was large (>50 km in radius), it was likely composed of high-permeability, poorly lithified sediment rather than consolidated rock.
-
Science Advances, 9(28), Jul 14, 2023Preliminary analyses of asteroid Ryugu samples show kinship to aqueously altered CI (Ivuna-type) chondrites, suggesting similar origins. We report identification of C-rich, particularly primitive clasts in Ryugu samples that contain preserved presolar silicate grains and exceptional abundances of presolar SiC and isotopically anomalous organic matter. The high presolar silicate abundance (104 ppm) indicates that the clast escaped extensive alteration. The 5 to 10 times higher abundances of presolar SiC (~235 ppm), N-rich organic matter, organics with N isotopic anomalies (1.2%), and organics with C isotopic anomalies (0.2%) in the primitive clasts compared to bulk Ryugu suggest that the clasts formed in a unique part of the protoplanetary disk enriched in presolar materials. These clasts likely represent previously unsampled outer solar system material that accreted onto Ryugu after aqueous alteration ceased, consistent with Ryugu’s rubble pile origin.
-
Nature Geoscience, 16(8) 675-682, Jul 10, 2023
-
The Astrophysical Journal Letters, 946(2) L43-L43, Apr 1, 2023 Peer-reviewedAbstract Rock fragments of the Cb-type asteroid Ryugu returned to Earth by the JAXA Hayabusa2 mission share mineralogical, chemical, and isotopic properties with the Ivuna-type (CI) carbonaceous chondrites. Similar to CI chondrites, these fragments underwent extensive aqueous alteration and consist predominantly of hydrous minerals likely formed in the presence of liquid water on the Ryugu parent asteroid. Here we present an in situ analytical survey performed by secondary ion mass spectrometry from which we have estimated the D/H ratio of Ryugu’s hydrous minerals, D/HRyugu, to be [165 ± 19] × 10−6, which corresponds to δDRyugu = +59 ± 121‰ (2σ). The hydrous mineral D/HRyugu’s values for the two sampling sites on Ryugu are similar; they are also similar to the estimated D/H ratio of hydrous minerals in the CI chondrites Orgueil and Alais. This result reinforces a link between Ryugu and CI chondrites and an inference that Ryugu’s samples, which avoided terrestrial contamination, are our best proxy to estimate the composition of water at the origin of hydrous minerals in CI-like material. Based on this data and recent literature studies, the contribution of CI chondrites to the hydrogen of Earth’s surficial reservoirs is evaluated to be ∼3%. We conclude that the water responsible for the alteration of Ryugu’s rocks was derived from water ice precursors inherited from the interstellar medium; the ice partially re-equilibrated its hydrogen with the nebular H2 before being accreted on the Ryugu’s parent asteroid.
-
Science Advances, 8(50), Dec 16, 2022The extraterrestrial materials returned from asteroid (162173) Ryugu consist predominantly of low-temperature aqueously formed secondary minerals and are chemically and mineralogically similar to CI (Ivuna-type) carbonaceous chondrites. Here, we show that high-temperature anhydrous primary minerals in Ryugu and CI chondrites exhibit a bimodal distribution of oxygen isotopic compositions: 16 O-rich (associated with refractory inclusions) and 16 O-poor (associated with chondrules). Both the 16 O-rich and 16 O-poor minerals probably formed in the inner solar protoplanetary disk and were subsequently transported outward. The abundance ratios of the 16 O-rich to 16 O-poor minerals in Ryugu and CI chondrites are higher than in other carbonaceous chondrite groups but are similar to that of comet 81P/Wild2, suggesting that Ryugu and CI chondrites accreted in the outer Solar System closer to the accretion region of comets.
-
Nature Astronomy, 7(2) 182-189, Dec 12, 2022
-
Science Advances, 8(46), Nov 18, 2022 Peer-reviewedThe Hayabusa2 spacecraft returned to Earth from the asteroid 162173 Ryugu on 6 December 2020. One day after the recovery, the gas species retained in the sample container were extracted and measured on-site and stored in gas collection bottles. The container gas consists of helium and neon with an extraterrestrial 3 He/ 4 He and 20 Ne/ 22 Ne ratios, along with some contaminant terrestrial atmospheric gases. A mixture of solar and Earth’s atmospheric gas is the best explanation for the container gas composition. Fragmentation of Ryugu grains within the sample container is discussed on the basis of the estimated amount of indigenous He and the size distribution of the recovered Ryugu grains. This is the first successful return of gas species from a near-Earth asteroid.
-
Science Advances, 8(46), Nov 18, 2022 Peer-reviewedLittle is known about the origin of the spectral diversity of asteroids and what it says about conditions in the protoplanetary disk. Here, we show that samples returned from Cb-type asteroid Ryugu have Fe isotopic anomalies indistinguishable from Ivuna-type (CI) chondrites, which are distinct from all other carbonaceous chondrites. Iron isotopes, therefore, demonstrate that Ryugu and CI chondrites formed in a reservoir that was different from the source regions of other carbonaceous asteroids. Growth and migration of the giant planets destabilized nearby planetesimals and ejected some inward to be implanted into the Main Belt. In this framework, most carbonaceous chondrites may have originated from regions around the birthplaces of Jupiter and Saturn, while the distinct isotopic composition of CI chondrites and Ryugu may reflect their formation further away in the disk, owing their presence in the inner Solar System to excitation by Uranus and Neptune.
-
Science (New York, N.Y.), 379(6634) eabo0431, Oct 20, 2022 Peer-reviewedThe near-Earth carbonaceous asteroid (162173) Ryugu is expected to contain volatile chemical species that could provide information on the origin of Earth's volatiles. Samples of Ryugu were retrieved by the Hayabusa2 spacecraft. We measure noble gas and nitrogen isotopes in Ryugu samples, finding they are dominated by pre-solar and primordial components, incorporated during Solar System formation. Noble gas concentrations are higher than those in Ivuna-type carbonaceous (CI) chondrite meteorites. Several host phases of isotopically distinct nitrogen have heterogeneous abundances between the samples. Our measurements support a close relationship between Ryugu and CI chondrites. Noble gases produced by galactic cosmic rays, indicating ~5 Myr exposure, and from implanted solar wind, record the recent irradiation history of Ryugu after it migrated to its current orbit.
-
Geochemical Perspectives Letters, 24 1-6, Oct, 2022
-
Science, 379(6634), Sep 22, 2022 Peer-reviewedSamples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 spacecraft. We analyzed seventeen Ryugu samples measuring 1-8 mm. CO 2 -bearing water inclusions are present within a pyrrhotite crystal, indicating that Ryugu’s parent asteroid formed in the outer Solar System. The samples contain low abundances of materials that formed at high temperatures, such as chondrules and Ca, Al-rich inclusions. The samples are rich in phyllosilicates and carbonates, which formed by aqueous alteration reactions at low temperature, high pH, and water/rock ratios < 1 (by mass). Less altered fragments contain olivine, pyroxene, amorphous silicates, calcite, and phosphide. Numerical simulations, based on the mineralogical and physical properties of the samples, indicate Ryugu’s parent body formed ~ 2 million years after the beginning of Solar System formation.
-
The Astrophysical Journal Letters, 935(1) L3-L3, Aug 1, 2022Abstract We have conducted a NanoSIMS-based search for presolar material in samples recently returned from C-type asteroid Ryugu as part of JAXA's Hayabusa2 mission. We report the detection of all major presolar grain types with O- and C-anomalous isotopic compositions typically identified in carbonaceous chondrite meteorites: 1 silicate, 1 oxide, 1 O-anomalous supernova grain of ambiguous phase, 38 SiC, and 16 carbonaceous grains. At least two of the carbonaceous grains are presolar graphites, whereas several grains with moderate C isotopic anomalies are probably organics. The presolar silicate was located in a clast with a less altered lithology than the typical extensively aqueously altered Ryugu matrix. The matrix-normalized presolar grain abundances in Ryugu are ${4.8}_{-2.6}^{+4.7}$ ppm for O-anomalous grains, ${25}_{-5}^{+6}$ ppm for SiC grains, and ${11}_{-3}^{+5}$ ppm for carbonaceous grains. Ryugu is isotopically and petrologically similar to carbonaceous Ivuna-type (CI) chondrites. To compare the in situ presolar grain abundances of Ryugu with CI chondrites, we also mapped Ivuna and Orgueil samples and found a total of 15 SiC grains and 6 carbonaceous grains. No O-anomalous grains were detected. The matrix-normalized presolar grain abundances in the CI chondrites are similar to those in Ryugu: ${23}_{-6}^{+7}$ ppm SiC and ${9.0}_{-3.6}^{+5.4}$ ppm carbonaceous grains. Thus, our results provide further evidence in support of the Ryugu–CI connection. They also reveal intriguing hints of small-scale heterogeneities in the Ryugu samples, such as locally distinct degrees of alteration that allowed the preservation of delicate presolar material.
-
Planetary People - The Japanese Society for Planetary Sciences, 31(2) 153-164, Jun 25, 2022 Invited
-
Proceedings of the Japan Academy, Series B, 98(6) 227-282, Jun 10, 2022 Peer-reviewed
-
Science, 379(6634), Jun 9, 2022 Peer-reviewedCarbonaceous meteorites are thought to be fragments of C-type (carbonaceous) asteroids. Samples of the C-type asteroid (162173) Ryugu were retrieved by the Hayabusa2 spacecraft. We measure the mineralogy, bulk chemical and isotopic compositions of Ryugu samples. They are mainly composed of materials similar to carbonaceous chondrite meteorites, particularly the CI (Ivuna-type) group. The samples consist predominantly of minerals formed in aqueous fluid on a parent planetesimal. The primary minerals were altered by fluids at a temperature of 37 ± 10°C, (Stat.) (Syst.) million years after formation of the first solids in the Solar System. After aqueous alteration, the Ryugu samples were likely never heated above ~100°C. The samples have a chemical composition that more closely resembles the Sun’s photosphere than other natural samples do.
-
(Invited review) Planet formation history revealed by the isotopic heterogeneity in the solar nebulaPlanetary People - The Japanese Society for Planetary Sciences, 31(1) 50-67, Mar 25, 2022 Peer-reviewedInvited
-
Nature Astronomy, 6(2) 214-220, Dec 20, 2021 Peer-reviewed<title>Abstract</title>C-type asteroids1 are considered to be primitive small Solar System bodies enriched in water and organics, providing clues to the origin and evolution of the Solar System and the building blocks of life. C-type asteroid 162173 Ryugu has been characterized by remote sensing2–7 and on-asteroid measurements8,9 with Hayabusa2 (ref. 10). However, the ground truth provided by laboratory analysis of returned samples is invaluable to determine the fine properties of asteroids and other planetary bodies. We report preliminary results of analyses on returned samples from Ryugu of the particle size distribution, density and porosity, spectral properties and textural properties, and the results of a search for Ca–Al-rich inclusions (CAIs) and chondrules. The bulk sample mainly consists of rugged and smooth particles of millimetre to submillimetre size, confirming that the physical and chemical properties were not altered during the return from the asteroid. The power index of its size distribution is shallower than that of the surface boulder observed on Ryugu11, indicating differences in the returned Ryugu samples. The average of the estimated bulk densities of Ryugu sample particles is 1,282 ± 231 kg m−3, which is lower than that of meteorites12, suggesting a high microporosity down to the millimetre scale, extending centimetre-scale estimates from thermal measurements5,9. The extremely dark optical to near-infrared reflectance and spectral profile with weak absorptions at 2.7 and 3.4 μm imply a carbonaceous composition with indigenous aqueous alteration, matching the global average of Ryugu3,4 and confirming that the sample is representative of the asteroid. Together with the absence of submillimetre CAIs and chondrules, these features indicate that Ryugu is most similar to CI chondrites but has lower albedo, higher porosity and more fragile characteristics.
-
The Astrophysical Journal, 908(1) 64-64, Feb 1, 2021 Peer-reviewedLead authorCorresponding author
-
Chikyu Kagaku, Jun 25, 2020
-
JPS Conference Proceedings, 31(011017), Mar 27, 2020 Peer-reviewedLead authorCorresponding author
-
Yuseijin, 29(1) 14-21, Mar 25, 2020 Peer-reviewedLead authorCorresponding author
-
Geostandards and Geoanalytical Research, 44(2) 265-285, Feb 9, 2020 Peer-reviewed
-
The Astrophysical Journal, 883(62), Sep, 2019 Peer-reviewed
-
Geochemical Journal, 53(5) 333-337, Sep, 2019 Peer-reviewedLead authorCorresponding author
-
The Astrophysical Journal, 879(2), Jul 8, 2019 Peer-reviewedLead authorCorresponding author
-
EARTH AND PLANETARY SCIENCE LETTERS, 474 206-214, Sep, 2017 Peer-reviewedLead authorCorresponding author
-
INTERNATIONAL JOURNAL OF MASS SPECTROMETRY, 414 1-7, Mar, 2017 Peer-reviewedLead authorCorresponding author
Misc.
5-
Geochemistry, 54(2) 97-98, Jun, 2020 Lead authorCorresponding author
Major Presentations
42-
HAYABUSA 2023, Nov 15, 2023 Invited
-
A New Era in Sample Return Missions: Synchrotron Analysis Opportunities Beyond Earth Materials, Apr 29, 2023 Invited
-
JpGU, May 27, 2022 Invited
Teaching Experience
2-
Apr, 2022 - PresentGeochemistry (Kitasato University)
-
Apr, 2021 - Mar, 2024地球惑星物理学実験(真空実験) (The University of Tokyo)
Professional Memberships
6-
Oct, 2020 - Present
-
Aug, 2020 - Present
-
Apr, 2019 - Present
-
Apr, 2015 - Present
-
Apr, 2014 - Present
Works
2Major Research Projects
14-
科学研究費助成事業, 日本学術振興会, Apr, 2025 - Mar, 2028
-
科学研究費助成事業, 日本学術振興会, Apr, 2024 - Mar, 2027
-
科学研究費助成事業 国際共同研究加速基金(国際共同研究強化(B)), 日本学術振興会, Oct, 2021 - Mar, 2026
-
笹川科学研究助成, 公益財団法人日本科学協会, Apr, 2024 - Feb, 2025
-
科学研究費助成事業 若手研究, 日本学術振興会, Apr, 2020 - Mar, 2024
-
科学研究費助成事業 特別研究員奨励費, 日本学術振興会, Apr, 2018 - Mar, 2020