研究者業績

船瀬 龍

フナセ リュウ  (Ryu Funase)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 教授
東京大学 大学院工学系研究科 航空宇宙工学専攻 准教授
学位
博士(工学)(2007年3月 東京大学)

研究者番号
70509819
J-GLOBAL ID
200901051354637504
researchmap会員ID
5000090886

受賞

 4

主要な論文

 115
  • Kenshiro Oguri, Kenta Oshima, Stefano Campagnola, Kota Kakihara, Naoya Ozaki, Nicola Baresi, Yasuhiro Kawakatsu, Ryu Funase
    JOURNAL OF THE ASTRONAUTICAL SCIENCES 67(3) 950-976 2020年1月  査読有り最終著者
    This paper presents the trajectory design for EQUilibriUm Lunar-Earth point 6U Spacecraft (EQUULEUS), which aims to demonstrate orbit control capability of CubeSats in the cislunar space. The mission plans to observe the far side of the Moon from an Earth-Moon L2 (EML2) libration point orbit. The EQUULEUS trajectory design needs to react to uncertainties of mission design parameters such as the launch conditions, errors, and thrust levels. The main challenge is to quickly design science orbits at EML2 and low-energy transfers from the post-deployment trajectory to the science orbits within the CubeSat's limited propulsion capabilities. To overcome this challenge, we develop a systematic trajectory design approach that 1) designs over 13,000 EML2 quasi-halo orbits in a full-ephemeris model with a statistical stationkeeping cost evaluation, and 2) identifies families of low-energy transfers to the science orbits using lunar flybys and solar perturbations. The approach is successfully applied for the trajectory design of EQUULEUS.
  • Hiroyuki Koizumi, Jun Asakawa, Yuichi Nakagawa, Keita Nishii, Yoshinori Takao, Masakatsu Nakano, Ryu Funase
    JOURNAL OF SPACECRAFT AND ROCKETS 56(5) 1400-1408 2019年9月  査読有り
    This study proposes a micropropulsion system unifying ion thrusters and resistojet thrusters and assessing that propulsive capability. The remarkable features of the system are the usage of water propellant and unification of the two types of thrusters by the single propellant. Water has been regarded as an attractive propellant in the view points of safety, availability, handling ability, low molecular mass, and future procurement in space. A multimode propulsion system is an attractive solution for the increasing demand for nano-/microsatellite missions. The proposal is to use microwave discharge water ion thrusters, tolerant for oxidization by water, and low-temperature water resistojet thrusters, enabling reuse of the waste heat. As a result of the assessment, it was expected that the propulsion system would have 3U size (10 x 10 x 30 cm(3)) and 3.70 kg mass, which realize in total a 6U and 10 kg satellite with 3U and 6 kg satellite bus system. The ion thruster would provide the maximum Delta V of 630 m/s by 47 W system power and the resistojet thruster would have 3.80 mN thrust and 72 s specific impulse by 19.4 W. Additionally, reuse of the waste heat from ion-thruster power supplies would enable the simultaneous operations of the two thrusters even at 50 W, which is almost the same power as the single ion thruster operation.
  • Yuichiro Ezoe, Yoshizumi Miyoshi, Satoshi Kasahara, Tomoki Kimura, Kumi Ishikawa, Masaki Fujimoto, Kazuhisa Mitsuda, Hironori Sahara, Naoki Isobe, Hiroshi Nakajima, Takaya Ohashi, Harunori Nagata, Ryu Funase, Munetaka Ueno, Graziella Branduardi-Raymont
    JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS 4(4) 2018年10月  査読有り
    Toward an era of x-ray astronomy, next-generation x-ray optics are indispensable. To meet a demand for telescopes lighter than the foil optics but with a better angular resolution <1 arcmin, we are developing micropore x-ray optics based on micromaching technologies. Using sidewalls of micropores through a thin silicon wafer, this type can be the lightest x-ray telescope ever achieved. Two Japanese missions, ORBIS and GEO-X, will carry this telescope. ORBIS is a small x-ray astronomy mission to monitor supermassive blackholes, while GEO-X is a small exploration mission of the Earth's magnetosphere. Both missions need an ultralight-weight (<1 kg) telescope with moderately good angular resolution (<10 arcmin) at an extremely short focal length (<30 cm). We plan to demonstrate this type of telescope in these two missions around 2020. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
  • Naoya Ozaki, Stefano Campagnola, Ryu Funase, Chit Hong Yam
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS 41(2) 377-387 2018年2月  査読有り
    Low-thrust propulsion is a key technology for space exploration, and much work in astrodynamics has focused on the mathematical modeling and the optimization of low-thrust trajectories. Typically, a nominal trajectory is designed in a deterministic system. To account for model and execution errors, mission designers heuristically add margins, for example, by reducing the thrust and specific impulse or by computing penalties for specific failures. These conventional methods are time-consuming, done by hand by experts, and lead to conservative margins. This paper introduces a new method to compute nominal trajectories, taking into account disturbances. The method is based on stochastic differential dynamic programming, which has been used in the field of reinforcement learning but not yet in astrodynamics. A modified version of stochastic differential dynamic programming is proposed, where the stochastic dynamical system is modeled as the deterministic dynamical system with random state perturbations, the perturbed trajectories are corrected by linear feedback control policies, and the expected value is computed with the unscented transform method, which enables solving trajectory design problems. Finally, numerical examples are presented, where the solutions of the proposed method are more robust to errors and require fewer penalties than those computed with traditional approaches, when uncertainties are introduced.
  • 神代 優季, 尾崎 直哉, 船瀬 龍, 中須賀 真一
    日本航空宇宙学会論文集 65(6) 219-226 2017年  査読有り
    Earth observation satellites can improve the flexibility of observation sites by having &ldquo;maneuverability,&rdquo; and low-thrust obtained by ion thruster will be a promising method for orbital change for micro-satellites. Designing low-thrust trajectories for these satellites is a multi-revolution and multi-objective (time/fuel-optimal) optimization problem, which usually requires high computational cost to solve numerically. This paper derives an analytical and approximate optimal orbit change strategy between two circular orbits with the same semi-major axis and different local time of ascending node, and proposes a graph-based method to optimize the multi-objective criteria. The optimal control problem results in a problem to search a switching point on the proposed graph, and mission designers can design an approximate switching point on this graph, by using two heuristic and reasonable assumptions that 1) the optimal thrust direction should be tangential to orbit and 2) the optimal thrust magnitude should be bang-bang control with an intermediate coast. Finally, numerical simulation with feedback control algorithm taking thrust margin demonstrates that the proposed method can be applicable in the presence of deterministic and stochastic fluctuation of aerodynamic disturbances.
  • Ikari, S., Inamori, T., Ito, T., Ariu, K., Oguri, K., Fujimoto, M., Sakai, S., Kawakatsu, Y., Funase, R.
    Transactions of the Japan Society for Aeronautical and Space Sciences 60(3) 181-191 2017年  査読有り最終著者
    This paper describes development strategies and on-orbit results of the attitude determination and control system (ADCS) for the world's first interplanetary micro-spacecraft, PROCYON, whose advanced mission objectives are optical navigation or an asteroid close flyby. Although earth-orbiting micro-satellites already have ADCSs for practical missions, these ADCSs cannot be used for interplanetary micro-spacecraft due to differences in the space environments of their orbits. To develop a new practical ADCS, four issues for practical interplanetary micro-spacecraft are discussed: initial Sun acquisition without magnetic components, angular momentum management using a new propulsion system, the robustness realized using a fault detection, isolation, and recovery (FDIR) system, and precise attitude control. These issues have not been demonstrated on orbit by interplanetary micro-spacecraft. In order to overcome these issues, the authors developed a reliable and precise ADCS, a FDIR system without magnetic components, and ground-based evaluation systems. The four issues were evaluated before launch using the developed ground-based evaluation systems. Furthermore, they were successfully demonstrated on orbit. The architectures and simulation and on-orbit results for the developed attitude control system are proposed in this paper.
  • Kameda, S., Ikezawa, S., Sato, M., Kuwabara, M., Osada, N., Murakami, G., Yoshioka, K., Yoshikawa, I., Taguchi, M., Funase, R., Sugita, S., Miyoshi, Y., Fujimoto, M.
    Geophysical Research Letters 44(23) 192-197 2017年  査読有り
  • 栁沼 和也, 船瀬 龍, 小紫 公也, 小泉 宏之, 河原 大樹, 浅川 純, 中川 悠一, 稲垣 匡志, 笠木 友介, 五十里 哲, 尾崎 直哉
    日本航空宇宙学会論文集 64(2) 131-138 2016年  査読有り
    We propose thrust vector management by correctly positioning the thruster on a spacecraft by thrust vector measurement to decrease unwanted torque of thrust vector misalignment. A ground test was performed to measure 2-dimensional ion current distribution of 10W-class miniature ion thruster by electrostatic probe. The thrust vector measurement test showed that the thrust vector inclining angle was 1.4&ordm; from the geometrically symmetric axis of the thruster. The thruster was positioned on the first interplanetary micro-spacecraft: PROCYON after redesigning thruster bracket. Thrust vector estimation in the initial on-orbit operation of 6.5 hours showed that thrust vector passes through within 5mm of the PROCYON's center of gravity.
  • Hiroki Hihara, Kaori Iwase, Junpei Sano, Hisashi Otake, Tatsuaki Okada, Ryu Funase, Ryoichi Kashikawa, Isamu Higashino, Tetsuya Masuda
    JOURNAL OF APPLIED REMOTE SENSING 8 2014年4月  査読有り
    A thermal-infrared (TIR) imager system is developed for HAYABUSA2, which is planned to be launched in 2014 and aims at sample-return from a C-class near-Earth asteroid 162173 (1999JU3) considered to contain organic or hydrated materials. The system consists of a TIR imager and digital electronics, which are used not only for the scientific investigation of physical properties of the asteroid surface, but also for the assessment of landing site selection and safe descent operation onto the asteroid surface with in situ measurement. TIR adopts an uncooled bolometer. Image operations such as multiple images summation, dark image subtraction, and the compensation of dead pixels are processed onboard. A processing module is connected to sensor interfaces through SpaceWire in order to provide deterministic processing time. Data compression is also provided to reduce the restriction of transmission time, which provides the equivalent compression ratio as JPEG2000 in 1/30 processing time in average. A high-speed data recorder is connected through SpaceWire in order to record TIR data in parallel with other sensor data. The modularity of SpaceWire enables us to use these as built devices for TIR and inherits the same design as the long-wavelength infrared imager developed for the Venus climate orbiter Akatsuki. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)
  • Yoshinori Takano, Hajime Yano, Yasuhito Sekine, Ryu Funase, Ken Takai
    ADVANCES IN SPACE RESEARCH 53(7) 1135-1142 2014年4月  査読有り
    Planetary protection has been recognized as one of the most important issues in sample return missions that may host certain living forms and biotic signatures in a returned sample. This paper proposes an initiative of sample capsule retrieval and onboard biosafety protocol in international waters for future biological and organic constituent missions to bring samples from possible habitable bodies in the solar system. We suggest the advantages of international waters being outside of national jurisdiction and active regions of human and traffic affairs on the condition that we accept the Outer Space Treaty. The scheme of onboard biological quarantine definitely reduces the potential risk of back-contamination of extraterrestrial materials to the Earth. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).
  • Yuichi Tsuda, Takanao Saiki, Ryu Funase, Yuya Mimasu
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS 36(4) 967-974 2013年7月  査読有り
    An attitude model for a general spinning solar sail spacecraft under the influence of solar radiation pressure is presented. This model, called "Generalized Spinning Sail Model", can be applied to realistic sails with nonflat surfaces that have nonuniform optical properties. The unique behaviors predicted by the generalized spinning sail model are verified by actual operation of the Japanese spinning solar sail spacecraft IKAROS. It is shown how imperfections in the sail surface affect the attitude motion of spinning sails, and a compact mathematical model that can precisely reproduce the spin-averaged motion of the spinning sails is derived. The stability conditions and a reduced model that preserves the key characteristics of the generalized spinning sail model are also derived to reveal the unique properties of the attitude behavior of spinning sails.
  • Yuichi Tsuda, Osamu Mori, Ryu Funase, Hirotaka Sawada, Takayuki Yamamoto, Takanao Saiki, Tatsuya Endo, Katsuhide Yonekura, Hirokazu Hoshino, Jun'ichiro Kawaguchi
    ACTA ASTRONAUTICA 82(2) 183-188 2013年2月  査読有り
    This paper describes achievements of the IKAROS project, the world's first successful interplanetary solar power sail technology demonstration mission. It was developed by the Japan Aerospace Exploration Agency (JAXA) and was launched from Tanegashima Space Center on May 21, 2010. IKAROS successfully deployed a 20 m-span sail on June 9, 2010. Since then IKAROS has performed interplanetary solar-sailing taking advantage of an Earth-Venus leg of the interplanetary trajectory. We declared the completion of the nominal mission phase in the end of December 2010 when IKAROS successfully passed by Venus with the assist of solar sailing. This paper describes the overview of the IKAROS spacecraft system, how the world's first interplanetary solar sailer has been operated and what were achieved by the end of the nominal mission phase. (c) 2012 Elsevier Ltd. All rights reserved.
  • Osamu Mori, Yoji Shirasawa, Yasuyuki Miyazaki, Hiraku Sakamoto, Mitsue Hasome, Nobukatsu Okuizumi, Hirotaka Sawada, Hiroshi Furuya, Saburo Matunaga, Michihiro Natori, Yuichi Tsuda, Takanao Saiki, Ryu Funase, Yuya Mimasu, Junichiro Kawaguchi
    Journal of Aerospace Engineering, Sciences and Applications 4(4) 79-96 2012年10月  査読有り
    The Japan Aerospace Exploration Agency (JAXA) makes the world's first solar power sail craft IKAROS demonstration of photon propulsion and thin film solar power generation during its interplanetary cruise. The spacecraft deploys and spans a membrane of 20 meters in diameter using the spin centrifugal force. It also deploys thin film solar cells on the membrane, in order to evaluate its thermal control property and anti-radiation performance in the real operational field. The spacecraft weighs approximately 310kg, launched together with the agency's Venus Climate Orbiter, AKATSUKI on May 21, 2010. This paper presents the summary of development and operation of IKAROS.
  • 関根 康人, 薮田 ひかる, 木村 淳, 古川 善博, 高野 淑識, 矢野 創, 船瀬 龍, 高井 研, 石原 盛男, 渋谷 岳造, 橘 省吾, 倉本 圭
    日本惑星科学会誌遊星人 21(3) 229-238 2012年  査読有り
    エンセラダスの南極付近から噴出するプリュームの発見は,氷衛星の内部海の海水や海中の揮発性成分や固体成分の直接サンプリングの可能性を示した大きなブレイクスルーであるといえる.これまでカッシーニ探査によって,プリューム物質は岩石成分と相互作用する液体の内部海に由来していることが明らかになったが,サンプリング時の相対速度が大きいこと,質量分析装置の分解能が低いことなどの問題があり,内部海の化学組成や温度条件,海の存続時間など,生命存在の可能性を制約できる情報は乏しい.本論文では,エンセラダス・プリューム物質の高精度その場質量分析とサンプルリターンによる詳細な物質分析を行うことで,内部海の化学組成の解明,初期太陽系物質進化の制約,そして生命存在可能性を探ることを目的とする探査計画を提案する.本提案は,"宇宙に生命は存在するのか"という根源的な問いに対して,理・工学の様々な分野での次世代を担う若手研究者が惑星探査に参入し結集する点が画期的であり,我が国の科学・技術界全体に対しても極めて大きな波及効果をもつ.
  • 中村 良介, 松浦 周二, 船瀬 龍, 矢野 創, 森 治, 津田 雄一, 吉田 二美, 高遠 徳尚, 小久保 英一郎
    日本惑星科学会誌遊星人 21(3) 253-259 2012年  査読有り
    原始太陽系円盤を構成していた初期物質を探るためには,惑星形成時の熱変成の影響を免れた小惑星・彗星・惑星間塵といった小天体の研究が不可欠である.なかでも木星のラグランジュ点付近に存在するトロヤ群小惑星は,小惑星と彗星の間をつなぐ天体であり,原始太陽系円盤の物質分布や微惑星の成長・移動プロセスを調べる上で重要なターゲットである.本稿では,日本が世界に先駆けて実証したソーラー電力セイル技術を用いたトロヤ群小惑星探査ミッションを提案する.この探査は(1)トロヤ群小惑星の詳細な物質組成や熱史・衝突史を調べることで,その起源と進化を明らかにする, (2)惑星間塵の空間分布を測定することで,彗星・小惑星からの生成率や軌道進化に関する理解を深め,その結果を他の惑星系に応用する, (3)惑星間塵の影響の少ない小惑星帯以遠からの宇宙赤外線背景放射観測によって,宇宙初期に形成された第一世代の星を調べる,という科学目標をあわせ持つ,惑星科学・天文学・宇宙工学の融合ミッションである.
  • Ryu Funase, Yoji Shirasawa, Yuya Mimasu, Osamu Mori, Yuichi Tsuda, Takanao Saiki, Jun'Ichiro Kawaguchi
    Advances in Space Research 48(11) 1740-1746 2011年12月1日  査読有り筆頭著者責任著者
    This paper introduces a new attitude control system for a solar sail, which leverages solar radiation pressure. This novel system achieves completely fuel-free and oscillation-free attitude control of a flexible spinning solar sail. This system consists of thin-film-type devices that electrically control their optical parameters such as reflectivity to generate an imbalance in the solar radiation pressure applied to the edge of the sail. By using these devices, minute and continuous control torque can be applied to the sail to realize very stable and fuel-free attitude control of the large and flexible membrane. The control system was implemented as an optional attitude control system for small solar power sail demonstrator named IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun). In-orbit attitude control experiments were conducted, and the performance of the controller was successfully verified in comparison with the ground-based analytical performance estimation. © 2011 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • Yuya Mimasu, Tomohiro Yamaguchi, Michihiro Matsumoto, Masaki Nakamiya, Ryu Funase, Jun'Ichiro Kawaguchi
    Advances in Space Research 48(11) 1810-1821 2011年12月1日  査読有り
    The orbit of a solar sail can be controlled by changing the attitude of the spacecraft. In this study, we consider the spinning solar power sail IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun), which is managed by Japan Aerospace Exploration Agency (JAXA). The IKAROS attitude, i.e.; the direction of its spin-axis, is nominally controlled by the rhumb-line control method. By utilizing the solar radiation torque, however, we are able to change the direction of the spin-axis by only controlling its spin rate. With this spin rate control, we can also control indirectly the solar sail's trajectory. The main objective of this study is to construct the orbit control strategy of the solar sail via the spin-rate control method. We evaluate this strategy in terms of its propellant consumption compared to the rhumb-line control method. Finally, we present the actual flight attitude data of IKAROS and the change of its trajectory. © 2011 COSPAR. Published by Elsevier Ltd. All rights reserved.
  • Shinichi Kimura, Akira Miyasaka, Ryu Funase, Hirotaka Sawada, Nobuomi Sakamoto, Naoki Miyashita
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE 26(3) 19-25 2011年3月  査読有り
    It is becoming imperative to have visual capabilities for space activities. There are increasing opportunities to use visual Images coupled with image processing technologies for spacecraft sensing and control. To fill this need, we have developed a small, low-cost, high-performance image acquisition and processing unit (HP-IMAP), which uses commercial off-the-shelf technologies. In 2010, the HP-IMAP was launched to monitor a deployable structure. Herein, we describe the BP-IMAP and discuss Its qualification tests.
  • 船瀬 龍, 中村 友哉, 永井 将貴, 江野口 章人, 小松 満仁, 中須賀 真一, 川北 史朗
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, SPACE TECHNOLOGY JAPAN 6(6) 1-9 2008年  査読有り筆頭著者責任著者
    Small satellites, especially pico or nano-class satellites, which can be developed in a very short period and at very low cost, are considered to provide good opportunities for technology demonstration in a space environment. Based on the success of the first pico-satellite XI-IV, which was intended to establish the basic technologies required for this class of satellites, Intelligent Space Systems Laboratory (ISSL) at the University of Tokyo developed its second pico-satellite XI-V with the mission to demonstrate new space technologies such as the verification of copper indium gallium di-selenide (CIGS) thin-film solar cells in space. The pico-satellite bus verified by XI-IV was used for this mission, so that the satellite was completed within as short a development period as one year. XI-V was launched on October 2005 and has been successfully conducting its missions. In this paper, following the introduction of the pico-satellite bus system and its demonstrated results on XI-IV, the details of the missions and on-orbit experimental results of XI-V are described.
  • Ryu Funase, Ernesto Takei, Yuya Nakamura, Masaki Nagai, Akito Enokuchi, Cheng Yuliang, Kenji Nakada, Yuta Nojiri, Fumiki Sasaki, Tsukasa Funane, Takeshi Eishima, Shinichi Nakasuka
    ACTA ASTRONAUTICA 61(7-8) 707-711 2007年10月  査読有り筆頭著者責任著者
    Small satellites, especially pico- or nano-class satellites, are considered to provide good opportunity for technology demonstration. University of Tokyo's pico-satellite "XI-V", which was scheduled to be launched in September 2005, was developed in I year with the mission to test newly developed solar cells. This paper introduces the details of the mission and its effective operation using the network of ground stations. (c) 2007 Elsevier Ltd. All rights reserved.
  • Ryu Funase, Shinichi Nakasuka, Nobutada Sako, Takeshi Fuiiwara, Yuichi Tsuda, Shinichi Ukawa, Shinichi Kimura, Hidekazu Hashimoto, Keisuke Yoshihara, Toru Yamamot
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 50(168) 97-104 2007年8月  査読有り筆頭著者責任著者
    Capture of tumbling objects in space will be one of the important on-orbit service technologies in the future. It requires a series of technologies such as camera-image tracking of the target, target attitude motion estimation, and attitude control of the chaser to approach and grasp the target. Based on theoretical and simulation-based research, the University of Tokyo successfully performed an on-orbit experiment of some of these technologies on a Japan Aerospace Exploration Agency's (JAXA, formerly NASDA) microsatellite named "mu-LABSAT." In this paper, the objectives and procedures of these experiments, the control and estimation algorithms, and the results are described.
  • 中須賀 真一, 酒匂 信匡, 津田 雄一, 永島 隆, 船瀬 龍, 中村 友哉, 永井 将貴
    電子情報通信学会論文誌. B, 通信 = The transactions of the Institute of Electronics, Information and Communication Engineers. B 88(1) 41-48 2005年1月1日  査読有り
    2003年6月30日,東京大学中須賀研究室が開発した超小型衛星CubeSat-XI(1kg,10cm立方)がロシア連邦プレセツクより高度820kmの太陽同期軌道に打ち上げられた.その後,当初の予想を超え1年以上の長期にわたり順調に動作し,バス機器の軌道上実証,画像取得・ダウンリンクなどの実験を行って大きな成果を収めた.この衛星は学生の手作りにより開発された衛星で,その第一の目的は宇宙工学教育であるが,民生品をベースに低コスト・短期に衛星を提供することによる新しい宇宙開発を試行することをその先の目的としている.本論文では,CubeSat-XIの概要と軌道上実証の成果を述べ,その開発経験や成果を踏まえ,宇宙開発の低コスト化・短期開発化を目指した小型・超小型衛星開発のあり方を論じる.

MISC

 279
  • Yuya Mimasu, Jozef C. van der Ha, Tomohiro Yamaguchi, Ryu Funase, Yuichi Tsuda, Osamu Mori, Jun'ichiro Kawaguchi
    SPACEFLIGHT MECHANICS 2010, PTS I-III 136 1915-+ 2010年  査読有り
    Japan Aerospace Exploration Agency (JAXA) has developed the small demonstration solar sail spacecraft IKAROS (Interplanetary Kite-craft Accelerated by Radiation of the Sun), which will be launched in mid 2010. The main objective of this spacecraft is to deploy the 20m class sail membrane, and demonstrate the acceleration of a spacecraft by the solar radiation pressure (SRP) by means of that sail. It is important to model the SRP force adequately for the objective of navigation, especially for interplanetary spacecraft. In order to improve the model of the SRP torque induced by the sail membrane, the MAROS project team plans to estimate the SRP torque parameters in orbit. In this paper, we present the approach to obtain the parameters needed for constructing the photon torque model through the analysis of the attitude dynamics.
  • Tomohiro Yamaguchi, Yuya Mimasu, Yuichi Tsuda, Hiroshi Takeuchi, Ryu Funase, Osamu Mori, Makoto Yoshikawa
    SPACEFLIGHT MECHANICS 2010, PTS I-III 136 2097-+ 2010年  査読有り
    This paper investigates the solar sail modeling and its estimation approach of solar power sail spacecraft IKAROS. Estimation of solar sail force model in space is the key factor for successful solar sail navigation because the solar sail have large uncertainty due to the flexible membrane. Since the sail wrinkles after the deployment and its surface will suffer from degradation, the solar sail force model is difficult to develop before the launch. In this paper, a practical analysis of estimating the solar sail force model from radiometric tracking data is investigated. This is demonstrated by orbit determination including parameter estimation of generalized sail model.
  • Osamu Mori, Hirotaka Sawada, Fuminori Hanamura, Junichiro Kawaguchi, Yoji Shirasawa, Masayuki Sugita, Yasuyuki Miyazaki, Hiraku Sakamoto, Ryu Funase
    7(ists26) 1-7 2009年11月28日  査読有り
  • 佐々木 晶, 藤本 正樹, 木村 淳, 高島 健, 矢野 創, 笠羽 康正, 高橋 幸弘, 川口 淳一郎, 川勝 康弘, 津田 雄一, 船瀬 龍, 森 治, 森本 睦子, 木星探査WG
    日本惑星科学会秋期講演会予稿集 2009 59-59 2009年9月28日  
  • 吉川真, 山口智宏, 照井冬人, 津田雄一, 尾川順子, 森治, 船瀬龍, 竹内央, 森本睦子, 岡本千里, BELLEROSE Julie, 矢野創, 川口淳一郎
    日本天文学会年会講演予稿集 2009 96 2009年8月20日  
  • Fuyuto Terui, Yuichi Tsuda, Naoko Ogawa, Osamu Mori, Ryu Funase, Seigo Ikeda
    A Collection of Technical Papers of The 19th Workshop on Astrodynamics and Flight Mechanics 2009年7月  
  • 山口智宏, 三桝裕也, 津田雄一, 船瀬龍, 澤田弘崇, 森治, 森本睦子, 竹内央, 吉川真
    宇宙科学技術連合講演会講演集(CD-ROM) 53rd 2009年  
  • 森治, 船瀬龍, 津田雄一, 川口淳一郎, 花岡史紀, 杉田昌行
    アストロダイナミクスシンポジウム講演後刷り集(Web) 18th 2009年  
  • 芝崎裕介, 船瀬龍, 津田雄一, 川口淳一郎
    アストロダイナミクスシンポジウム講演後刷り集(Web) 18th 2009年  
  • 船瀬龍, 荒川将孝, 津田雄一
    アストロダイナミクスシンポジウム講演後刷り集(Web) 18th 2009年  
  • 北島明文, 船瀬龍, 森治, 片山保宏, 津田雄一, 川口淳一郎
    アストロダイナミクスシンポジウム講演後刷り集(Web) 18th 2009年  
  • Yuya Mimasu, Jozef C. Van Der Ha, Ryu Funase, Osamu Mori, Jun'ichiro Kawaguchi, Ken'ichi Shirakawa
    60th International Astronautical Congress 2009, IAC 2009 6 5115-5124 2009年  査読有り
    The Hayabusa spacecraft embarked on its return trajectory to Earth, after its touchdown on the asteroid Itokawa. During the cruise phase Sun-pointing mode, the spin-axis of the Hayabusa performs a coning motion under the solar radiation pressure effects. The effect mainly originates from the diffuse reflection of the solar radiation pressure on the solar array panels. In the simple analysis of this coning motion, however, the diffuse reflection coefficient is inconsistent in comparison to the typical diffusive parameter of the solar array panel. This discrepancy must be clarified by constructing a more accurate model of the solar radiation pressure in order to be able to dissolve the uncertainty during the return phase of the Hayabusa spacecraft. The accurate model should also be able to support the extremely precise navigation during the return phase to the Earth. This paper presents the precise model of the solar radiation pressure of the Hayabusa spacecraft and the estimation method for obtaining the optical parameters of the solar radiation pressure model.
  • Jun'ichiro Kawaguchi, Yuya Mimasu, Osamu Mori, Ryu Funase, Takayuki Yamamoto, Yuichi Tsuda
    60th International Astronautical Congress 2009, IAC 2009 8 6852-6858 2009年  査読有り
    The Japan Aerospace Exploration Agency (JAXA) will make the world's first solar power sail craft demonstrate for both its photon propulsion and thin film solar power generation during its interplanetary cruise. The spacecraft deploys and spans its membrane of 20 meters in diameter taking the advantage of the spin centrifugal force. The spacecraft weighs approximately 315kg, launched together with the agency's Venus Climate Orbiter, PLANET-C in 2010. This will be the first actual solar sail flying an interplanetary voyage.
  • 森治, 澤田弘崇, 津田雄一, 船瀬龍, 川口淳一郎, 花岡史紀, 松本道弘, 岡田俊輔, 芝崎裕介, 白澤洋次
    アストロダイナミクスシンポジウム講演後刷り集(Web) 17th 2008年  
  • 芝崎裕介, 船瀬龍, 津田雄一, 川口淳一郎
    アストロダイナミクスシンポジウム講演後刷り集(Web) 17th 2008年  
  • 岡田俊輔, 白澤洋次, 三和裕一, 森治, 川勝康弘, 津田雄一, 山本高行, 船瀬龍, 川口淳一郎
    アストロダイナミクスシンポジウム講演後刷り集(Web) 17th 2008年  
  • Masayuki Sugita, Ryu Funase, Yuichi Tsuda, Osamu Mori, Fuminori Hanaoka, Jun'ichiro Kawaguchi
    International Astronautical Federation - 59th International Astronautical Congress 2008, IAC 2008 8 5114-5123 2008年  査読有り
    Solar sail is one of the promising propulsion systems for future deep space exploration missions as it does not require any fuel to acquire propulsive force. However, the attitude control system of the solar sail, which controls the direction of the sail and thus the propulsive force, has not been much studied, although this constitutes the essential part of the orbital control using solar sail. This paper discusses the attitude dynamics and the control method of a spinning type solar sail spacecraft. The spinning type solar sail has no rigid structure supporting its membrane. This type of mechanism has the advantage in its simple and lightweight structure, however, the attitude control is difficult due to the flexibility of the membrane. In this paper, we introduced a mathematical dynamics model including first vibration mode of the membrane which can handle coupled motion of a rigid spacecraft and a flexible membrane, and analytically developed a controller that can avoid unnecessary oscillatory motion. The performance of the controller and the effect of solar radiation pressure, which can deform the membrane of solar sail, on the controller were verified by numerical simulations using more precise multi-particle numerical model.
  • 白澤 洋次, 花岡 史紀, 津田 雄一, 森 治, 船瀬 龍, 川口 淳一郎
    年次大会講演論文集 2008 379-380 2008年  査読有り
    This paper describes the attitude dynamics of spacecraft with large flexible structure, such as huge antenna or membrane of solar sail. The coupled motion of the rigid spacecrafts with the flexible structure is complicated, and it is important to predict the motion for the design of configuration or operation planning. It requires a lot of time to calculate the motion of the flexible structure by numerical simulation, and the analysis using simple model is important for exhaustive validation. In this study, a simplified model of the attitude dynamics considering the first vibration mode of flexible structure is introduced. Using this model, the vibration mode of the attitude motion of spacecraft is analyzed. The result of the analysis is confirmed with numerical simulation and compared with the result obtained by use of proven model.
  • Ryu Funase, Jun'ichiro Kawaguchi
    SPACEFLIGHT MECHANICS 2008, VOL 130, PTS 1 AND 2 130 601-616 2008年  査読有り
    This paper deals with how the formation flight target is expressed as trivial in some appropriate coordinates, instead of an orbital target. There is attempted to show the regularization process to obtain a special coordinate through a Levi-Civita non-linear transform. The paper will show how and which the virtual target corresponds to the physical formation configuration.
  • Fuminori Hanaoka, Osamu Mori, Yuichi Tsuda, Ryu Funase, Jun'ichiro Kawaguchi
    SPACEFLIGHT MECHANICS 2008, VOL 130, PTS 1 AND 2 130 1765-+ 2008年  査読有り
    This paper describes the attitude dynamics and the control method of a spinning solar sail spacecraft. The solar sail considered here has no structure supporting membrane, therefore estimation of the effect of membrane flexibility is one of the problems to solve for the future validation flight. In this study, we established a dynamic model including membrane vibration to handle a coupled motion of a rigid spacecraft and a flexible membrane, and focus on the consideration of attitude control method. The result is confirmed with numerical simulation by use of Multi Particle Model(MPM).
  • Jun'ichiro Kawaguchi, Ryu Funase
    ASTRODYNAMICS 2007, PTS I-III 129 371-380 2008年  査読有り
    Usually, the formation flying associated with circular orbits is discussed through the well-known Hill's or C-W equations of motion. This paper dares to present and discuss the coordinates that may contain time-varying coefficients. The discussion presents how the controller's performance is affected by the selection of coordinates, and also looks at the special coordinate suitable for designating a target bin to which each spacecraft in the formation has only to be guided. It is revealed that the latter strategy may incorporate the J2 disturbance automatically.
  • 船瀬 龍, 中須賀 真一
    日本航空宇宙学会誌 = Journal of the Japan Society for Aeronautical and Space Sciences 53(622) 328-330 2005年11月5日  査読有り
  • 中須賀 真一, 永島 隆, 中村 友哉, 船瀬 龍, 永井 将貴, 中田 賢治
    JASMA : Journal of the Japan Society of Microgravity Application = 日本マイクログラビティ応用学会誌 21 67-67 2004年11月4日  査読有り
  • Nakasuka Shinichi, Eishima Takashi, Funase Ryu, Nagai Masaki, Nakamura Yuya, Yuliang Chen, Takei Ernest, Nakada Kenji, Enokuchi Akito
    電子情報通信学会総合大会講演論文集 2004(1) "SE-19"-"SE-20" 2004年3月8日  
  • タケイ エルネストトシユキ, 永島 隆, 船瀬 龍, 中村 友哉, 永井 将貴, 中田 賢治, 程 毓梁, 江野口 章人, 中須賀 真一
    スペース・エンジニアリング・コンファレンス講演論文集 2004 21-26 2004年  査読有り
    CubeSat project has started primarily for an education purpose to improve student's skill of space engineering and project management. The CubeSat program at University of Tokyo, ISSL (Intelligent Space Systems Laboratory), has been started since 1999 and it's first nano satellite named "CubeSat-XI", developed by students, was successfully launched by a Russian rocket "ROCKOT" on June 30,2003. Since then, the satellite becomes operational and the students have been performing various experiments and demonstrations of its bus technologies and the onboard camera. This paper briefly reviews the systems description, the operation and the results achieved until present moment.
  • 舟根 司, 程 毓梁, 中田 賢治, 武井 エルネスト利之, 相田 彩夏, 小野 雅裕, 小松 満仁, ポンサトーン サイスッチャリット, 本橋 応朗, 兪 逸淵, 中須賀 真一, 佐々木 史記, 野尻 悠太, 永島 隆, 佐原 宏典, 水井 将貴, 船瀬 龍, 中村 友哉, 江野口 章人
    年次大会講演論文集 2004 469-470 2004年  査読有り
    CubeSat XI (1kg,10 cubic centimeters) designed and developed by the students in Univ. of Tokyo was launched into orbit from the Plesetsk Space Center in Russia Federation. We got much data from our satellite including the image data as the result of our daily operations. In this paper, we report on the result of the operation of XI, and the status of PRISM (CubeSat II of Univ. of Tokyo) project.
  • 中須賀 真一, 船瀬 龍, 中田 賢治
    宇宙科学シンポジウム 3 381-384 2003年1月9日  
  • 中須賀真一, 酒匂信匡, 津田雄一, 永島隆, 船瀬龍, 中村友哉, 永井将貴, 大石力, 石川早苗
    宇宙科学技術連合講演会講演集(CD-ROM) 47th 2003年  
  • 永島 隆, 津田 雄一, 酒匂 信匡, 船瀬 龍, 永井 将貴, 中村 友哉, 中須賀 真一
    年次大会講演論文集 2002 327-328 2002年  査読有り
    University of Tokyo has been developing small satellites since 1999 for educational purposes as well as technology development. So far, several types of pico-satellites including CanSats and CubeSat are designed and constructed. This paper reports history of CanSat project, Fly Back competition using CanSats, conceptual design of CubeSat II which is currently being developed and future perspective of UT's small satellite project.

所属学協会

 1

共同研究・競争的資金等の研究課題

 5