基本情報
- 所属
- 国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 特任助教
- 学位
- 博士(理学)(2018年3月 東京大学)
- 研究者番号
- 10839244
- ORCID ID
https://orcid.org/0000-0002-9850-6290
- J-GLOBAL ID
- 201801003509712856
- Researcher ID
- GYQ-9109-2022
- researchmap会員ID
- B000347073
研究分野
1経歴
4-
2024年1月 - 現在
-
2022年2月 - 2023年12月
-
2019年4月 - 2021年9月
-
2018年4月 - 2019年3月
学歴
4-
2015年4月 - 2018年3月
-
2013年4月 - 2015年3月
-
2011年4月 - 2013年3月
-
2009年4月 - 2011年3月
委員歴
4-
2021年6月 - 現在
-
2019年4月 - 2020年12月
-
2015年4月 - 2016年9月
-
2014年8月 - 2015年7月
論文
38-
The Astrophysical Journal 980(1) 121 2025年2月7日 査読有りHSC 120505.09-000027.9 (J1205–0000) is one of the highest redshift (z = 6.72) dust-reddened quasars (red quasars) known to date. We present an improved analysis of Atacama Large Millimeter/submillimeter Array data of the [C ii] 158 μm line and the underlying rest-frame far-infrared (FIR) continuum emission, previously reported in T. Izumi et al. (2021b), toward J1205–0000. Red quasars are thought to be a transitional phase from an obscured starburst to a luminous blue quasar, in some cases associated with massive outflows driven by the active galactic nucleus (AGN). J1205–0000 has a high FIR luminosity, L FIR = 2.5 × 1012 L ⊙ and a total IR luminosity of L TIR = 3.5 × 1012 L ⊙, corresponding to a star formation rate of ∼528 M ⊙ yr−1. With the [C ii]-based dynamical mass of ∼1 × 1011 M ⊙, we conclude that J1205–0000 is hosted by a starburst galaxy. In contradiction to T. Izumi et al., our improved analysis shows no hint of a broad component in the [C ii] line spectrum. Thus there is no evidence for a host galaxy-scale fast [C ii] outflow, despite the fact that J1205–0000 has fast nuclear ionized outflows seen in the rest-frame UV. We explore several scenarios for this discrepancy (e.g., the early phase of AGN feedback, reliability of the [C ii] line as a tracer of outflows), and we claim that it is still too early to conclude that there is no significant negative AGN feedback on star formation in this red quasar.
-
The Astrophysical Journal 976(1) 106 2024年11月1日 査読有りDetermining the inner structure of the molecular torus around an active galactic nucleus is essential for understanding its formation mechanism. However, spatially resolving the torus is difficult because of its small size. To probe the clump conditions in the torus, we therefore perform the systematic velocity-decomposition analyses of the gaseous 12CO rovibrational absorption lines (v = 0 → 1, ΔJ = ±1) at λ ∼ 4.67 μm observed toward four (ultra)luminous infrared galaxies using the high-resolution (R ∼ 5000–10,000) spectroscopy from the Subaru Telescope. We find that each transition has two to five distinct velocity components with different line-of-sight (LOS) velocities (V LOS ∼ −240 to +100 km s−1) and dispersions (σ V ∼ 15–190 km s−1), i.e., the components (a), (b), ⋯, beginning with the broadest one in each target, indicating that the tori have clumpy structures. By assuming a hydrostatic disk ( ), we find that the tori has dynamic inner structures, with the innermost component (a) outflowing with velocity ∣V LOS∣ ∼ 160–240 km s−1, and the outer components (b) and (c) outflowing more slowly or infalling with ∣V LOS∣ ≲ 100 km s−1. In addition, we find that the innermost component (a) can be attributed to collisionally excited hot (≳530 K) and dense ( ) clumps, based on the level populations. Conversely, the outer component (b) can be attributed to cold (∼30–140 K) clumps radiatively excited by a far-infrared-to-submillimeter background with a brightness temperature higher than ∼20–400 K. These observational results demonstrate the clumpy and dynamic structure of tori in the presence of background radiation.
-
The Astrophysical Journal 974(2) 180 2024年10月1日 査読有りWe investigate the physical origins of the Balmer decrement anomalies in GS-NDG-9422 and RXCJ2248-ID galaxies at z ∼ 6 whose Hα/Hβ values are significantly smaller than 2.7, the latter of which also shows anomalous Hγ/Hβ and Hδ/Hβ values beyond the errors. Because the anomalous Balmer decrements are not reproduced under the Case B recombination, we explore the nebulae with optical depths smaller and larger than the Case B recombination by physical modeling. We find two cases quantitatively explaining the anomalies: (1) density-bounded nebulae that are opaque only up to around Lyγ–Ly8 transitions and (2) ionization-bounded nebulae partly/fully surrounded by optically thick excited H i clouds. The case of (1) produces more Hβ photons via Lyγ absorption in the nebulae, requiring fine tuning in optical depth values, while this case helps ionizing photon escape for cosmic reionization. The case of (2) needs the optically thick excited Hi clouds with N 2 ≃ 1012−1013 cm−2, where N 2 is the column density of the hydrogen atom with the principal quantum number of n = 2. Interestingly, the high N 2 values qualitatively agree with the recent claims for GS-NDG-9422 with the strong nebular continuum requiring a number of 2s-state electrons and for RXCJ2248-ID with the dense ionized regions likely coexisting with the optically thick clouds. While the physical origin of the optically thick excited H i clouds is unclear, these results may suggest gas clouds with excessive collisional excitation caused by an amount of accretion and supernovae in the high-z galaxies.
-
Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 13092 236 2024年8月23日
-
The Astrophysical Journal 967(2) 83 2024年6月1日 査読有りWe introduce a novel model to spectroscopically constrain the mid-infrared (MIR) extinction/attenuation curve from 3--17 um, using Polycyclic Aromatic Hydrocarbon (PAH) emission drawn from an AKARI-Spitzer extragalactic cross-archival dataset. Currently proposed MIR extinction curves vary significantly in their slopes toward the near-infrared, and the variation of the strengths and shapes of the 9.7 um and 18 um silicate absorption features make MIR spectral modeling and interpretation challenging, particularly for heavily obscured galaxies. By adopting the basic premise that PAH bands have relatively consistent intrinsic ratios within dusty starbursting galaxies, we can, for the first time, empirically determine the overall shape of the MIR attenuation curve by measuring the differential attenuation at specific PAH wavelengths. Our attenuation model shows PAH emission in most (U)LIRGs is unambiguously subjected to attenuation, and we find strong evidence that PAH bands undergo differential attenuation as obscuration increases. Compared to pre-existing results, the MIR attenuation curve derived from the model favors relatively gray continuum absorption from 3-8 $\mu$m and silicate features with intermediate strength at 9.7 um but with stronger than typical 18 um opacity.
-
The Astrophysical Journal 966(1) 15 2024年5月1日 査読有り筆頭著者責任著者Recent submillimeter observations have revealed signs of pc-scale molecular inflow and atomic outflow in the nearest Seyfert 2 galaxy, the Circinus galaxy. To verify the gas kinematics suggested by these observations, we performed molecular and atomic line transfer calculations based on a physics-based 3D radiation-hydrodynamic model, which has been compared with multi-wavelength observations in this paper series. The major axis position-velocity diagram (PVD) of CO(3–2) reproduces the observed faint emission at the systemic velocity, and our calculations confirm that this component originates from failed winds falling back to the disk plane. The minor-axis PVD of [CI](3P1–3P0), when created using only the gas with positive radial velocities, presents a sign of blue- and redshifted offset peaks similar to those in the observation, suggesting that the observed peaks indeed originate from the outflow, but that the model may lack outflows as strong as those in the Circinus galaxy. Similar to the observed HCN(3–2), the similar dense gas tracer HCO+(3–2) can exhibit nuclear spectra with inverse P-Cygni profiles with ~0.5 pc beams, but the line shape is azimuthally dependent. The corresponding continuum absorbers are inflowing clumps at 5–10 pc from the center. To detect significant absorption with a high probability, the inclination must be fairly edge-on (≳85°), and the beam size must be small (≲1 pc). These results suggest that HCN or HCO+ and [CI] lines are effective for observing pc-scale inflows and outflows, respectively.
-
Science 382(6670) 554-559 2023年11月3日 査読有りActive galaxies contain a supermassive black hole at their center that grows by accreting matter from the surrounding galaxy. The accretion process in about the central 10 parsecs has not been directly resolved in previous observations because of the small apparent angular sizes involved. We observed the active nucleus of the Circinus Galaxy using submillimeter interferometry. A dense inflow of molecular gas was evident on subparsec scales. We calculated that less than 3% of this inflow is accreted by the black hole, with the rest being ejected by multiphase outflows, providing feedback to the host galaxy. Our observations also reveal a dense gas disk surrounding the inflow that is gravitationally unstable, which drives the accretion into about the central 1 parsec.
-
The Astrophysical Journal Supplement Series 269(1) 24 2023年11月1日 査読有りWe present a catalog of the millimeter-wave (mm-wave) continuum properties of 98 nearby (z < 0.05) active galactic nuclei (AGNs) selected from the 70 month Swift/BAT hard-X-ray catalog that have precisely determined X-ray spectral properties and subarcsecond-resolution Atacama Large Millimeter/submillimeter Array Band 6 (211-275 GHz) observations as of 2021 April. Due to the hard-X-ray (>10 keV) selection, the sample is nearly unbiased for obscured systems at least up to Compton-thick-level obscuration, and provides the largest number of AGNs with high-physical-resolution mm-wave data (≲100-200 pc). Our catalog reports emission peak coordinates, spectral indices, and peak fluxes and luminosities at 1.3 mm (230 GHz). Additionally, high-resolution mm-wave images are provided. Using the images and creating radial surface brightness profiles of mm-wave emission, we identify emission extending from the central sources and isolated blob-like emission. Flags indicating the presence of these emission features are tabulated. Among 90 AGNs with significant detections of nuclear emission, 37 AGNs (≈41%) appear to have both or one of extended or blob-like components. We, in particular, investigate AGNs that show well-resolved mm-wave components and find that these seem to have a variety of origins (i.e., a jet, radio lobes, a secondary AGN, stellar clusters, a narrow-line region, galaxy disk, active star formation regions, or AGN-driven outflows), and some components have currently unclear origins.
-
Nature 621(7977) 51-55 2023年9月7日 査読有りThe detection of starlight from the host galaxies of quasars during the reionization epoch (z > 6) has been elusive, even with deep Hubble Space Telescope observations. The current highest redshift quasar host detected, at z = 4.5, required the magnifying effect of a foreground lensing galaxy. Low-luminosity quasars from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) mitigate the challenge of detecting their underlying, previously undetected host galaxies. Here we report rest-frame optical images and spectroscopy of two HSC-SSP quasars at z > 6 with the JWST. Using near-infrared camera imaging at 3.6 and 1.5 μm and subtracting the light from the unresolved quasars, we find that the host galaxies are massive (stellar masses of 13 × and 3.4 × 1010 M⊙, respectively), compact and disc-like. Near-infrared spectroscopy at medium resolution shows stellar absorption lines in the more massive quasar, confirming the detection of the host. Velocity-broadened gas in the vicinity of these quasars enables measurements of their black hole masses (1.4 × 109 and 2.0 × 108 M⊙, respectively). Their location in the black hole mass-stellar mass plane is consistent with the distribution at low redshift, suggesting that the relation between black holes and their host galaxies was already in place less than a billion years after the Big Bang.
-
The Astrophysical Journal 954(2) 148 2023年9月1日 査読有り責任著者
-
The Astrophysical Journal 953(1) 76 2023年8月1日 査読有り
-
The Astrophysical Journal 951(2) 87 2023年7月1日 査読有り
-
The Astrophysical Journal 950(1) 75 2023年6月1日 査読有り責任著者We report the results of Atacama Large Millimeter/submillimeter Array (ALMA) 1–2 kpc resolution, three rotational transition-line (J = 2–1, J = 3–2, and J = 4–3) observations of multiple dense molecular gas tracers (HCN, HCO+, and HNC) for 10 nearby (ultra)luminous infrared galaxies ((U)LIRGs). Following the matching of beam sizes to 1–2 kpc for each (U)LIRG, the high-J-to-low-J transition-line flux ratios of each molecule and the emission-line flux ratios of different molecules at each J transition are derived. We conduct RADEX non-LTE model calculations and find that, under a wide range of gas density and kinetic temperature, the observed HCN-to-HCO+ flux ratios in the overall (U)LIRGs are naturally reproduced with enhanced HCN abundance compared to HCO+. Thereafter, molecular gas properties are constrained primarily through the use of HCN and HCO+ data and the adoption of fiducial values for the HCO+ column density and HCN-to-HCO+ abundance ratio. We quantitatively confirm the following: (i) molecular gas at the (U)LIRGs’ nuclei is dense (≳103–4 cm−3) and warm (≳100 K), (ii) the molecular gas density and temperature in nine ULIRGs’ nuclei are significantly higher than those of one LIRG’s nucleus, (iii) molecular gas in starburst-dominated sources tends to be less dense and cooler than ULIRGs with luminous AGN signatures. For six selected sources, we also apply a Bayesian approach by freeing all parameters and support the above main results. Our ALMA 1–2 kpc resolution, multiple transition-line data of multiple molecules are a very powerful tool for scrutinizing the properties of molecular gas concentrated around luminous energy sources in nearby (U)LIRGs’ nuclei.
-
The Astrophysical Journal 938(1) 87 2022年10月1日 査読有りTo understand the origin of nuclear (≲100 pc) millimeter-wave (mm-wave) continuum emission in active galactic nuclei (AGNs), we systematically analyzed subarcsecond resolution Band-6 (211–275 GHz) Atacama Large Millimeter/submillimeter Array data of 98 nearby AGNs (z < 0.05) from the 70 month Swift/BAT catalog. The sample, almost unbiased for obscured systems, provides the largest number of AGNs to date with high mm-wave spatial resolution sampling (∼1–200 pc), and spans broad ranges of 14–150 keV luminosity {$40\lt \mathrm{log}[{L}_{14-150}/(\mathrm{erg}\,{ { \rm{s } } }^{-1})]\lt 45$}, black hole mass $[5\lt \mathrm{log}({M}_{\mathrm{BH } }/{M}_{\odot })\lt 10$], and Eddington ratio ($-4\lt \mathrm{log}{\lambda }_{\mathrm{Edd } }\lt 2$). We find a significant correlation between 1.3 mm (230 GHz) and 14–150 keV luminosities. Its scatter is ≈0.36 dex, and the mm-wave emission may serve as a good proxy of the AGN luminosity, free of dust extinction up to NH ∼ 1026 cm−2. While the mm-wave emission could be self-absorbed synchrotron radiation around the X-ray corona according to past works, we also discuss different possible origins of the mm-wave emission: AGN-related dust emission, outflow-driven shocks, and a small-scale (<200 pc) jet. The dust emission is unlikely to be dominant, as the mm-wave slope is generally flatter than expected. Also, due to no increase in the mm-wave luminosity with the Eddington ratio, a radiation-driven outflow model is possibly not the common mechanism. Furthermore, we find independence of the mm-wave luminosity on indicators of the inclination angle from the polar axis of the nuclear structure, which is inconsistent with a jet model whose luminosity depends only on the angle.
-
The Astrophysical Journal 936(2) 118 2022年9月1日 査読有りDust-obscured galaxies (DOGs), which are observationally characterized as faint in the optical and bright in the infrared, are the final stage of galaxy mergers and are essential objects in the evolution of galaxies and active galactic nuclei (AGNs). However, the relationship between the torus-scale gas dynamics around AGNs and the DOGs’ lifetime remains unclear. We obtained the evolution of the spectral energy distributions (SEDs) of a galaxy merger system with AGN feedback from postprocessed pseudo-observations based on an N-body/smoothed particle hydrodynamics (SPH) simulation. We focused on a late-stage merger of two identical galaxies with a supermassive black hole (SMBH) of 108M⊙. We found that the infrared luminosity of the system reaches ultra- and hyperluminous infrared galaxy classes (1012 and 1013L⊙, respectively). The DOG phase corresponds to a state in which the AGNs are buried in dense gas and dust, with the infrared luminosity exceeding 3.3 × 1012L⊙. We also identified subcategories of DOGs, namely bump and power-law DOGs, from the SEDs and their evolution. The bump DOGs tend to evolve to power-law DOGs over several Myrs. We found that contribution from the hot dust around the nucleus in the infrared radiation is essential for identifying the system as a power-law DOG; the gas and dust are distributed nonspherically around the nucleus, therefore, the observed properties of DOGs depend on the viewing angle. In our model, the lifetime of merger-driven DOGs is less than 4 Myr, suggesting that the observed DOG phase is a brief aspect of galaxy mergers.
-
Probing Dynamics and Thermal Properties Inside Molecular Tori with CO Rovibrational Absorption LinesThe Astrophysical Journal 934(1) 25 2022年7月1日 査読有りA recent hydrodynamic model, the radiation-driven fountain model (Wada et al. 2016), presented a dynamical picture that active galactic nuclei (AGNs) tori sustain their geometrical thickness by gas circulation around AGNs, and previous papers have confirmed that this picture is consistent with multiwavelength observations of nearby Seyfert galaxies. Recent near-infrared observations implied that CO rovibrational absorption lines (ΔJ = ± 1, v = 0 − 1, λ ∼ 4.7 μm) could probe the physical properties of the inside tori. However, the origin of the CO absorption lines has been under debate. In this paper, we investigate the origin of the absorption lines and conditions for detecting them by performing line radiative transfer calculations based on the radiation-driven fountain model. We find that CO rovibrational absorption lines are detected at inclination angles θobs = 50°–80°. At the inclination angle θobs = 77°, we observe multi-velocity components: inflow (vLOS = 30 km s−1), systemic (vLOS = 0 km s−1), and outflows (vLOS = −75, − 95, and −105 km s−1). The inflow and outflow components (vLOS = 30 and −95 km s−1) are collisionally excited at the excitation temperatures of 186 and 380 K up to J = 12 and 4, respectively. The inflow and outflow components originate from the accreting gas on the equatorial plane at 1.5 pc from the AGN center and the outflowing gas driven by AGN radiation pressure at 1.0 pc, respectively. These results suggest that CO rovibrational absorption lines can provide us with the velocities and kinetic temperatures of the inflow and outflow in the inner few parsec region of AGN tori, and the observations can probe the gas circulation inside the tori.
-
The Astrophysical Journal 928(2) 184-184 2022年4月1日 査読有り筆頭著者責任著者The ultraluminous infrared galaxy IRAS 17208−0014 is a late-stage merger that hosts a buried active galactic nucleus (AGN). To investigate its nuclear structure, we performed high-spatial-resolution ( ∼ 0.″04 ∼ 32 pc) Atacama Large Millimeter/submillimeter Array (ALMA) observations in Band 9 (∼450 μm or ∼660 GHz), along with near-infrared AKARI spectroscopy in 2.5–5.0 μm. The Band 9 dust continuum peaks at the AGN location, and toward this position CO(J = 6 − 5) and CS(J = 14 − 13) are detected in absorption. Comparison with nonlocal thermal equilibrium calculations indicates that, within the central beam (r ∼ 20 pc), there exists a concentrated component that is dense (107 cm−3) and warm (>200 K) and has a large column density (${N}_{ { {\rm{H } } }_{2 } }\gt {10}^{23}\,{\mathrm{cm } }^{-2}$). The AKARI spectrum shows deep and broad CO rovibrational absorption at 4.67 μm. Its band profile is well reproduced with a similarly dense and large column but hotter (∼1000 K) gas. The region observed through absorption in the near-infrared is highly likely in the nuclear direction, as in the submillimeter, but with a narrower beam including a region closer to the nucleus. The central component is considered to possess a hot structure where vibrationally excited HCN emission originates. The most plausible heating source for the gas is X-rays from the AGN. The AKARI spectrum does not show other AGN signs in 2.5–4 μm, but this absence may be usual for AGNs buried in a hot mid-infrared core. Further, based on our ALMA observations, we relate the various nuclear structures of IRAS 17208−0014 that have been proposed in the literature.
-
The Astrophysical Journal 926(2) 159 2022年2月1日 査読有りWe present the results of ALMA ∼2 mm, ≲1″-resolution observations of 10 (ultra)luminous infrared galaxies ([U]LIRGs; infrared luminosity ≳1011.7L⊙) at z < 0.15, targeting dense (>104 cm−3) molecular (HCN, HCO+, and HNC J = 2–1) and 183 GHz H2O 31,3–22,0 emission lines. Active galactic nucleus (AGN)-important ULIRGs tend to show higher HCN/HCO+J = 2–1 flux ratios than starburst-classified sources. We detect 183 GHz H2O emission in almost all AGN-important ULIRGs, and elevated H2O emission is found in two sources with elevated HCN J = 2–1 emission, relative to HCO+J = 2–1. Except one ULIRG (the Superantennae), the H2O emission largely comes from the entire nuclear regions (∼1 kpc), rather than an AGN-origin megamaser at the very center (≪1 kpc). Nuclear (∼1 kpc) dense molecular gas mass derived from HCO+J = 2–1 luminosity is ≳ a few × 108M⊙, and its depletion time is estimated to be ≳106 yr in all sources. Vibrationally excited J = 2–1 emission lines of HCN and HNC are detected in a few (U)LIRGs, but those of HCO+ are not. It is suggested that in mid-infrared-radiation-exposed innermost regions around energy sources, HCO+ and HNC are substantially less abundant than HCN. In our ALMA ∼2 mm data of 10 (U)LIRGs, two continuum sources are serendipitously detected within ∼10″, which are likely to be an infrared-luminous dusty galaxy at z > 1 and a blazar.
-
Hard X-Ray Irradiation Potentially Drives Negative AGN Feedback by Altering Molecular Gas PropertiesThe Astrophysical Journal Supplement Series 257(2) 64 2021年12月1日 査読有りTo investigate the role of active galactic nucleus (AGN) X-ray irradiation on the interstellar medium (ISM), we systematically analyzed Chandra and Atacama Large Millimeter/submillimeter Array CO (J = 2–1) data for 26 hard X-ray (>10 keV) selected AGNs at redshifts below 0.05. While Chandra unveils the distribution of X-ray-irradiated gas via Fe-Kα emission, the CO (J = 2–1) observations reveal that of cold molecular gas. At high resolutions ≲1″, we derive Fe-Kα and CO (J = 2–1) maps for the nuclear 2″ region and for the external annular region of 2″–4″, where 2″ is ∼100–600 pc for most of our AGNs. First, focusing on the external regions, we find the Fe-Kα emission for six AGNs above 2σ. Their large equivalent widths (≳1 keV) suggest a fluorescent process as their origin. Moreover, by comparing the 6–7 keV/3–6 keV ratio, as a proxy of Fe-Kα, and CO (J = 2–1) images for three AGNs with the highest significant Fe-Kα detections, we find a possible spatial separation. These suggest the presence of X-ray-irradiated ISM and the change in the ISM properties. Next, examining the nuclear regions, we find that (1) the 20–50 keV luminosity increases with the CO (J = 2–1) luminosity; (2) the ratio of CO (J = 2–1)/HCN (J = 1–0) luminosities increases with 20–50 keV luminosity, suggesting a decrease in the dense gas fraction with X-ray luminosity; and (3) the Fe-Kα-to-X-ray continuum luminosity ratio decreases with the molecular gas mass. This may be explained by a negative AGN feedback scenario: the mass accretion rate increases with gas mass, and simultaneously, the AGN evaporates a portion of the gas, which possibly affects star formation.
-
The Astrophysical Journal 922(2) 272 2021年12月1日 査読有り責任著者We conducted systematic observations of the H i Brα (4.05 μm) and Brβ (2.63 μm) lines in 52 nearby (z < 0.3) ultraluminous infrared galaxies (ULIRGs) with AKARI. Among 33 ULIRGs wherein the lines are detected, 3 galaxies show anomalous Brβ/Brα line ratios (∼1.0), which are significantly higher than those for case B (0.565). Our observations also show that ULIRGs have a tendency to exhibit higher Brβ/Brα line ratios than those observed in Galactic H ii regions. The high Brβ/Brα line ratios cannot be explained by a combination of dust extinction and case B since dust extinction reduces the ratio. We explore possible causes for the high Brβ/Brα line ratios and show that the observed ratios can be explained by a combination of an optically thick Brα line and an optically thin Brβ line. We simulated the H ii regions in ULIRGs with the Cloudy code, and our results show that the high Brβ/Brα line ratios can be explained by high-density conditions, wherein the Brα line becomes optically thick. To achieve a column density large enough to make the Brα line optically thick within a single H ii region, the gas density must be as high as n ∼ 108 cm−3. We therefore propose an ensemble of H ii regions, in each of which the Brα line is optically thick, to explain the high Brβ/Brα line ratio.
-
Monthly Notices of the Royal Astronomical Society 509(2) 2920-2939 2021年11月24日 査読有りAs part of the Measuring Black Holes in below Milky Way-mass (M⋆) galaxies (MBHBM⋆) Project, we present a dynamical measurement of the supermassive black hole (SMBH) mass in the nearby lenticular galaxy NGC 3593, using cold molecular gas 12CO(2-1) emission observed at an angular resolution of ≈0${_{.}^{\prime\prime } }$3 (≈10 pc) with the Atacama Large Millimeter/submillimeter Array (ALMA). Our ALMA observations reveal a circumnuclear molecular gas disc (CND) elongated along the galaxy major axis and rotating around the SMBH. This CND has a relatively low-velocity dispersion (≲10 km s−1) and is morphologically complex, with clumps having higher integrated intensities and velocity dispersions (≲25 km s−1). These clumps are distributed along the ridges of a two-arm/bi-symmetric spiral pattern surrounded by a larger ring-like structure (radius r ≈ 10 arcsec or ≈350 pc). This pattern likely plays an important role to bridge the molecular gas reservoirs in the CND and beyond (10 ≲ r ≲ 35 arcsec or 350 pc ≲ r ≲ 1.2 kpc). Using dynamical modelling, the molecular gas kinematics allow us to infer an SMBH mass $M_{\rm BH}=2.40_{-1.05}^{+1.87}\times 10^6$ M⊙ (only statistical uncertainties at the 3σ level). We also detect a massive core of cold molecular gas (CMC) of mass MCMC = (5.4 ± 1.2) × 106 M⊙ and effective (half-mass) radius rCMC,e = 11.2 ± 2.8 pc, co-spatial with a nuclear star cluster (NSC) of mass MNSC = (1.67 ± 0.48) × 107 M⊙ and effective radius rNSC,e = 5.0 ± 1.0 pc (or 0${_{.}^{\prime\prime } }$15 ± 0${_{.}^{\prime\prime } }$03). The mass profiles of the CMC and NSC are well described by Sérsic functions with indices 1−1.4. Our MBH and MNSC estimates for NGC 3593 agree well with the recently compiled MBH–MNSC scaling relation. Although the MNSC uncertainty is twice the inferred MBH, the rapid central rise of the rotation velocities of the CND (as the radius decreases) clearly suggests an SMBH. Indeed, our dynamical models show that even if MNSC is at the upper end of its allowed range, the evidence for a BH does not vanish, but remains with a lower limit of MBH &gt; 3 × 105 M⊙.
-
The Astrophysical Journal 921(2) 141 2021年11月1日 査読有り
-
The Astrophysical Journal 915(2) 89 2021年7月1日 査読有り
-
The Astrophysical Journal 914(1) 36-36 2021年6月1日 査読有り
-
Monthly Notices of the Royal Astronomical Society 504(3) 4123-4142 2021年4月 査読有りWe present a supermassive black hole (SMBH) mass measurement in the Seyfert 1 galaxy NGC 7469 using Atacama Large Millimeter/submillimeter Array (ALMA) observations of the atomic-[CI](1–0) and molecular-12CO(1–0) emission lines at the spatial resolution of ≈0${_{.}^{\prime\prime } }$3 (or ≈100 pc). These emissions reveal that NGC 7469 hosts a circumnuclear gas disc (CND) with a ring-like structure and a two-arm/bi-symmetric spiral pattern within it, surrounded by a starbursting ring. The CND has a relatively low σgas/V ≈ 0.35 (r ≲ 0${_{.}^{\prime\prime } }$5) and ≈0.19 (r &gt; 0${_{.}^{\prime\prime } }$5), suggesting that the gas is dynamically settled and suitable for dynamically deriving the mass of its central source. As is expected from X-ray dominated region (XDR) effects that dramatically increase an atomic carbon abundance by dissociating CO molecules, we suggest that the atomic [CI](1–0) emission is a better probe of SMBH masses than CO emission in active galactic nuclei (AGNs). Our dynamical model using the [CI](1–0) kinematics yields a $M_{\rm BH}=1.78^{+2.69}_{-1.10}\times 10^7$ M⊙ and $M/L_{\rm F547M}=2.25^{+0.40}_{-0.43}$ (M⊙/L⊙). The model using the 12CO(1–0) kinematics also gives a consistent MBH with a larger uncertainty, up to an order of magnitude, i.e. $M_{\rm BH}=1.60^{+11.52}_{-1.45}\times 10^7$ M⊙. This newly dynamical MBH is ≈2 times higher than the mass determined from the reverberation mapped (RM) method using emissions arising in the unresolved broad-line region (BLR). Given this new MBH, we are able to constrain the specific RM dimensionless scaling factor of $f=7.2^{+4.2}_{-3.4}$ for the AGN BLR in NGC 7469. The gas within the unresolved BLR thus has a Keplerian virial velocity component and the inclination of $i\approx {11.0^\circ }_{-2.5}^{+2.2}$, confirming its face-on orientation in a Seyfert 1 AGN by assuming a geometrically thin BLR model.
-
The Astrophysical Journal 908(2) 235-235 2021年2月1日 査読有りWe present Atacama Large Millimeter/submillimeter Array [C ii] 158 μm line and far-infrared (FIR) continuum emission observations toward HSC J120505.09−000027.9 (J1205−0000) at z = 6.72 with a beam size of ∼0.″8 × 0.″5 (or 4.1 kpc × 2.6 kpc), the most distant red quasar known to date. Red quasars are modestly reddened by dust and are thought to be in rapid transition from an obscured starburst to an unobscured normal quasar, driven by powerful active galactic nucleus (AGN) feedback that blows out a cocoon of interstellar medium. The FIR continuum of J1205−0000 is bright, with an estimated luminosity of LFIR ∼ 3 × 1012L⊙. The [C ii] line emission is extended on scales of r ∼ 5 kpc, greater than that of the FIR continuum. The line profiles at the extended regions are complex and broad (FWHM ∼ 630–780 km s−1). Although it is not practical to identify the nature of this extended structure, possible explanations include (i) companion/merging galaxies and (ii) massive AGN-driven outflows. For the case of (i), the companions are modestly star-forming (∼10 M⊙ yr−1) but are not detected by our Subaru optical observations (yAB,5σ = 24.4 mag). For the case of (ii), our lower limit to the cold neutral outflow rate is ∼100 M⊙ yr−1. The outflow kinetic energy and momentum are both much lower than predicted in energy-conserving wind models, suggesting that the AGN feedback in this quasar is not capable of completely suppressing its star formation.
-
The Astrophysical Journal 905(1) 55 2020年12月1日 査読有りWe present a large sample of 2.5–38 μm galaxy spectra drawn from a cross-archival comparison in the AKARI–Spitzer Extragalactic Spectral Survey, and investigate a subset of 113 star-forming galaxies with prominent polycyclic aromatic hydrocarbon (PAH) emission spanning a wide range of star formation properties. With AKARI’s extended 2.5–5 μm wavelength coverage, we self-consistently model for the first time all PAH emission bands using a modified version of Pahfit. We find LPAH 3.3/LIR ∼ 0.1%, and the 3.3 μm PAH feature contributes ∼1.5%–3% to the total PAH power—somewhat less than earlier dust models have assumed. We establish a calibration between 3.3 μm PAH emission and star formation rate, but also find regimes where it loses reliability, including at high luminosity and low metallicity. The 3.4 μm aliphatic emission and a broad plateau feature centered at 3.47 μm are also modeled. As the PAH feature with the shortest wavelength, the one at 3.3 μm is susceptible to attenuation, leading to differences of a factor of ∼3 in the inferred star formation rate at high obscuration with different assumed attenuation geometries. Surprisingly, LPAH 3.3/LΣ PAH shows no sign of decline at high luminosities, and the low-metallicity dwarf galaxy II Zw 40 exhibits an unusually strong 3.3 μm band; both results suggest either that the smallest PAHs are better able to survive under intense radiation fields than presumed, or that PAH emission is shifted to shorter wavelengths in intense and high-energy radiation environments. A photometric surrogate for 3.3 μm PAH luminosity using JWST/NIRCam is provided and found to be highly reliable at low redshift.
-
The Astrophysical Journal 898(1) 75-75 2020年7月24日 査読有り
-
The Astrophysical Journal 895(2) 135 2020年6月1日 査読有り
-
Publications of the Astronomical Society of Japan 71(2) 26 2019年4月1日 査読有り
-
Publications of the Astronomical Society of Japan 71(1) 3 2019年1月1日 査読有り
-
Publications of the Astronomical Society of Japan 71(1) 2 2019年1月1日 査読有り筆頭著者責任著者We present a new calibration for the second-order light contamination in the near-infrared grism spectroscopy with the Infrared Camera aboard AKARI, specifically for the post-cryogenic phase of the satellite (Phase 3). Following our previous work on the cryogenic phase (Phases 1 and 2), the wavelength and spectral response calibrations were revised. Unlike Phases 1 and 2, during Phase 3 the temperature of the instrument was not stable and gradually increased from 40 to 47 K. To assess the effect of the temperature increase, we divided Phase 3 into three sub-phases and performed the calibrations separately. As in Phases 1 and 2, we confirmed that there was contamination due to the wavelength dependence of the refractive index of the grism material in every sub-phase. The wavelength calibration curves for the three sub-phases coincided with each other and did not show any significant temperature dependence. The response decreased with temperature by ∼10% from the beginning to the end of Phase 3. We approximated the temperature dependence of the response at a linear relation and derived a correction factor as a function of temperature. The relative fraction of the second-order light contamination to the first-order light was found to be 25% smaller than that in Phases 1 and 2.
-
The Astrophysical Journal 852(2) 83-83 2018年1月9日 査読有り筆頭著者責任著者We performed a systematic analysis of the 4.67 μm CO ro-vibrational absorption band toward nearby active galactic nuclei (AGNs) and analyzed the absorption profiles of 10 nearby galaxies collected from the AKARI and Spitzer spectroscopic observations that show the CO absorption feature by fitting a plane-parallel local thermal equilibrium gas model. We found that CO gas is warm (200–500 K) and has a large column density ($N_\rm{H}\gtrsim 10^{23}\,\mathrm{cm}^{-2}$). The heating of the gas is not explicable by either UV heating or shock heating because these processes cannot represent the large column densities of the warm gas. Instead, X-ray photons from the nuclei, which can produce large columns of warm gas with up to $N_\rm{H}\sim 10^{24}\,\mathrm{cm}^{-2}$, are the most convincing power source. The hydrogen column density estimated from the CO band is smaller than that inferred from X-ray observations. These results indicate that the region probed by the near-infrared CO absorption is in the vicinity of the nuclei and is located outside the X-ray emitting region. Furthermore, the covering factors of nearly unity required by the observed deep absorption profiles suggest that the probed region is close to the continuum source, which can be designated as the inner rim of the obscuring material around the AGN.
-
Publications of the Astronomical Society of Japan 68(6) 98-98 2016年10月6日 査読有り
-
Journal of Low Temperature Physics 184(1-2) 217-224 2016年7月 査読有り
-
Journal of Low Temperature Physics 184(1-2) 449-453 2016年7月 査読有り
-
Journal of Low Temperature Physics 184(1-2) 225-230 2016年7月 査読有り
-
Publications of the Astronomical Society of Japan 68(2) 27-27 2016年3月6日 査読有り筆頭著者責任著者We perform revised spectral calibrations for the AKARI near-infrared grism to correct quantitatively for the effect of the wavelength-dependent refractive index. The near-infrared grism covering the wavelength range of 2.5–5.0 μm, with a spectral resolving power of 120 at 3.6 μm, is found to be contaminated by second-order light at wavelengths longer than 4.9 μm, which is especially serious for red objects. First, we present the wavelength calibration considering the refractive index of the grism as a function of the wavelength for the first time. We find that the previous solution is positively shifted by up to 0.01 μm compared with the revised wavelengths at 2.5–5.0 μm. In addition, we demonstrate that second-order contamination occurs even with a perfect order-sorting filter owing to the wavelength dependence of the refractive index. Secondly, the spectral responses of the system from the first- and second-order light are simultaneously obtained from two types of standard objects with different colors. The response from the second-order light suggests leakage of the order-sorting filter below 2.5 μm. The relations between the output of the detector and the intensities of the first- and second-order light are formalized by a matrix equation that combines the two orders. The removal of the contaminating second-order light can be achieved by solving the matrix equation. The new calibration extends the available spectral coverage of the grism mode from 4.9 μm up to 5.0 μm. The revision can be used to study spectral features falling in these extended wavelengths, e.g., the carbon monoxide fundamental ro-vibrational absorption within nearby active galactic nuclei.
MISC
1-
2023年4月17日GREX-PLUS (Galaxy Reionization EXplorer and PLanetary Universe Spectrometer) is a mission candidate for a JAXA's strategic L-class mission to be launched in the 2030s. Its primary sciences are two-fold: galaxy formation and evolution and planetary system formation and evolution. The GREX-PLUS spacecraft will carry a 1.2 m primary mirror aperture telescope cooled down to 50 K. The two science instruments will be onboard: a wide-field camera in the 2-8 $\mu$m wavelength band and a high resolution spectrometer with a wavelength resolution of 30,000 in the 10-18 $\mu$m band. The GREX-PLUS wide-field camera aims to detect the first generation of galaxies at redshift $z>15$. The GREX-PLUS high resolution spectrometer aims to identify the location of the water ``snow line'' in proto-planetary disks. Both instruments will provide unique data sets for a broad range of scientific topics including galaxy mass assembly, origin of supermassive blackholes, infrared background radiation, molecular spectroscopy in the interstellar medium, transit spectroscopy for exoplanet atmosphere, planetary atmosphere in the Solar system, and so on.
書籍等出版物
1主要な講演・口頭発表等
49-
2022年度宇宙電波懇談会シンポジウム「2030年代の電波天文学」 2023年3月28日 招待有り
-
Extremely Buried Nucleus of IRAS 17208−0014 Observed at Sub-Millimeter and Near-Infrared WavelengthsEast-Asia AGN Workshop 2021 2021年10月12日 招待有り
所属学協会
2-
2022年7月 - 現在
-
2013年12月 - 現在
共同研究・競争的資金等の研究課題
2-
日本学術振興会 科学研究費助成事業 2019年4月 - 2022年3月
-
日本学術振興会 科学研究費助成事業 2017年4月 - 2019年3月
学術貢献活動
5-
企画立案・運営等, パネル司会・セッションチェア等(Institute of Space and Astronautical Science (ISAS), Sagamihara, Kanagawa) 2024年8月5日 - 2024年8月9日
-
企画立案・運営等, パネル司会・セッションチェア等2020年3月10日 - 2020年3月10日