研究者業績
基本情報
- 所属
- 国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙機応用工学研究系 教授
- 学位
- 博士(工学)(2000年3月 東京大学)
- 研究者番号
- 10342619
- J-GLOBAL ID
- 202101019944115931
- researchmap会員ID
- R000018454
- 外部リンク
主要な受賞
18論文
86-
Journal of Guidance, Control, and Dynamics 25-29 2025年3月11日 査読有り
-
Acta Astronautica 226(P1) 772-781 2024年11月13日 査読有り
-
Aerospace Science and Technology 155(P1) 2024年9月23日 査読有り
-
Journal of Evolving Space Activities 2 2024年9月2日 査読有り
-
Journal of Evolving Space Activities 2 2024年9月2日 査読有り
-
Transactions of the Japan Society for Aeronautical and Space Sciences 67(1) 23-31 2024年1月4日 査読有り
-
Transactions of the Japan Society for Aeronautical and Space Sciences 66(6) 199-208 2023年11月4日 査読有り
-
The Journal of the Astronautical Sciences 69 1726-1743 2022年11月11日 査読有り
-
JOURNAL OF SPACECRAFT AND ROCKETS 59(2) 651-659 2022年3月29日 査読有り
-
JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS 46(4) 695-708 2022年2月1日 査読有り
-
Journal of Guidance, Control, and Dynamics 45(2) 280-295 2022年2月1日 査読有り
-
Transactions of the Society of Instrument and Control Engineers 58(3) 194-201 2022年
-
TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 19(3) 334-343 2021年5月4日 査読有り
-
Proceedings of the International Astronautical Congress, IAC C4 2021年
-
AIAA Propulsion and Energy Forum, 2021 2021年
-
Journal of Guidance, Control, and Dynamics 44(4) 854-861 2020年12月1日 査読有り
-
Acta Astronautica 176(6) 438-454 2020年11月1日 査読有り
-
日本航空宇宙学会論文集 68(2) 89-95 2020年8月1日 査読有り<p>A Fault Detection, Isolation, and Recovery (FDIR) algorithm for attitude control systems is a key technology to increasing the reliability and survivability of spacecraft. Micro/nano interplanetary spacecraft, which are rapidly evolving in recent years, also require robust FDIR algorithms. However, the implementation of FDIR algorithms to these micro/nano spacecraft is difficult because of the limitations of their resources (power, mass, cost, and so on). This paper shows a strategy of how to construct a FDIR algorithm in the limited resources, taking examples from micro deep space probe PROCYON. The strategy focuses on function redundancies and multi-layer FDIR. These ideas are integrated to suit the situation of micro/nano interplanetary spacecraft and demonstrated in orbit by the PROCYON mission. The in-orbit results are discussed in detail to emphasize the effectiveness of the FDIR algorithm. </p>
-
Aerospace 7(97) 97-97 2020年7月1日 査読有りJAXA’s ERG (Exploration of Energization and Radiation in Geospace) Spacecraft, which is nicknamed Arase, was launched on 20 December 2016. Arase is a spin-stabilized and Sun-oriented spacecraft. Its mission is to explore how relativistic electrons in the radiation belts are generated during space storms. Two different on-ground attitude determination algorithms are designed for the mission: A TRIAD-based algorithm that inherits from old missions and a filtering-based new algorithm. This paper, first, discusses the design of the filtering-based attitude determination algorithm, which is mainly based on an Unscented Kalman Filter (UKF), specifically designed for spinning spacecraft (SpinUKF). The SpinUKF uses a newly introduced set of attitude parameters (i.e., spin-parameters) to represent the three-axis attitude of the spacecraft and runs UKF for attitude estimation. The paper then presents the preliminary attitude estimation results for the spacecraft that are obtained after the launch. The results are presented along with the encountered challenges and suggested solutions for them. These preliminary attitude estimation results show that the expected accuracy of the fine attitude estimation for the spacecraft is less than 0.5°.
-
DESIGN AND DEVELOPMENT OF FIBER OPTIC ROTATION SENSORS 113-124 2019年7月1日
-
Proceedings of the International Astronautical Congress, IAC 2019- 2019年
-
Earth, Planets and Space 70(1) 102 2018年12月1日
-
Acta Astronautica 152 299-309 2018年11月1日
-
航空宇宙技術 17 35-43 2018年3月1日<p>SLIM (Smart Lander for Investigating Moon) is the Lunar Landing Demonstrator which is under development at ISAS/JAXA. SLIM demonstrates not only so-called Pin-Point Landing Technique to the lunar surface, but also demonstrates the design to make the explorer small and lightweight. Realizing the compact explorer is one of the key points to achieve the frequent lunar and planetary explorations. This paper summarizes the preliminary system design of SLIM, especially the way to reduce the size.</p>
-
Advances in the Astronautical Sciences 162 1175-1193 2018年
-
Proceedings of the International Astronautical Congress, IAC 2 856-866 2017年
-
Advances in the Astronautical Sciences 160 2615-2629 2017年
-
SPACEFLIGHT MECHANICS 2017, PTS I - IV 160 2615-2629 2017年
-
Transactions of the Japan Society for Aeronautical and Space Sciences 60(3) 181-191 2017年
-
TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES 60(3) 181-191 2017年
-
2016 AIAA Guidance, Navigation, and Control Conference 2016年
-
TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 14(30) Pt_7-Pt_14 2016年<p>In this study, a crater detection method for a moon-landing system with low computational resources is proposed. The proposed method is applied to the Smart Lander for Investigating Moon (SLIM), which aims for a pin-point landing on the moon. According to this plan, surface images of the moon will be captured by a camera mounted on the space probe, and the craters are to be detected from the images. Based on the positional relationship between detected craters, the method estimates the exact flight position of the space probe. Because the computational resources of SLIM are limited, rapid and accurate crater detection must be performed using fixed-point arithmetic on a field-programmable gate array (FPGA). This study proposes a crater detection method that uses principal component analysis (PCA). The computational processing for crater detection by PCA is performed by product-sum operations, which are suitable for fixed-point arithmetic. Moreover, this method is capable of parallel processing; hence high-speed processing is expected. This study not only introduces a crater detection method using PCA but also evaluates the properties of this method.</p>
-
日本航空宇宙学会論文集 63(6) 257-264 2015年 査読有りIn this paper is presented a microgravity experiment system utilizing a high altitude balloon. The feature is a double shell structure of a vehicle that is dropped off from the balloon and a microgravity experiment section that is attached to the inside of the vehicle with a liner slider. Control with cold gas jet thrusters of relative position of the experiment section to the vehicle and attitude of the vehicle maintains fine microgravity environment. The design strategy of the vehicle is explained, mainly referring to differences from the authors' previous design. The result of the flight experiment is also shown to evaluate the characteristics of the presented system.
-
INTERNATIONAL JOURNAL OF MICROGRAVITY SCIENCE AND APPLICATION 32(2) 2015年 査読有り
-
航空宇宙技術 14 59-65 2015年In this paper, direction control of balloon gondola with only untwisting motor is proposed. Typically a reaction wheel and another actuator for unloading the reaction wheel are in use to control the attitude (or direction) of the gondola. Although this method can get high accuracy control performance, two actuators spend many resources of the gondola. The proposed method uses only untwisting motor installed above the gondola to rotate. This method can not realize such high accuracy control performance but realize direction control with the most simple configuration. The proposed method is applied to prototype GAPS (General Anti-Particle Spectrometer) balloon experiment in 2012. This paper shows control design for this experiment and the results of the proposed method.
-
SPACE SCIENCE REVIEWS 184(1-4) 259-274 2014年11月 査読有り
-
SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE 9143 2014年
-
SPACE TELESCOPES AND INSTRUMENTATION 2012: OPTICAL, INFRARED, AND MILLIMETER WAVE 8442 2012年
-
TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 10(28) Pf_15-Pf_19 2012年We are in progress to develop a system for automatic operation of a satellite in order to reduce human load at satellite steady operation phase. The ground station for small satellite REIMEI (INDEX : INnovative-technology Demonstration EXperiment) is used as a test bench for verification of the proposed method. In our new automatic operation system, a scheduler software as a substitutive operator manages all the operations through a unified procedure, including sending command, receiving telemetry, and driving antenna in accordance with an operation time line which is prepared before the operation pass. The scheduler also performs diagnostics of satellite anomaly based upon the received telemetry data and status of the ground station. In case that some anomaly of the satellite is detected, the scheduler initiates an emergency schedule that was prepared depending on the emergency level. The automatic operation system is nearly completed for downlink operations of the data recorder that account for 75% of REIMEI steady operation. This approach is very effective to reduce psychological and physical load of operators.
MISC
42主要な講演・口頭発表等
281-
Japan Geoscience Union Meeting (JpGU) 2025 2025年3月25日
-
IEEE Aerospace Conference 2025年3月5日
-
35th AAS/AIAA Space Flight Mechanics Meeting 2025年1月20日
-
AIAA Scitech Forum 2025 2025年1月6日
-
31st International Display Workshops (IDW'24) 2024年12月4日 招待有り
-
16th International Space Conference of Pacific-basin Societies (ISCOPS) 2024年11月20日
-
16th International Space Conference of Pacific-basin Societies (ISCOPS) 2024年11月20日
-
35th International Photovoltaic Science and Engineering Conference (PVSEC-35) 2024年11月12日
-
35th International Photovoltaic Science and Engineering Conference (PVSEC-35) 2024年11月12日 招待有り
-
75th International Astronautical Congress (IAC), 2024年10月18日
-
75th International Astronautical Congress (IAC), 2024年10月18日
-
Asia Oceania Geosciences Society (AOGS) 2024 2024年6月26日
-
Asia Oceania Geosciences Society (AOGS) 2024 2024年6月25日 招待有り
-
The 55th Lunar and Planetary Science Conference (LPSC) 2024年3月14日
-
The 55th Lunar and Planetary Science Conference (LPSC) 2024年3月14日
-
The 55th Lunar and Planetary Science Conference (LPSC) 2024年3月12日
-
34th International Symposium on Space Technology and Science(ISTS) 2023年6月5日
共同研究・競争的資金等の研究課題
5-
日本学術振興会 科学研究費助成事業 2013年5月 - 2018年3月
-
日本学術振興会 科学研究費助成事業 2011年 - 2013年
-
日本学術振興会 科学研究費助成事業 2004年 - 2008年
-
日本学術振興会 科学研究費助成事業 2005年 - 2006年
-
日本学術振興会 科学研究費助成事業 2003年 - 2004年