研究者業績

小栗 秀悟

オグリ シュウゴ  (Shugo Oguri)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙物理学研究系 助教
学位
博士(理学)(2012年7月 東京大学)

研究者番号
20751176
ORCID ID
 https://orcid.org/0000-0002-5902-2672
J-GLOBAL ID
201901005927826680
researchmap会員ID
B000348585

宇宙素粒子物理学が専門です。現在はCMB偏光観測を行う衛星実験LiteBIRDの研究開発をしています。

宇宙初期の物理学、特にインフレーションやダークマターなどに興味があります。


論文

 52
  • Frederick T. Matsuda, Ryo Nagata, Kimihide Odagiri, Shugo Oguri, Yutaro Sekimoto, Hayato Takakura, Tommaso Ghigna
    Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 82-82 2024年8月23日  
  • Hayato Takakura, Yutaro Sekimoto, Kimihide Odagiri, Rion Takahashi, Fumiya Miura, Frederick T. Matsuda, Shugo Oguri
    Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave 207-207 2024年8月23日  
  • Fumiya Miura, Hayato Takakura, Yutaro Sekimoto, Junji Inatani, Frederick T. Matsuda, Shugo Oguri, Miu Kashiwazaki, Shogo Nakamura, Tomonaga Ueno, Akira Ito, Motoi Kawamura, Osamu Kawasaki, Atsushi Sakai
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII 124-124 2024年8月16日  
  • Rion Takahashi, Hayato Takakura, Yutaro Sekimoto, Fumiya Miura, Junji Inatani, Frederick T. Matsuda, Shugo Oguri, Shogo Nakamura
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII 120-120 2024年8月16日  
  • Fumiya Miura, Hayato Takakura, Yutaro Sekimoto, Junji Inatani, Frederick Matsuda, Shugo Oguri, Shogo Nakamura
    Applied Optics 2024年8月8日  
  • Y Sueno, J J A Baselmans, A H M Coppens, R T Génova-Santos, M Hattori, S Honda, K Karatsu, H Kutsuma, K Lee, T Nagasaki, S Oguri, C Otani, M Peel, J Suzuki, O Tajima, T Tanaka, M Tsujii, D J Thoen, E Won
    Progress of Theoretical and Experimental Physics 2024(2) 2024年1月22日  
    Abstract Understanding telescope pointing (i.e. line of sight) is important for observing the cosmic microwave background (CMB) and astronomical objects. The Moon is a candidate astronomical source for pointing calibration. Although the visible size of the Moon (30′) is larger than that of the planets, we can frequently observe the Moon once a month with a high signal-to-noise ratio. We developed a method for performing pointing calibration using observational data from the Moon. We considered the tilts of the telescope axes as well as the encoder and collimation offsets for pointing calibration. In addition, we evaluated the effects of the nonuniformity of the brightness temperature of the Moon, which is a dominant systematic error. As a result, we successfully achieved a pointing accuracy of 3.3′. This is one order of magnitude smaller than an angular resolution of 36′. This level of accuracy competes with past achievements in other ground-based CMB experiments using observational data from the planets.
  • Ryo Nakano, Hayato Takakura, Yutaro Sekimoto, Junji Inatani, Masahiro Sugimoto, Shugo Oguri, Frederick Matsuda
    Journal of Astronomical Telescopes, Instruments, and Systems 9(02) 2023年4月19日  
  • Miki Kurihara, Masahiro Tsujimoto, Megan E. Eckart, Caroline A. Kilbourne, Frederick T. Matsuda, Brian Mclaughlin, Shugo Oguri, Frederick S. Porter, Yoh Takei, Yoichi Kochibe
    Journal of Astronomical Telescopes, Instruments, and Systems 9(1) 18004 2023年1月1日  
    Electromagnetic interference (EMI) for low-temperature detectors is a serious concern in many missions. We investigate the EMI caused by the spacecraft components to the x-ray microcalorimeter of the Resolve instrument onboard the x-ray imaging and spectroscopy mission, which is currently under development by an international collaboration and is planned to be launched in 2023. We focus on the EMI from (a) the low-frequency magnetic field generated by the magnetic torquers (MTQ) used for the spacecraft attitude control and (b) the radio-frequency (RF) electromagnetic field generated by the S and X band antennas used for communication between the spacecraft and the ground stations. We executed a series of ground tests both at the instrument and spacecraft levels using the flight-model hardware in 2021-2022 in a JAXA facility in Tsukuba. We also conducted electromagnetic simulations partially using the Fugaku high-performance computing facility. The MTQs were found to couple with the microcalorimeter, which we speculate through pick-ups of low-frequency magnetic field and further capacitive coupling. There is no evidence that the resultant energy resolution degradation is beyond the current allocation of noise budget. The RF communication system was found to leave no significant effect. We present the result of the tests and simulation in this article.
  • E Allys, K Arnold, J Aumont, R Aurlien, S Azzoni, C Baccigalupi, A J Banday, R Banerji, R B Barreiro, N Bartolo, L Bautista, D Beck, S Beckman, M Bersanelli, F Boulanger, M Brilenkov, M Bucher, E Calabrese, P Campeti, A Carones, F J Casas, A Catalano, V Chan, K Cheung, Y Chinone, S E Clark, F Columbro, G D’Alessandro, P de Bernardis, T de Haan, E de  la Hoz, M De Petris, S Della Torre, P Diego-Palazuelos, M Dobbs, T Dotani, J M Duval, T Elleflot, H K Eriksen, J Errard, T Essinger-Hileman, F Finelli, R Flauger, C Franceschet, U Fuskeland, M Galloway, K Ganga, M Gerbino, M Gervasi, R T Génova-Santos, T Ghigna, S Giardiello, E Gjerløw, J Grain, F Grupp, A Gruppuso, J E Gudmundsson, N W Halverson, P Hargrave, T Hasebe, M Hasegawa, M Hazumi, S Henrot-Versillé, B Hensley, L T Hergt, D Herman, E Hivon, R A Hlozek, A L Hornsby, Y Hoshino, J Hubmayr, K Ichiki, T Iida, H Imada, H Ishino, G Jaehnig, N Katayama, A Kato, R Keskitalo, T Kisner, Y Kobayashi, A Kogut, K Kohri, E Komatsu, K Komatsu, K Konishi, N Krachmalnicoff, C L Kuo, L Lamagna, M Lattanzi, A T Lee, C Leloup, F Levrier, E Linder, G Luzzi, J Macias-Perez, T Maciaszek, B Maffei, D Maino, S Mandelli, E Martínez-González, S Masi, M Massa, S Matarrese, F T Matsuda, T Matsumura, L Mele, M Migliaccio, Y Minami, A Moggi, J Montgomery, L Montier, G Morgante, B Mot, Y Nagano, T Nagasaki, R Nagata, R Nakano, T Namikawa, F Nati, P Natoli, S Nerval, F Noviello, K Odagiri, S Oguri, H Ohsaki, L Pagano, A Paiella, D Paoletti, A Passerini, G Patanchon, F Piacentini, M Piat, G Polenta, D Poletti, T Prouvé, G Puglisi, D Rambaud, C Raum, S Realini, M Reinecke, M Remazeilles, A Ritacco, G Roudil, J A Rubino-Martin, M Russell, H Sakurai, Y Sakurai, M Sasaki, D Scott, Y Sekimoto, K Shinozaki, M Shiraishi, P Shirron, G Signorelli, F Spinella, S Stever, R Stompor, S Sugiyama, R M Sullivan, A Suzuki, T L Svalheim, E Switzer, R Takaku, H Takakura, Y Takase, A Tartari, Y Terao, J Thermeau, H Thommesen, K L Thompson, M Tomasi, M Tominaga, M Tristram, M Tsuji, M Tsujimoto, L Vacher, P Vielva, N Vittorio, W Wang, K Watanuki, I K Wehus, J Weller, B Westbrook, J Wilms, E J Wollack, J Yumoto, M Zannoni
    Progress of Theoretical and Experimental Physics 2023(4) 2022年11月21日  
    Abstract LiteBIRD the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA’s H3 rocket. LiteBIRD is planned to orbit the Sun-Earth Lagrangian point L2, where it will map the cosmic microwave background (CMB) polarization over the entire sky for three years, with three telescopes in 15 frequency bands between 34 and 448 GHz, to achieve an unprecedented total sensitivity of 2.2 μK-arcmin, with a typical angular resolution of 0.5○ at 100 GHz. The primary scientific objective of LiteBIRD is to search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. We provide an overview of the LiteBIRD project, including scientific objectives, mission and system requirements, operation concept, spacecraft and payload module design, expected scientific outcomes, potential design extensions and synergies with other projects. Subject Index LiteBIRD cosmic inflation, cosmic microwave background, B-mode polarization, primordial gravitational waves, quantum gravity, space telescope
  • Ryo Nakano, Hayato Takakura, Yutaro Sekimoto, Junji Inatani, Masahiro Sugimoto, Shugo Oguri, Frederick T. Matsuda
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI 12190 2022年8月31日  
    We verified a method of near-field antenna pattern measurement for a wide-field telescope with a bolometric detector array, based on a holographic phase-retrieval technique. A signal emitter scans the telescope aperture and a reference emitter, which is phase-locked to the signal, is located at a fixed position to allow a bolometric detector to receive the both. It generates a hologram on the focal plane as a function of the signal emitter location. Since the hologram is obtained in a receiving mode, we can use the telescope-equipped detector as it is. It is beneficial for the case where such detector is integrated with a feed antenna, which characterizes the telescope performance. The new method also has an advantage that we do not need the phase calibration of the reference emitter since it is constant. We experimentally demonstrated this method with a crossed-Dragone antenna whose field of view is 18 degrees x 9 degrees at 180 GHz for three representative detector positions in the focal plane. The antenna patterns were consistent with those measured by a vector near-field measurement at the level of -60 dB, which directly acquires both the phase and the amplitude of the electric field.
  • Shugo Oguri, Tadayasu Dotani, Masahito Isshiki, Shota Iwabuchi, Tooru Kaga, Frederick T. Matsuda, Yasuyuki Miyazaki, Baptiste Mot, Ryo Nagata, Katsuhiro Narasaki, Hiroyuki Ogawa, Toshiaki Okudaira, Kimihide Odagiri, Thomas Prouve, Gilles Roudil, Yasutaka Satoh, Yutaro Sekimoto, Toyoaki Suzuki, Kazuya Watanuki, Seiji Yoshida, Keisuke Yoshihara
    Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave 12180 2022年8月27日  
    LiteBIRD is a spacecraft to observe the polarization signal of the cosmic microwave background radiation (CMB). In the development of its payload module, it is important to design the mechanical structures with enough rigidity to withstand the launch environment while providing enough thermal insulation to cool the telescopes down to 5 K. We need to reduce the mass of the 5-K structure, which consists of three telescopes, the low-frequency telescope (LFT) led by JAXA and the mid-frequency and high-frequency telescopes (MFT and HFT) led by CNES. In this paper, we report the mechanical design of the LFT and the structural analysis using Nastran. We made a structural mathematical model of the LFT and performed modal and quasi-static analyses. We successfully reduced the LFT mass while keeping the natural resonance frequency higher than requirements. Additionally, we report the mechanical design and the current status of the structural analysis for the payload module.
  • Hayato Takakura, Ryo Nakano, Yutaro Sekimoto, Junji Inatani, Masahiro Sugimoto, Frederick T. Matsuda, Shugo Oguri
    Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave 12180 2022年8月27日  
    Suppression of straylight is one of the challenges in the optical design of a wide-field-of-view telescope. It contaminates the weak target signal with radiation from strong sources at angles far from the observing direction. We evaluated the optical design of a crossed-Dragone telescope, the LiteBIRD Low-Frequency Telescope (LFT), which has 18 degrees x 9 degrees field of view. We measured a 1/4-scaled antenna of the LFT at accordingly scaled frequencies of 160-200 GHz (corresponding to 40-50 GHz for the full-scale LFT), for the feed at the center and the edges of the focal plane. To separate straylight components, we computed the time profiles of the aperture fields with similar to 0.1 ns resolution by inverse Fourier transformation of the measured frequency spectra and applied time gating to them. We identified far-sidelobe components in the time-gated antenna beam patterns whose arrival time and angular direction are consistent with straylight predicted by a ray-tracing simulation. The identified far-sidelobe components include straylight reduced but reflected inside the front hood and straylight with multiple reflections without intercepted by the front hood. Their intensities are less than the -56 dB level, which is the far-sidelobe knowledge requirement for the LFT.
  • Kimihide Odagiri, Masaru Saijo, Keisuke Shinozaki, Frederick Matsuda, Shugo Oguri, Toyoaki Suzuki, Hiroyuki Ogawa, Yutaro Sekimoto, Tadayasu Dotani, Kazuya Watanuki, Ryo Sugimoto, Keisuke Yoshihara, Katsuhiro Narasaki, Masahito Isshiki, Seiji Yoshida, Thomas Prouve, Jean-Marc Duval, Keith L. Thompson
    SPACE TELESCOPES AND INSTRUMENTATION 2022: OPTICAL, INFRARED, AND MILLIMETER WAVE 12180 2022年8月  
    LiteBIRD is a JAXA-led international project that aims to test representative inflationary models by performing an all-sky cosmic microwave background radiation (CMB) polarization survey for 3 years at the Sun-Earth Lagrangian point L2. We aim to launch LiteBIRD in the late 2020s. The payload module (PLM) is mainly composed of the Low-Frequency Telescope (LFT), the Mid-Frequency Telescope and High-Frequency Telescope (MHFT), and a cryo-structure. To conduct the high-precision and high-sensitivity CMB observations, it is required to cool the telescopes down to less than 5 K and the detectors down to 100 mK. The high temperature stability is also an important design factor. It is essential to design and analyze the cryogenic thermal system for PLM. In this study, the heat balance, temperature distribution, and temperature stability of the PLM for the baseline design are evaluated by developing the transient thermal model. The effect of the Joule-Thomson (JT) coolers cold tip temperature variation, the periodical changes in subK Adiabatic Demagnetization Refrigerator (ADR) heat dissipation, and the satellite spin that generates the variable direction of solar flux incident are implemented in the model. The effect of contact thermal conductance in the LFT and the emissivity of the V-groove on the temperature distribution and heat balance are investigated. Based on the thermal analysis, it was confirmed that the PLM baseline design meets the requirement of the temperature and the cooling capability of the 4K-JT cooler. In addition, the temperatures of the V-groove and the LFT 5-K frame are sufficiently stable for the observation. The temperature stability of the Low Frequency Focal Plane (LF-FP) is also discussed in this paper.
  • Tomoki Terasaki, Kenji Kiuchi, Shunsuke Honda, Shugo Oguri, Yume Nishinomiya, Akito Kusaka
    Journal of Low Temperature Physics 209(3-4) 441-448 2022年5月31日  
  • P. Vielva, E. Martínez-González, F. J. Casas, T. Matsumura, S. Henrot-Versillé, E. Komatsu, J. Aumont, R. Aurlien, C. Baccigalupi, A. J. Banday, R. B. Barreiro, N. Bartolo, E. Calabrese, K. Cheung, F. Columbro, A. Coppolecchia, P. De Bernardis, T. De Haan, E. De La Hoz, M. De Petris, S. Della Torre, P. Diego-Palazuelos, H. K. Eriksen, J. Errard, F. Finelli, C. Franceschet, U. Fuskeland, M. Galloway, K. Ganga, M. Gervasi, R. T. Génova-Santos, T. Ghigna, E. Gjerløw, A. Gruppuso, M. Hazumi, D. Herranz, E. Hivon, K. Kohri, L. Lamagna, C. Leloup, J. Macias-Perez, S. Masi, F. T. Matsuda, G. Morgante, R. Nakano, F. Nati, P. Natoli, S. Nerval, K. Odagiri, S. Oguri, L. Pagano, A. Paiella, D. Paoletti, F. Piacentini, G. Polenta, G. Puglisi, M. Remazeilles, A. Ritacco, J. A. Rubino-Martin, D. Scott, Y. Sekimoto, M. Shiraishi, G. Signorelli, H. Takakura, A. Tartari, K. L. Thompson, M. Tristram, L. Vacher, N. Vittorio, I. K. Wehus, M. Zannoni
    Journal of Cosmology and Astroparticle Physics 2022(4) 2022年4月  
    A methodology to provide the polarization angle requirements for different sets of detectors, at a given frequency of a CMB polarization experiment, is presented. The uncertainties in the polarization angle of each detector set are related to a given bias on the tensor-to-scalar ratio r parameter. The approach is grounded in using a linear combination of the detector sets to obtain the CMB polarization signal. In addition, assuming that the uncertainties on the polarization angle are in the small angle limit (lower than a few degrees), it is possible to derive analytic expressions to establish the requirements. The methodology also accounts for possible correlations among detectors, that may originate from the optics, wafers, etc. The approach is applied to the LiteBIRD space mission. We show that, for the most restrictive case (i.e., full correlation of the polarization angle systematics among detector sets), the requirements on the polarization angle uncertainties are of around 1 arcmin at the most sensitive frequency bands (i.e., ≈ 150 GHz) and of few tens of arcmin at the lowest (i.e., ≈ 40 GHz) and highest (i.e., ≈ 400 GHz) observational bands. Conversely, for the least restrictive case (i.e., no correlation of the polarization angle systematics among detector sets), the requirements are ≈ 5 times less restrictive than for the previous scenario. At the global and the telescope levels, polarization angle knowledge of a few arcmins is sufficient for correlated global systematic errors and can be relaxed by a factor of two for fully uncorrelated errors in detector polarization angle. The reported uncertainty levels are needed in order to have the bias on r due to systematics below the limit established by the LiteBIRD collaboration.
  • Y Sueno, S Honda, H Kutsuma, S Mima, C Otani, S Oguri, J Suzuki, O Tajima
    Progress of Theoretical and Experimental Physics 2022(3) 2022年3月9日  
    Abstract A microwave kinetic inductance detector (MKID) is a cutting-edge superconducting detector. It comprises a resonator circuit constructed with a superconducting film on a dielectric substrate. To expand its field of application, it is important to establish a method to suppress the two-level system (TLS) noise that is caused by the electric fluctuations between the two energy states at the surface of the substrate. The electric field density can be decreased by expanding the strip width (S) and gap width from the ground plane (W) in the MKID circuit, allowing the suppression of TLS noise. However, this effect has not yet been confirmed for MKIDs made with niobium films on silicon substrates. In this study, we demonstrate its effectiveness for such MKIDs. We expanded the dimension of the circuit from (S, W) = (3.00 μm, 4.00 μm) to (S, W) = (5.00 μm, 23.7 μm), and achieved an increased suppression of 5.5 dB in TLS noise.
  • Kyungmin Lee, Ricardo T. Génova-Santos, Masashi Hazumi, Shunsuke Honda, Hiroki Kutsuma, Shugo Oguri, Chiko Otani, Mike W. Peel, Yoshinori Sueno, Junya Suzuki, Osamu Tajima, Eunil Won
    The Astrophysical Journal 915(2) 88-88 2021年2月5日  
    We compute the expected sensitivity on measurements of optical depth to reionization for a ground-based experiment at Teide Observatory. We simulate polarized partial sky maps for the GroundBIRD experiment at the frequencies 145 and 220 GHz. We perform fits for the simulated maps with our pixel-based likelihood to extract the optical depth to reionization. The noise levels of polarization maps are estimated as 110 $\mu\mathrm{K~arcmin}$ and 780 $ \mu\mathrm{K~arcmin}$ for 145 and 220 GHz, respectively, by assuming a three-year observing campaign and sky coverages of 0.537 for 145 GHz and 0.462 for 220 GHz. Our sensitivities for the optical depth to reionization are found to be $\sigma_\tau$=0.030 with the simulated GroundBIRD maps, and $\sigma_\tau$=0.012 by combining with the simulated QUIJOTE maps at 11, 13, 17, 19, 30, and 40 GHz.
  • Masashi Hazumi, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, R. Banjeri, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Paolo de Bernardis, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Fabio Columbro, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Jon E. Gudmundsson, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Sophie Henrot-Versillé, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Luca Lamagna, Jeff V. Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Bruno Maffei, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Joshua Montgomery, Ludovic Montier, Gianluca Morgante, Baptiste Mot, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Fabio Noviello, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Giampaolo Pisano, Gianluca Polenta, Davide Poletti, Thomas Prouvé, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Megan Russell, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Giorgio Savini, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Samantha Stever, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Keith L. Thompson, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Masahiro Tsujimoto, Carole Tucker, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Benjamin Westbrook, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca
    Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave 11443 2020年12月21日  
    LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 μK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes.
  • Yutaro Sekimoto, Peter Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony Banday, Ranajoy Banerji, Rita Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Paolo de Bernardis, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean Cliche, Loris Colombo, Fabio Columbro, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean Duval, Ken Ebisawa, Tucker Elleflot, Hans Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Jon Gudmundsson, Tijmen de Haan, Nils Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Masashi Hazumi, Sophie Henrot-Versillé, Daniel Herman, Diego Herranz, Charles Hill, Gene Hilton, Yukimasa Hirota, Eric hivon, Renee Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin Kuo, Akihiro Kushino, Luca Lamagna, Jeff Lanen, Massimiliano Lattanzi, Adrien Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Bruno Maffei, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minanmi, Kazuhisa Mitsuda, Josua Montgomery, Ludovic Montier, Gianluca Morgante, Baptise Mot, Yasuhiro Murata, John Murphy, Makoto Nagai, Yuya Nagano, Takeo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Osaki, Izumi Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Giampaolo Pisano, Gianluca Polenta, Davide Poletti, Thomas Prouvé, Giuseppe Puglisi, Damien Tambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessa Ritacco, Gilles Roudil, Jose Rubino-Martin, Megan Russell, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Giorgio Savini, Douglas Scott, Joseph Seibert, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Samantha Stever, Radek Stompor, Hajime Sugai, Shinya Sugiyama, aritoki Suzuki, Junichi Suzuki, Trygve Svalheim, Eric Switzer, Ryota Takaku, hayato Takakura, satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Keith L. Thompson, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Masahiro Tsujimoto, Carole Tucker, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Benjamin Westbrook, Joern Wilms, Berend Winter, Edward Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca
    Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X 11453 2020年12月16日  
    LiteBIRD has been selected as JAXA's strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) B-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of-56 dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT: 34-161 GHz), one of LiteBIRD's onboard telescopes. It has a wide field-of-view (18° x 9°) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90a-▪ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at 5 K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.
  • Ludovic Montier, Baptiste Mot, Paolo de Bernardis, Bruno Maffei, Giampaolo Pisano, Fabio Columbro, Jon E. Gudmundsson, Sophie Henrot-Versillé, Luca Lamagna, Joshua Montgomery, Thomas Prouvé, Megan Russell, Giorgio Savini, Samantha Stever, Keith L. Thompson, Masahiro Tsujimoto, Carole Tucker, Benjamin Westbrook, Peter A. Ade, Alexandre Adler, Erwan Allys, Kam Arnold, Didier Auguste, Jonathan Aumont, Ragnhild Aurlien, Jason Austermann, Carlo Baccigalupi, Anthony J. Banday, Ranajoy Banerji, Rita B. Barreiro, Soumen Basak, Jim Beall, Dominic Beck, Shawn Beckman, Juan Bermejo, Marco Bersanelli, Julien Bonis, Julian Borrill, Francois Boulanger, Sophie Bounissou, Maksym Brilenkov, Michael Brown, Martin Bucher, Erminia Calabrese, Paolo Campeti, Alessandro Carones, Francisco J. Casas, Anthony Challinor, Victor Chan, Kolen Cheung, Yuji Chinone, Jean F. Cliche, Loris Colombo, Javier Cubas, Ari Cukierman, David Curtis, Giuseppe D'Alessandro, Nadia Dachlythra, Marco De Petris, Clive Dickinson, Patricia Diego-Palazuelos, Matt Dobbs, Tadayasu Dotani, Lionel Duband, Shannon Duff, Jean M. Duval, Ken Ebisawa, Tucker Elleflot, Hans K. Eriksen, Josquin Errard, Thomas Essinger-Hileman, Fabio Finelli, Raphael Flauger, Cristian Franceschet, Unni Fuskeland, Mathew Galloway, Ken Ganga, Jian R. Gao, Ricardo Genova-Santos, Martina Gerbino, Massimo Gervasi, Tommaso Ghigna, Eirik Gjerløw, Marcin L. Gradziel, Julien Grain, Frank Grupp, Alessandro Gruppuso, Tijmen de Haan, Nils W. Halverson, Peter Hargrave, Takashi Hasebe, Masaya Hasegawa, Makoto Hattori, Masashi Hazumi, Daniel Herman, Diego Herranz, Charles A. Hill, Gene Hilton, Yukimasa Hirota, Eric Hivon, Renee A. Hlozek, Yurika Hoshino, Elena de la Hoz, Johannes Hubmayr, Kiyotomo Ichiki, Teruhito Iida, Hiroaki Imada, Kosei Ishimura, Hirokazu Ishino, Greg Jaehnig, Tooru Kaga, Shingo Kashima, Nobuhiko Katayama, Akihiro Kato, Takeo Kawasaki, Reijo Keskitalo, Theodore Kisner, Yohei Kobayashi, Nozomu Kogiso, Alan Kogut, Kazunori Kohri, Eiichiro Komatsu, Kunimoto Komatsu, Kuniaki Konishi, Nicoletta Krachmalnicoff, Ingo Kreykenbohm, Chao-Lin L. Kuo, Akihiro Kushino, Jeff V. Lanen, Massimiliano Lattanzi, Adrian T. Lee, Clément Leloup, François Levrier, Eric Linder, Thibaut Louis, Gemma Luzzi, Thierry Maciaszek, Davide Maino, Muneyoshi Maki, Stefano Mandelli, Enrique Martinez-Gonzalez, Silvia Masi, Tomotake Matsumura, Aniello Mennella, Marina Migliaccio, Yuto Minami, Kazuhisa Mitsuda, Gianluca Morgante, Yasuhiro Murata, John A. Murphy, Makoto Nagai, Yuya Nagano, Taketo Nagasaki, Ryo Nagata, Shogo Nakamura, Toshiya Namikawa, Paolo Natoli, Simran Nerval, Toshiyuki Nishibori, Haruki Nishino, Créidhe O'Sullivan, Hideo Ogawa, Hiroyuki Ogawa, Shugo Oguri, Hiroyuki Ohsaki, Izumi S. Ohta, Norio Okada, Nozomi Okada, Luca Pagano, Alessandro Paiella, Daniela Paoletti, Guillaume Patanchon, Julien Peloton, Francesco Piacentini, Gianluca Polenta, Davide Poletti, Giuseppe Puglisi, Damien Rambaud, Christopher Raum, Sabrina Realini, Martin Reinecke, Mathieu Remazeilles, Alessia Ritacco, Gilles Roudil, Jose A. Rubino-Martin, Haruyuki Sakurai, Yuki Sakurai, Maura Sandri, Manami Sasaki, Douglas Scott, Joseph Seibert, Yutaro Sekimoto, Blake Sherwin, Keisuke Shinozaki, Maresuke Shiraishi, Peter Shirron, Giovanni Signorelli, Graeme Smecher, Radek Stompor, Hajime Sugai, Shinya Sugiyama, Aritoki Suzuki, Junichi Suzuki, Trygve L. Svalheim, Eric Switzer, Ryota Takaku, Hayato Takakura, Satoru Takakura, Yusuke Takase, Youichi Takeda, Andrea Tartari, Ellen Taylor, Yutaka Terao, Harald Thommesen, Ben Thorne, Takayuki Toda, Maurizio Tomasi, Mayu Tominaga, Neil Trappe, Matthieu Tristram, Masatoshi Tsuji, Joe Ullom, Gerard Vermeulen, Patricio Vielva, Fabrizio Villa, Michael Vissers, Nicola Vittorio, Ingunn Wehus, Jochen Weller, Joern Wilms, Berend Winter, Edward J. Wollack, Noriko Y. Yamasaki, Tetsuya Yoshida, Junji Yumoto, Mario Zannoni, Andrea Zonca
    Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave 11443 2020年12月15日  
    LiteBIRD is a JAXA-led Strategic Large-Class mission designed to search for the existence of the primordial gravitational waves produced during the inflationary phase of the Universe, through the measurements of their imprint onto the polarization of the cosmic microwave background (CMB). These measurements, requiring unprecedented sensitivity, will be performed over the full sky, at large angular scales, and over 15 frequency bands from 34 GHz to 448 GHz. The LiteBIRD instruments consist of three telescopes, namely the Low-, Medium-and High-Frequency Telescope (respectively LFT, MFT and HFT). We present in this paper an overview of the design of the Medium-Frequency Telescope (89{224 GHz) and the High-Frequency Telescope (166{448 GHz), the so-called MHFT, under European responsibility, which are two cryogenic refractive telescopes cooled down to 5 K. They include a continuous rotating half-wave plate as the first optical element, two high-density polyethylene (HDPE) lenses and more than three thousand transition-edge sensor (TES) detectors cooled to 100 mK. We provide an overview of the concept design and the remaining specific challenges that we have to face in order to achieve the scientific goals of LiteBIRD.
  • Shunsuke Honda, Jihoon Choi, Ricardo T. Génova-Santos, Makoto Hattori, Masashi Hazumi, Takuji Ikemitsu, Hidesato Ishida, Hikaru Ishitsuka, Yonggil Jo, Kenichi Karatsu, Kenji Kiuchi, Junta Komine, Ryo Koyano, Hiroki Kutsuma, Kyungmin Lee, Satoru Mima, Makoto Minowa, Joonhyeok Moon, Makoto Nagai, Takeo Nagasaki, Masato Naruse, Shugo Oguri, Chiko Otani, Michael Peel, Rafael Rebolo-López, José Alberto Rubiño-Martín, Yutaro Sekimoto, Yoshinori Sueno, Junya Suzuki, Tohru Taino, Osamu Tajima, Nozomu Tomita, Yuta Tsuji, Tomohisa Uchida, Eunil Won, Mitsuhiro Yoshida
    Ground-based and Airborne Telescopes VIII 11445 2020年12月13日  
    © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. GroundBIRD is a millimeter-wave telescope to observe the polarization patterns of the cosmic microwave background (CMB). The target science topics are primordial gravitational waves from cosmic inflation and reionization optical depth. Therefore, this telescope is designed to achieve the highest sensitivity at large angular scales, ℓ = 6 - 300. For wide sky observations (∼40% full-sky), scanning at a high rotation speed (120°/s) is important to remove atmospheric fluctuations. Microwave kinetic inductance detector (MKID) is utilized with the fast GroundBIRD rotation since its good time response. We have started the commissioning run at the Teide Observatory in the Canary Islands. We report the performance of the telescope, receiver, and data acquisition system, including cooling achievements, observations of astronomical objects, and observations taken during several days ahead of our main survey observations.
  • Kyungmin Lee, Jihoon Choi, Ricardo Tanausú Génova-Santos, Makoto Hattori, Masashi Hazumi, Shunsuke Honda, Takuji Ikemitsu, Hidesato Ishida, Hikaru Ishitsuka, Yonggil Jo, Kenichi Karatsu, Kenji Kiuchi, Junta Komine, Ryo Koyano, Hiroki Kutsuma, Satoru Mima, Makoto Minowa, Joonhyeok Moon, Makoto Nagai, Taketo Nagasaki, Masato Naruse, Shugo Oguri, Chiko Otani, Michael Peel, Rafael Rebolo, José Alberto Rubiño-Martín, Yutaro Sekimoto, Junya Suzuki, Tohru Taino, Osamu Tajima, Nozomu Tomita, Tomohisa Uchida, Eunil Won, Mitsuhiro Yoshida
    Journal of Low Temperature Physics 200(5-6) 384-391 2020年11月16日  
    GroundBIRD is a ground-based experiment for the precise observation of the polarization of the cosmic microwave background (CMB). To achieve high sensitivity at large angular scale, we adopt three features in this experiment: fast rotation scanning, microwave kinetic inductance detector (MKID) and cold optics. The rotation scanning strategy has the advantage to suppress $1/f$ noise. It also provides a large sky coverage of 40\%, which corresponds to the large angular scales of $l \sim 6$. This allows us to constrain the tensor-to-scalar ratio by using low $l$ B-mode spectrum. The focal plane consists of 7 MKID arrays for two target frequencies, 145 GHz and 220 GHz band. There are 161 pixels in total, of which 138 are for 144 GHz and 23 are for 220 GHz. This array is currently under development and the prototype will soon be evaluated in telescope. The GroundBIRD telescope will observe the CMB at the Teide observatory. The telescope was moved from Japan to Tenerife and is now under test. We present the status and plan of the GroundBIRD experiment.
  • Hiroki Kutsuma, Sueno, Yoshinori, Makoto Hattori, Mima, Satoru, Shugo OGURI, Otani, Chiko, Junya Suzuki, Tajima, Osamu
    AIP Adv. 10(9) 095320-095320 2020年9月21日  査読有り
    A microwave kinetic inductance detector (MKID) is a cutting-edge superconducting detector, and its principle is based on a superconducting resonator circuit. The superconducting transition temperature (Tc) of the MKID is an important parameter because various MKID characterization parameters depend on it. In this paper, we propose a method to measure the Tc of the MKID by changing the applied power of the readout microwaves. A small fraction of the readout power is deposited in the MKID, and the number of quasiparticles in the MKID increases with this power. Furthermore, the quasiparticle lifetime decreases with the number of quasiparticles. Therefore, we can measure the relation between the quasiparticle lifetime and the detector response by rapidly varying the readout power. From this relation, we estimate the intrinsic quasiparticle lifetime. This lifetime is theoretically modeled by Tc, the physical temperature of the MKID device, and other known parameters. We obtain Tc by comparing the measured lifetime with that acquired using the theoretical model. Using an MKID fabricated with aluminum, we demonstrate this method at a 0.3 K operation. The results are consistent with those obtained by Tc measured by monitoring the transmittance of the readout microwaves with the variation in the device temperature. The method proposed in this paper is applicable to other types, such as a hybrid-type MKID.
  • K. Kiuchi, S. Oguri, S. Mima, C. Otani, A. Kusaka
    Journal of Low Temperature Physics 200(5-6) 353-362 2020年9月1日  
    This study focuses on kinetic inductance detectors (KIDs) fabricated in external foundries using 6 and 8-inch processes. These processes allow us to fabricate large arrays of KIDs in a scalable manner. The support of such a wide variety of astronomical and particle-physics applications requires large numbers of superconducting detectors. For example, the sensitivity of the cosmic microwave background measurements has exponentially improved over the past few decades. The most significant advantage of KIDs is scalability to a large array due to the intrinsic frequency multiplexing scheme. The first step of fabricating a large array of KIDs is designing test chips to check the performance of the 6 and 8-inch micro-electro-mechanical system processes. The KIDs are made of a single pure aluminum film and consist of coplanar waveguide quarter wavelength resonators with a feedline. Each wafer is filled with 32 chips, where the chip size is 20 × 20 mm2, with 48 resonators on each chip. The chips are evaluated using a dilution refrigerator at temperatures ranging from 100 to 500 mK. The quality factor of the resonators, temperature dependency of the resonance frequency, and yields are comparable with those of the KIDs fabricated in a dedicated clean room for superconducting detectors.
  • Nozomu Tomita, Shugo Oguri, Yoshizumi Inoue, Makoto Minowa, Taketo Nagasaki, Jun'ya Suzuki, Osamu Tajima
    Journal of Cosmology and Astroparticle Physics 2020(9) 2020年6月4日  査読有り
    We search for hidden-photon cold dark matter (HP-CDM) using a spectroscopic system in a K-band frequency range. Our system comprises a planar metal plate and cryogenic receiver. This is the first time a cryogenic receiver has been used in the search for HP-CDM. Such use helps reduce thermal noise. We recorded data for 9.3 hours using an effective aperture area of 14.8 cm$^2$. No signal was found in the data. We set upper limits for the parameter of mixing between the photon and HP-CDM in the mass range from 115.79 to 115.85 $\mu$eV, $\chi < 1.8$-$4.3 \times 10^{-10}$, at a 95% confidence level. This is the most stringent upper limit obtained to date in the considered mass range.
  • H. Kutsuma, M. Hattori, R. Koyano, S. Mima, S. Oguri, C. Otani, T. Taino, O. Tajima
    Applied Physics Letters 115(3) 032603-032603 2019年7月15日  査読有り
    Superconducting detectors are a modern technology applied in various fields. The microwave kinetic inductance detector (MKID) is one of cutting-edge superconducting detector. It is based on the principle of a superconducting resonator circuit. A radiation entering the MKID breaks the Cooper pairs in the superconducting resonator, and the intensity of the radiation is detected as a variation of the resonant condition. Therefore, calibration of the detector responsivity, i.e., the variation of the resonant phase with respect to the number of Cooper-pair breaks (quasiparticles), is important. We propose a method for responsivity calibration. Microwaves used for the detector readout locally raise the temperature in each resonator, which increases the number of quasiparticles. Since the magnitude of the temperature rise depends on the power of readout microwaves, the number of quasiparticles also depends on the power of microwaves. By changing the power of the readout microwaves, we simultaneously measure the phase difference and lifetime of quasiparticles. We calculate the number of quasiparticles from the measured lifetime and by using a theoretical formula. This measurement yields a relation between the phase response as a function of the number of quasiparticles. We demonstrate this responsivity calibration using the MKID maintained at 285mK. We also confirm consistency between the results obtained using this method and conventional calibration methods in terms of the accuracy.
  • M. Hazumi, P. A.R. Ade, Y. Akiba, D. Alonso, K. Arnold, J. Aumont, C. Baccigalupi, D. Barron, S. Basak, S. Beckman, J. Borrill, F. Boulanger, M. Bucher, E. Calabrese, Y. Chinone, S. Cho, A. Cukierman, D. W. Curtis, T. de Haan, M. Dobbs, A. Dominjon, T. Dotani, L. Duband, A. Ducout, J. Dunkley, J. M. Duval, T. Elleflot, H. K. Eriksen, J. Errard, J. Fischer, T. Fujino, T. Funaki, U. Fuskeland, K. Ganga, N. Goeckner-Wald, J. Grain, N. W. Halverson, T. Hamada, T. Hasebe, M. Hasegawa, K. Hattori, M. Hattori, L. Hayes, N. Hidehira, C. A. Hill, G. Hilton, J. Hubmayr, K. Ichiki, T. Iida, H. Imada, M. Inoue, Y. Inoue, K. D. Irwin, H. Ishino, O. Jeong, H. Kanai, D. Kaneko, S. Kashima, N. Katayama, T. Kawasaki, S. A. Kernasovskiy, R. Keskitalo, A. Kibayashi, Y. Kida, K. Kimura, T. Kisner, K. Kohri, E. Komatsu, K. Komatsu, C. L. Kuo, N. A. Kurinsky, A. Kusaka, A. Lazarian, A. T. Lee, D. Li, E. Linder, B. Maffei, A. Mangilli, M. Maki, T. Matsumura, S. Matsuura, D. Meilhan, S. Mima, Y. Minami, K. Mitsuda, L. Montier, M. Nagai, T. Nagasaki, R. Nagata, M. Nakajima, S. Nakamura, T. Namikawa, M. Naruse, H. Nishino, T. Nitta, T. Noguchi, H. Ogawa, S. Oguri, N. Okada, A. Okamoto
    Journal of Low Temperature Physics 194(5-6) 443-452 2019年3月15日  
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. LiteBIRD is a candidate satellite for a strategic large mission of JAXA. With its expected launch in the middle of the 2020s with a H3 rocket, LiteBIRD plans to map the polarization of the cosmic microwave background radiation over the full sky with unprecedented precision. The full success of LiteBIRD is to achieve δr< 0.001 , where δr is the total error on the tensor-to-scalar ratio r. The required angular coverage corresponds to 2 ≤ ℓ≤ 200 , where ℓ is the multipole moment. This allows us to test well-motivated cosmic inflation models. Full-sky surveys for 3 years at a Lagrangian point L2 will be carried out for 15 frequency bands between 34 and 448 GHz with two telescopes to achieve the total sensitivity of 2.5 μ K arcmin with a typical angular resolution of 0.5 ∘ at 150 GHz. Each telescope is equipped with a half-wave plate system for polarization signal modulation and a focal plane filled with polarization-sensitive TES bolometers. A cryogenic system provides a 100 mK base temperature for the focal planes and 2 K and 5 K stages for optical components.
  • T. Nagasaki, J. Choi, R. T. Génova-Santos, M. Hattori, M. Hazumi, H. Ishitsuka, K. Karatsu, K. Kikuchi, R. Koyano, H. Kutsuma, K. Lee, S. Mima, M. Minowa, M. Nagai, M. Naruse, S. Oguri, C. Otani, R. Rebolo, J. A. Rubiño-Martín, Y. Sekimoto, M. Semoto, J. Suzuki, T. Taino, O. Tajima, N. Tomita, T. Uchida, E. Won, M. Yoshida
    Journal of Low Temperature Physics 193(5-6) 1066-1074 2018年12月1日  査読有り
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Cosmic microwave background (CMB) radiation is an afterglow from the Big Bang. CMB contains rich information about the early stage of the universe. In particular, odd-parity patterns (B-mode) in the CMB polarization on a large angular scale would provide an evidence of the cosmic inflation. The aim of the GroundBIRD experiment is to observe the B-mode on large angular scales from the ground. One of the most novel characteristics of the telescope used for this experiment is its rapid rotational scanning technique. In addition, the telescope uses cold optics and microwave kinetic inductance detectors. We have developed a telescope mount with a three-axis rotation mechanism (azimuth, elevation, and boresight) and measured the vibration at the focal plane stage at 20 RPM scan rotation rate. We also performed focal plane detector tests on this mount. The tests confirmed the expected response from the geomagnetism associated with the mount rotation. We have also developed a design for the magnetic shields and a detector array on a 3-in wafer. The preparations to begin the observations at the Teide Observatory in the Canary Islands in 2018 are proceeding smoothly.
  • A. Suzuki, P. A.R. Ade, Y. Akiba, D. Alonso, K. Arnold, J. Aumont, C. Baccigalupi, D. Barron, S. Basak, S. Beckman, J. Borrill, F. Boulanger, M. Bucher, E. Calabrese, Y. Chinone, S. Cho, B. Crill, A. Cukierman, D. W. Curtis, T. de Haan, M. Dobbs, A. Dominjon, T. Dotani, L. Duband, A. Ducout, J. Dunkley, J. M. Duval, T. Elleflot, H. K. Eriksen, J. Errard, J. Fischer, T. Fujino, T. Funaki, U. Fuskeland, K. Ganga, N. Goeckner-Wald, J. Grain, N. W. Halverson, T. Hamada, T. Hasebe, M. Hasegawa, K. Hattori, M. Hattori, L. Hayes, M. Hazumi, N. Hidehira, C. A. Hill, G. Hilton, J. Hubmayr, K. Ichiki, T. Iida, H. Imada, M. Inoue, Y. Inoue, K. D. Irwin, H. Ishino, O. Jeong, H. Kanai, D. Kaneko, S. Kashima, N. Katayama, T. Kawasaki, S. A. Kernasovskiy, R. Keskitalo, A. Kibayashi, Y. Kida, K. Kimura, T. Kisner, K. Kohri, E. Komatsu, K. Komatsu, C. L. Kuo, N. A. Kurinsky, A. Kusaka, A. Lazarian, A. T. Lee, D. Li, E. Linder, B. Maffei, A. Mangilli, M. Maki, T. Matsumura, S. Matsuura, D. Meilhan, S. Mima, Y. Minami, K. Mitsuda, L. Montier, M. Nagai, T. Nagasaki, R. Nagata, M. Nakajima, S. Nakamura, T. Namikawa, M. Naruse, H. Nishino, T. Nitta, T. Noguchi, H. Ogawa, S. Oguri
    Journal of Low Temperature Physics 193(5-6) 1048-1056 2018年12月1日  
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through “B-mode” (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40–235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280–402 GHz) with three types of single frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.
  • T. Hasebe, S. Kashima, P. A.R. Ade, Y. Akiba, D. Alonso, K. Arnold, J. Aumont, C. Baccigalupi, D. Barron, S. Basak, S. Beckman, J. Borrill, F. Boulanger, M. Bucher, E. Calabrese, Y. Chinone, H. M. Cho, A. Cukierman, D. W. Curtis, T. de Haan, M. Dobbs, A. Dominjon, T. Dotani, L. Duband, A. Ducout, J. Dunkley, J. M. Duval, T. Elleflot, H. K. Eriksen, J. Errard, J. Fischer, T. Fujino, T. Funaki, U. Fuskeland, K. Ganga, N. Goeckner-Wald, J. Grain, N. W. Halverson, T. Hamada, M. Hasegawa, K. Hattori, M. Hattori, L. Hayes, M. Hazumi, N. Hidehira, C. A. Hill, G. Hilton, J. Hubmayr, K. Ichiki, T. Iida, H. Imada, M. Inoue, Y. Inoue, K. D. Irwin, H. Ishino, O. Jeong, H. Kanai, D. Kaneko, N. Katayama, T. Kawasaki, S. A. Kernasovskiy, R. Keskitalo, A. Kibayashi, Y. Kida, K. Kimura, T. Kisner, K. Kohri, E. Komatsu, K. Komatsu, C. L. Kuo, N. A. Kurinsky, A. Kusaka, A. Lazarian, A. T. Lee, D. Li, E. Linder, B. Maffei, A. Mangilli, M. Maki, T. Matsumura, S. Matsuura, D. Meilhan, S. Mima, Y. Minami, K. Mitsuda, L. Montier, M. Nagai, T. Nagasaki, R. Nagata, M. Nakajima, S. Nakamura, T. Namikawa, M. Naruse, H. Nishino, T. Nitta, T. Noguchi, H. Ogawa, S. Oguri, N. Okada, A. Okamoto
    Journal of Low Temperature Physics 193(5-6) 841-850 2018年12月1日  
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. The high-frequency telescope for LiteBIRD is designed with refractive and reflective optics. In order to improve sensitivity, this paper suggests the new optical configurations of the HFT which have approximately 7 times larger focal planes than that of the original design. The sensitivities of both the designs are compared, and the requirement of anti-reflection (AR) coating on the lens for the refractive option is derived. We also present the simulation result of a sub-wavelength AR structure on both surfaces of silicon, which shows a band-averaged reflection of 1.1–3.2% at 101–448 GHz.
  • J. Suzuki, H. Ishitsuka, K. Lee, S. Oguri, O. Tajima, N. Tomita, E. Won
    Journal of Low Temperature Physics 193(3-4) 562-569 2018年11月  
  • Kutsuma Hiroki, Hattori Makoto, Kiuchi Kenji, Mima Satoru, Nagasaki Taketo, Oguri Shugo, Suzuki Junya, Tajima Osamu
    JOURNAL OF LOW TEMPERATURE PHYSICS 193(3-4) 203-208 2018年11月  査読有り
  • Kyungmin Lee, H. Ishitsuka, S. Oguri, J. Suzuki, O. Tajima, N. Tomita, Eunil Won, M. Yoshida
    Journal of Low Temperature Physics 1-8 2018年6月7日  査読有り
    The GroundBIRD telescope aims to detect B-mode polarization of the cosmic microwave background radiation using the kinetic inductance detector array as a polarimeter. For the readout of the signal from detector array, we have developed a frequency division multiplexing readout system based on a digital down converter method. These techniques in general have the leakage problems caused by the crosstalks. The window function was applied in the field programmable gate arrays to mitigate the effect of these problems and tested it in algorithm level.
  • Hiroki Watanabe, Satoru Mima, Shugo Oguri, Mitsuhiro Yoshida, Masashi Hazumi, Hirokazu Ishino, Hikaru Ishitsuka, Atsuko Kibayashi, Chiko Otani, Nobuaki Sato, Osamu Tajima, Nozomu Tomita
    IEICE TRANSACTIONS ON ELECTRONICS E100C(3) 298-304 2017年3月  査読有り
    Antenna-coupled kinetic inductance detectors (KIDs) have recently shown great promise as microwave detection systems with a large number of channels. However, this technique, still has difficulties in eliminating the radiation loss of the resonator signals. To solve this problem, we propose a design in which the absorption area connected to an antenna is located on the ground-side of a coplanar waveguide. Thereby, radiation loss due to leakage from the resonator to the antenna can be considerably reduced. This simple design also enables the use of a contact aligner for fabrication. We have developed KIDs with this design, named as the ground-side absorption (GSA)-KIDs and demonstrated that they have higher quality factors than those of the existing KIDs, while maintaining a good total sensitivity.
  • C. Otani, O. Tajima, S. Oguri, S. Mima, J. Choi, T. Damayanthi, N. Furukawa, M. Hattori, M. Hazumi, H. Ishitsuka, R. Koyano, M. Minowa, M. Nagai, T. Nagasaki, Y. Sekimoto, M. Semoto, T. Taino, N. Tomita, T. Uchida, E. Won, M. Yoshida
    27th International Symposium on Space Terahertz Technology, ISSTT 2016 2017年  
  • WATANABE Hiroki, SATO Nobuaki, TAJIMA Osamu, TOMITA Nozomu, MIMA Satoru, OGURI Shugo, YOSHIDA Mitsuhiro, HAZUMI Masashi, ISHINO Hirokazu, ISHITSUKA Hikaru, KIBAYASHI Atsuko, OTANI Chiko
    IEICE Transactions on Electronics 100(3) 298-304 2017年  査読有り
    <p>Antenna-coupled kinetic inductance detectors (KIDs) have recently shown great promise as microwave detection systems with a large number of channels. However, this technique, still has difficulties in eliminating the radiation loss of the resonator signals. To solve this problem, we propose a design in which the absorption area connected to an antenna is located on the ground-side of a coplanar waveguide. Thereby, radiation loss due to leakage from the resonator to the antenna can be considerably reduced. This simple design also enables the use of a contact aligner for fabrication. We have developed KIDs with this design, named as the ground-side absorption (GSA)-KIDs and demonstrated that they have higher quality factors than those of the existing KIDs, while maintaining a good total sensitivity.</p>
  • S. Oguri, J. Choi, T. Damayanthi, M. Hattori, M. Hazumi, H. Ishitsuka, K. Karatsu, S. Mima, M. Minowa, T. Nagasaki, C. Otani, Y. Sekimoto, O. Tajima, N. Tomita, M. Yoshida, E. Won
    JOURNAL OF LOW TEMPERATURE PHYSICS 184(3-4) 786-792 2016年8月  査読有り
    Cosmic microwave background (CMB) is an important source of information about the origin of our universe. In particular, odd-parity large angular scale patterns in the CMB polarization, the primordial B-modes, are strong evidence for an inflationary universe, related to the accelerating expansion of the metric. We are developing a unique telescope, GroundBIRD, to take CMB polarization measurements. The telescope combines novel techniques: high-speed rotation scanning, cold optics, and microwave kinetic inductance detectors (MKIDs). We evaluated the response of MKIDs on the rotation stage. Method of shielding from the geo-magnetic field is established. We have also developed a receiver cryostat. We are able to maintain a sufficient cold status for observations on the optical configuration. We plan to start commissioning the system by observing CMB in Japan in 2015-2016. We will then deploy GroundBIRD in the Canary Islands for further scientific observations.
  • Kuroda, Y., Oguri, S., Kato, Y., Nakata, R., Inoue, Y., Ito, C., Minowa, M.
    Phys.Lett.B 758 286-291 2016年7月10日  査読有り
    We observed three gamma-ray bursts related to thunderclouds in winter using the prototype of anti-neutrino detector PANDA made of 360-kg plastic scintillator deployed at Ohi Power Station at the coastal area of the Japan Sea. The maximum rate of the events which deposited the energy higher than 3 MeV was (5.5 +/- 0.1) x 10(2) /s. Monte Carlo simulation showed that electrons with approximately monochromatic energy falling downwards from altitudes of order 100 m roughly produced the observed total energy spectra of the bursts. It is supposed that secondary cosmic-ray electrons, which act as seed, were accelerated in electric field of thunderclouds and multiplied by relativistic runaway electron avalanche. We actually found that the gamma-rays of the bursts entered into the detector from the direction close to the zenith. The direction stayed constant during the burst within the detector resolution. In addition, taking advantage of the delayed coincidence detection of the detector, we found neutron events in one of the bursts at the maximum rate of 14 5 /s. C) 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (hup://creativecommonnoselicenses/b44,0/).
  • N. Tomita, H. Jeong, J. Choi, H. Ishitsuka, S. Mima, T. Nagasaki, S. Oguri, O. Tajima
    Journal of Low Temperature Physics 184(1-2) 443-448 2016年7月1日  
    The kinetic inductance detector (KID) is a cutting-edge superconducting detector. The number of KID developers is growing. Most of them have switched from their previous study to superconducting technologies. Therefore, infrastructures for the fabrication of KIDs and cooling systems for their tests have already been established. However, readout electronics have to be newly prepared. Neither a commercial system nor low-cost standard electronics are available despite various attempts to create a standard one. We suggest the use of RedPitaya as readout electronics for the initial step of KID development, which is low cost (≈ 400 USD) and easy to set up. The RedPitaya consists of an all-programmable FPGA-CPU module and a dual-channel 14 bit DAC (ADC) to generate (measure) fast analog signals with 125 MSpS. Each port can be synchronized in-phase or quadrature-phase, and functions for generating and sampling analog signal are prepared. It is straightforward to construct vector network analyzer-like logic by using a combination of these default functions. Up-conversion and down-conversion of its frequency range are also possible by using commercial equipment, i.e., mixers, couplers, and a local oscillator. We implemented direct down-conversion logic on the RedPitaya, and successfully demonstrated KID signal measurements.
  • Shugo Oguri, Jihoort Choi, Thushara Damayanthi, Makoto Hattori, Masashi Hazumi, Hikaru Ishitsuka, Kenji Kiuchi, Ryo Koyano, Hiroki Kutsuma, Kyungmin Lee, Satoru Mima, Makoto Minowa, Makoto Nagai, Taketo Nagasaki, Chiko Otani, Yutaro Sekimoto, Munehisa Semoto, Jun'ya Suzuki, Tohru Taino, Osamu Tajima, Nozoniu Tomita, Eunil Won, Tomohisa Uchida, Mitsuhiro Yoshida
    GROUND-BASED AND AIRBORNE TELESCOPES VI 9906 2016年  査読有り
    Polarized patterns in the cosmic microwave background (CMB) radiation contains rich knowledge for early stage of the universe. In particular their odd-parity patterns at large angular scale (&gt; 1 degrees), primordial B-modes, are smoking-gun evidence for the cosmic inflation. The GroundBIRD experiment aims to detect these B-modes with a ground-based apparatus that includes several novel devices: a high-speed rotational scan system, cold optics, and microwave kinetic inductance detectors (MKIDs). We plan to start observations in the Canary Islands in 2017. In this paper, we present the status of the development of our instruments. We established an environment that allows operation of our MKIDs in an optical configuration, in which the MKIDs observe radiations from the outside of the telescope aperture. We have also constructed MKID prototypes, and we are testing them in the optical configuration.
  • Kenichi Karatsu, Satoru Mima, Shugo Oguri, Jihoon Choi, R. M. Thushara Damayanthi, Agnes Dominjon, Noboru Furukawa, Hirokazu Ishino, Hikaru Ishitsuka, Atsuko Kibayashi, Yoshiaki Kibe, Hitoshi Kiuchi, Kensuke Koga, Masato Naruse, Tom Nitta, Takashi Noguchi, Takashi Okada, Chiko Otani, Shigeyuki Sekiguchi, Yutaro Sekimoto, Masakazu Sekine, Shibo Shu, Osamu Tajima, Kenta Takahashi, Nozomu Tomita, Hiroki Watanabe, Mitsuhiro Yoshida
    IEICE TRANSACTIONS ON ELECTRONICS E98C(3) 207-218 2015年3月  査読有り
    A precise measurement of Cosmic Microwave Background (CMB) provides us rich information about the universe. In particular, its asymmetric polarization patterns, B-modes, are smoking gun signature of inflationary universe. Magnitude of the B-modes is order of 10 nK. Its measurement requires a high sensitive millimeter-wave telescope with a large number of superconducting detectors on its focal plane. Microwave Kinetic Inductance Detector (MKID) is appropriate detector for this purpose. MKID camera has been developed in cooperation of National Astronomical Observatory of Japan (NAOJ), Institute of Physical and Chemical Research (RIKEN), High Energy Accelerator Research Organization (KEK), and Okayama University. Our developments of MKID include: fabrication of high-quality superconducting film; optical components for a camera use; and readout electronics. For performance evaluation of total integrated system of our MKID camera, a calibration system was also developed. The system was incorporated in a 0.1 K dilution refrigerator with modulated polarization source. These developed technologies are applicable to other types of detectors.
  • KARATSU Kenichi, KIBAYASHI Atsuko, KIBE Yoshiaki, KIUCHI Hitoshi, KOGA Kensuke, NARUSE Masato, NITTA Tom, NOGUCHI Takashi, OKADA Takashi, OTANI Chiko, SEKIGUCHI Shigeyuki, MIMA Satoru, SEKIMOTO Yutaro, SEKINE Masakazu, SHU Shibo, TAJIMA Osamu, TAKAHASHI Kenta, TOMITA Nozomu, WATANABE Hiroki, YOSHIDA Mitsuhiro, OGURI Shugo, CHOI Jihoon, M. THUSHARA DAMAYANTHI R., DOMINJON Agnes, FURUKAWA Noboru, ISHINO Hirokazu, ISHITSUKA Hikaru
    IEICE Transactions on Electronics 98(3) 207-218 2015年  査読有り
    A precise measurement of Cosmic Microwave Background (CMB) provides us rich information about the universe. In particular, its asymmetric polarization patterns, B-modes, are smoking gun signature of inflationary universe. Magnitude of the B-modes is order of 10 nK. Its measurement requires a high sensitive millimeter-wave telescope with a large number of superconducting detectors on its focal plane. Microwave Kinetic Inductance Detector (MKID) is appropriate detector for this purpose. MKID camera has been developed in cooperation of National Astronomical Observatory of Japan (NAOJ), Institute of Physical and Chemical Research (RIKEN), High Energy Accelerator Research Organization (KEK), and Okayama University. Our developments of MKID include: fabrication of high-quality superconducting film; optical components for a camera use; and readout electronics. For performance evaluation of total integrated system of our MKID camera, a calibration system was also developed. The system was incorporated in a 0.1 K dilution refrigerator with modulated polarization source. These developed technologies are applicable to other types of detectors.
  • S. Oguri, J. Choi, M. Hazumi, M. Kawai, O. Tajima, E. Won, M. Yoshida
    JOURNAL OF LOW TEMPERATURE PHYSICS 176(5-6) 691-697 2014年9月  査読有り
    GroundBIRD is a ground-based experiment designed to detect large angular scale odd-parity patterns in the cosmic microwave background (CMB) polarization (-modes). We employ a high-speed rotation scan (20 rpm) instead of the usual left-right azimuthal scan; it allows a significant expansion of the scan range to without any effect from the detector noise. We use microwave kinetic inductance detectors (MKIDs) arrays with a small telescope; our target multipole () range is . We plan to start the test observation in Japan in 2014; these will then be moved to the Atacama highland in Chile for scientific observations.
  • K. Takahashi, S. Mima, S. Oguri, C. Otani, O. Tajima, H. Watanabe, M. Yoshida
    JOURNAL OF LOW TEMPERATURE PHYSICS 176(5-6) 822-828 2014年9月  査読有り
    We developed a calibration system with a modulated polarization source for superconducting detectors at the 0.1-K stage in a dilution cooler. Our target application for this system is detector calibration for observations of the cosmic microwave background polarization. For this application, the calibration system is required to generate a well-characterized polarization signal in a wide frequency range; e.g., 20-300 GHz. The calibration system is attached at the bottom of the 0.1-K stage. Radio absorbers, which are attached to the inner wall of a cylindrical metal shield, emit unpolarized black-body radiation (4.5 K). The radiation reflects off an aluminum mirror at 120 K, which induces a linearly polarized component because of the finite emissivity of the mirror; the magnitude of the polarization is 60 mK in this configuration. The axis of polarization can be varied by rotation of the mirror. Therefore, the detectors measure the modulated polarization; however, unpolarized radiation into the detector is maintained constant. We succeeded in cooling the system properly. The sample stage for setting the detector achieved a temperature below 0.1 K under the 5 K load condition (some of the radiation from the absorbers and the mirror emission, 0.5 K). High-frequency components of emission from the mirror are shielded by using two thermal filters: polytetrafluoroethylene and nylon 66.
  • Oguri, S., Ishitsuka, H., Choi, J., Kawai, M., Tajima, O.
    Rev.Sci.Instrum. 85(8) 086101-086101 2014年  査読有り
    We developed a cryogenic system on a rotating table that achieves sub-Kelvin conditions. The cryogenic system consists of a helium sorption cooler and a pulse tube cooler in a cryostat mounted on a rotating table. Two rotary-joint connectors for electricity and helium gas circulation enable the coolers to be operated and maintained with ease. We performed cool-down tests under a condition of continuous rotation at 20 rpm. We obtained a temperature of 0.23 K with a holding time of more than 24 h, thus complying with catalog specifications. We monitored the system's performance for four weeks; two weeks with and without rotation. A few-percent difference in conditions was observed between these two states. Most applications can tolerate such a slight difference. The technology developed is useful for various scientific applications requiring sub-Kelvin conditions on rotating platforms. (C) 2014 AIP Publishing LLC.
  • Oguri, S., Kuroda, Y., Kato, Y., Nakata, R., Inoue, Y., Ito, C., Minowa, M.
    Nucl.Instrum.Meth.A 757 33-39 2014年  査読有り
    We developed a segmented reactor-antineutrino detector made of plastic scintillators for application as a tool in nuclear safeguards inspection and performed mostly unmanned field operations at a commercial power plant reactor. At a position outside the reactor building, we measured the difference in reactor antineutrino flux above the ground when the reactor was active and inactive. (C) 2014 Elsevier B.V. All rights reserved.
  • T. Matsumura, Y. Akiba, J. Borrill, Y. Chinone, M. Dobbs, H. Fuke, M. Hasegawa, K. Hattori, M. Hattori, M. Hazumi, W. Holzapfel, Y. Hori, J. Inatani, M. Inoue, Y. Inoue, K. Ishidoshiro, H. Ishino, H. Ishitsuka, K. Karatsu, S. Kashima, N. Katayama, I. Kawano, A. Kibayashi, Y. Kibe, K. Kimura, N. Kimura, E. Komatsu, M. Kozu, K. Koga, A. Lee, H. Matsuhara, S. Mima, K. Mitsuda, K. Mizukami, H. Morii, T. Morishima, M. Nagai, R. Nagata, S. Nakamura, M. Naruse, T. Namikawa, K. Natsume, T. Nishibori, K. Nishijo, H. Nishino, A. Noda, T. Noguchi, H. Ogawa, S. Oguri, I. S. Ohta, N. Okada, C. Otani, P. Richards, S. Sakai, N. Sato, Y. Sato, Y. Segawa, Y. Sekimoto, K. Shinozaki, H. Sugita, A. Suzuki, T. Suzuki, O. Tajima, S. Takada, S. Takakura, Y. Takei, T. Tomaru, Y. Uzawa, T. Wada, H. Watanabe, Y. Yamada, H. Yamaguchi, N. Yamasaki, M. Yoshida, T. Yoshida, K. Yotsumoto
    SPACE TELESCOPES AND INSTRUMENTATION 2014: OPTICAL, INFRARED, AND MILLIMETER WAVE 9143 91431F 2014年  査読有り
    We present the mission design of LiteBIRD, a next generation satellite for the study of B-mode polarization and inflation from cosmic microwave background radiation (CMB) detection. The science goal of LiteBIRD is to measure the CMB polarization with the sensitivity of delta r = 0.001, and this allows testing the major single-field slow-roll inflation models experimentally. The LiteBIRD instrumental design is purely driven to achieve this goal. At the earlier stage of the mission design, several key instrumental specifications, e.g. observing band, optical system, scan strategy, and orbit, need to be de fined in order to process the rest of the detailed design. We have gone through the feasibility studies for these items in order to understand the tradeoffs between the requirements from the science goal and the compatibilities with a satellite bus system. We describe the overview of LiteBIRD and discuss the tradeoffs among the choices of scientific instrumental specifications and strategies. The first round of feasibility studies will be completed by the end of year 2014 to be ready for the mission definition review and the target launch date is in early 2020s.
  • Matsumura, T., Akiba, Y., Borrill, J., Chinone, Y., Dobbs, M., Fuke, H., Ghribi, A., Hasegawa, M., Hattori, K., Hattori, M., Hazumi, M., Holzapfel, W., Inoue, Y., Ishidoshiro, K., Ishino, H., Ishitsuka, H., Karatsu, K., Katayama, N., Kawano, I., Kibayashi, A., Kibe, Y., Kimura, K., Kimura, N., Koga, K., Kozu, M., Komatsu, E., Lee, A., Matsuhara, H., Mima, S., Mitsuda, K., Mizukami, K., Morii, H., Morishima, T., Murayama, S., Nagai, M., Nagata, R., Nakamura, S., Naruse, M., Natsume, K., Nishibori, T., Nishino, H., Noda, A., Noguchi, T., Ogawa, H., Oguri, S., Ohta, I., Otani, C., Richards, P., Sakai, S., Sato, N., Sato, Y., Sekimoto, Y., Shimizu, A., Shinozaki, K., Sugita, H., Suzuki, T., Suzuki, A., Tajima, O., Takada, S., Takakura, S., Takei, Y., Tomaru, T., Uzawa, Y., Wada, T., Watanabe, H., Yamasaki, N., Yoshida, M., Yoshida, T., Yotsumoto, K.
    J.Low Temp.Phys. 176(5-6) 733-733 2014年  査読有り
    LiteBIRD is a next-generation satellite mission to measure the polarization of the cosmic microwave background (CMB) radiation. On large angular scales the B-mode polarization of the CMB carries the imprint of primordial gravitational waves, and its precise measurement would provide a powerful probe of the epoch of inflation. The goal of LiteBIRD is to achieve a measurement of the characterizing tensor to scalar ratio to an uncertainty of . In order to achieve this goal we will employ a kilo-pixel superconducting detector array on a cryogenically cooled sub-Kelvin focal plane with an optical system at a temperature of 4 K. We are currently considering two detector array options; transition edge sensor (TES) bolometers and microwave kinetic inductance detectors. In this paper we give an overview of LiteBIRD and describe a TES-based polarimeter designed to achieve the target sensitivity of 2 K arcmin over the frequency range 50-320 GHz.
  • Choi, J., Ishitsuka, H., Mima, S., Oguri, S., Takahashi, K., Tajima, O.
    Rev.Sci.Instrum. 84(11) 114502-114502 2013年  査読有り
    In the field of radiowave detection, enlarging the receiver aperture to enhance the amount of light detected is essential for greater scientific achievements. One challenge in using radio transmittable apertures is keeping the detectors cool. This is because transparency to thermal radiation above the radio frequency range increases the thermal load. In shielding from thermal radiation, a general strategy is to install thermal filters in the light path between aperture and detectors. However, there is difficulty in fabricating metal mesh filters of large diameters. It is also difficult to maintain large diameter absorptive-type filters in cold because of their limited thermal conductance. A technology that maintains cold conditions while allowing larger apertures has been long-awaited. We propose radio-transparent multi-layer insulation (RT-MLI) composed from a set of stacked insulating layers. The insulator is transparent to radio frequencies, but not transparent to infrared radiation. The basic idea for cooling is similar to conventional multi-layer insulation. It leads to a reduction in thermal radiation while maintaining a uniform surface temperature. The advantage of this technique over other filter types is that no thermal links are required. As insulator material, we used foamed polystyrene; its low index of refraction makes an anti-reflection coating unnecessary. We measured the basic performance of RT-MLI to confirm that thermal loads are lowered with more layers. We also confirmed that our RT-MLI has high transmittance to radiowaves, but blocks infrared radiation. For example, RT-MLI with 12 layers has a transmittance greater than 95% (lower than 1%) below 200 GHz (above 4 THz). We demonstrated its effects in a system with absorptive-type filters, where aperture diameters were 200 mm. Low temperatures were successfully maintained for the filters. We conclude that this technology significantly enhances the cooling of radiowave receivers, and is particularly suitable for large-aperture systems. This technology is expected to be applicable to various fields, including radio astronomy, geo-environmental assessment, and radar systems. (C) 2013 AIP Publishing LLC.
  • Oguri, Shugo, Choi, Jihoon, Kawai, Masanori, Tajima, Osamu
    Rev.Sci.Instrum. 84(5) 055116-055116 2013年  査読有り
    We developed a system that continuously maintains a cryocooler for long periods on a rotating table. A cryostat that holds the cryocooler is set on the table. A compressor is located on the ground and supplies high-purity (> 99.999%) and high-pressure (1.7 MPa) helium gas and electricity to the cryocooler. The operation of the cryocooler and other instruments requires the development of interface components between the ground and rotating table. A combination of access holes at the center of the table and two rotary joints allows simultaneous circulation of electricity and helium gas. The developed system provides two innovative functions under the rotating condition; cooling from room temperature and the maintenance of a cold condition for long periods. We have confirmed these abilities as well as temperature stability under a condition of continuous rotation at 20 revolutions per minute. The developed system can be applied in various fields; e.g., in tests of Lorentz invariance, searches for axion, radio astronomy and cosmology, and application of radar systems. In particular, there is a plan to use this system for a radio telescope observing cosmic microwave background radiation.

MISC

 50
  • Miku Tsujii, Jochem J. A. Baselmans, Jihoon Choi, Antonio H. M. Coppens, Alessandro Fasano, Ricardo Tanausú Génova-Santos, Makoto Hattori, Masashi Hazumi, Shunsuke Honda, Takuji Ikemitsu, Hidesato Ishida, Hikaru Ishitsuka, Hoyong Jeong, Yonggil Jo, Kenichi Karatsu, Keisuke Kataoka, Kenji Kiuchi, Junta Komine, Ryo Koyano, Hiroki Kutsuma, Kyungmin Lee, Satoru Mima, Makoto Nagai, Taketo Nagasaki, Masato Naruse, Shugo Oguri, Chiko Otani, Michael W. Peel, Rafael Rebolo, José Alberto Rubiño-Martín, Yutaro Sekimoto, Yoshinori Sueno, Junya Suzuki, Tohru Taino, Osamu Tajima, Tomonaga Tanaka, David J. Thoen, Nozomu Tomita, Yuta Tsuji, Tomohisa Uchida, Eunil Won, Mitsuhiro Yoshida
    2024年7月24日  
    GroundBIRD is a ground-based cosmic microwave background (CMB) experiment for observing the polarization pattern imprinted on large angular scales ($\ell > 6$ ) from the Teide Observatory in Tenerife, Spain. Our primary scientific objective is a precise measurement of the optical depth $\tau$ ($\sigma(\tau) \sim 0.01$) to the reionization epoch of the Universe to cross-check systematic effects in the measurements made by previous experiments. GroundBIRD observes a wide sky area in the Northern Hemisphere ($\sim 40\%$ of the full sky) while continuously rotating the telescope at a high speed of up to 20 rotations per minute (rpm) to overcome the fluctuations of atmospheric radiation. We have adopted the NbTiN/Al hybrid microwave kinetic inductance detectors (MKIDs) as focal plane detectors. We observe two frequency bands centered at 145 GHz and 220 GHz. The 145 GHz band picks up the peak frequency of the CMB spectrum. The 220 GHz band helps accurate removal of the contamination of thermal emission from the Galactic interstellar dust. The MKID arrays (138 MKIDs for 145GHz and 23 MKIDs for 220GHz) were designed and optimized so as to minimize the contamination of the two-level-system noise and maximize the sensitivity. The MKID arrays were successfully installed in May 2023 after the performance verification tests were performed at a laboratory. GroundBIRD has been upgraded to use the full MKID arrays, and scientific observations are now underway. The telescope is automated, so that all observations are performed remotely. Initial validations, including polarization response tests and observations of Jupiter and the moon, have been completed successfully. We are now running scientific observations.
  • Miki Kurihara, Masahiro Tsujimoto, Megan E. Eckart, Caroline A. Kilbourne, Frederick T. Matsuda, Brian McLaughlin, Shugo Oguri, Frederick S. Porter, Yoh Takei, Yoichi Kochibe
    SPACE TELESCOPES AND INSTRUMENTATION 2022: ULTRAVIOLET TO GAMMA RAY 12181 2023年3月2日  
    Electromagnetic interference (EMI) for low-temperature detectors is a serious concern in many missions. We investigate the EMI caused by the spacecraft components to the x-ray microcalorimeter of the Resolve instrument onboard the X-Ray Imaging and Spectroscopy Mission (XRISM), which is currently under development by an international collaboration and is planned to be launched in 2023. We focus on the EMI from (a) the low-frequency magnetic field generated by the magnetic torquers (MTQ) used for the spacecraft attitude control and (b) the radio-frequency (RF) electromagnetic field generated by the S and X band antennas used for communication between the spacecraft and the ground stations. We executed a series of ground tests both at the instrument and spacecraft levels using the flight-model hardware in 2021-2022 in a JAXA facility in Tsukuba. We also conducted electromagnetic simulations partially using the Fugaku high-performance computing facility. The MTQs were found to couple with the microcalorimeter, which we speculate through pick-ups of low-frequency magnetic field and further capacitive coupling. There is no evidence that the resultant energy resolution degradation is beyond the current allocation of noise budget. The RF communication system was found to leave no significant effect. We present the result of the tests and simulation in this article.
  • 末野慶徳, 池満拓司, 石田秀郷, 石田秀郷, 石塚光, 内田智久, 内田智久, 大谷知行, 小栗秀悟, 唐津謙一, 唐津謙一, 木内健司, 沓間弘樹, 沓間弘樹, 小峯順太, 古谷野凌, 鈴木惇也, 関本裕太郎, 田井野徹, 田島治, 田中智永, 辻悠汰, 辻悠汰, 辻井未来, 富田望, 永井誠, 長崎岳人, 成瀬雅人, 羽澄昌史, 羽澄昌史, 服部誠, 本多俊介, 美馬覚, 吉田光宏, 吉田光宏, CHOI Jihoon, GENOVA-SANTOS Ricardo Tanausu, JO Yonggil, LEE Kyungmin, PEEL Michael, REBOLO Rafael, RUBINO-MARTIN Jose Alberto, WON Eunil
    日本物理学会講演概要集(CD-ROM) 78(1) 2023年  
  • 辻井未来, 池満拓司, 石田秀郷, 石田秀郷, 石塚光, 内田智久, 内田智久, 大谷知行, 小栗秀悟, 唐津謙一, 木内健司, 沓間弘樹, 小峯順太, 古谷野凌, 末野慶徳, 鈴木惇也, 関本裕太郎, 田井野徹, 田島治, 田中智永, 辻悠汰, 辻悠汰, 富田望, 永井誠, 長崎岳人, 成瀬雅人, 羽澄昌史, 羽澄昌史, 服部誠, 本多俊介, 美馬覚, 吉田光宏, 吉田光宏, CHOI Jihoon, GENOVA-SANTOS Ricardo Tanausu, JO Yonggil, LEE Kyungmin, PEEL Michael, REBOLO Rafael, RUBINO-MARTIN Jose Alberto, WON Eunil
    日本天文学会年会講演予稿集 2023 2023年  
  • 末野慶徳, 池満拓司, 石田秀郷, 石田秀郷, 石塚光, 内田智久, 内田智久, 大谷知行, 小栗秀悟, 唐津謙一, 唐津謙一, 木内健司, 沓間弘樹, 沓間弘樹, 小峯順太, 古谷野凌, 鈴木惇也, 関本裕太郎, 田井野徹, 田島治, 田中智永, 辻悠汰, 辻悠汰, 辻井未来, 富田望, 永井誠, 長崎岳人, 成瀬雅人, 羽澄昌史, 羽澄昌史, 服部誠, 本多俊介, 美馬覚, 吉田光宏, 吉田光宏, CHOI Jihoon, GENOVA-SANTOS Ricardo Tanausu, JO Yonggil, LEE Kyungmin, PEEL Michael, REBOLO Rafael, RUBINO-MARTIN Jose Alberto, WON Eunil
    日本物理学会講演概要集(CD-ROM) 78(2) 2023年  

主要な講演・口頭発表等

 79
  • 小栗秀悟, 岩渕頌太, 小川博之, 奥平俊暁, 小田切公秀, 加賀亨, 佐藤泰貴, 鈴木仁研, 関本裕太郎, 堂谷忠靖, 永田竜, 楢崎勝弘, マツダフレドリック, 宮崎康行, 吉原圭介, 綿貫一也, 一色雅仁, 吉田誠至, Baptiste Mot, Gilles Roudil, Thomas Prouvé
    第23回宇宙科学シンポジウム 2023年1月
  • 小栗秀悟, 岩渕頌太, 小川博之, 小田切公秀, 奥平俊暁, 加賀亨, 佐藤泰貴, 鈴木仁研, 関本裕太郎, 堂谷, 忠靖, 永田竜, 楢崎勝弘, 松田フレドリック, 宮崎康行, 吉原圭介, 綿貫一也, 一色雅仁, 吉田誠至, Baptiste Mo, Gilles Roudil, Thomas Prouve
    日本天文学会2022年秋季年会 2022年9月15日
  • Shugo Oguri, Tadayasu Dotani, Masahito Isshiki, Shota Iwabuchi, Tooru Kaga, Frederick Takayuki Matsuda, Yasuyuki Miyazaki, Baptiste Mo, Ryo Nagata, Katsuhiro Narasaki, Hiroyuki Ogawa, Toshiaki Okudaira, Kimihide Odagiri, Thomas Prouve, Gilles Roudil, Yasutaka Satoh, Yutaro Sekimoto, Toyoaki Suzuki, Kazuya Watanuki, Seiji Yoshida, Keisuke Yoshihara
    SPIE Astronomical Telescopes + Instrumentation, 2022 2022年7月

所属学協会

 2

共同研究・競争的資金等の研究課題

 10

産業財産権

 2