研究者業績

德留 真一郎

トクドメ シンイチロウ  (Shinichiro Tokudome)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 准教授
総合研究大学院大学 先端学術院 宇宙科学コース 准教授
学位
工学博士(1995年1月 東京大学)

J-GLOBAL ID
201701017821214557
researchmap会員ID
B000279353

主要な受賞

 10

論文

 66
  • 徳留 真一郎, 丸 祐介, 野中 聡
    Space Policy 68 2024年6月13日  査読有り筆頭著者
    Highlights • Strategy formulated under Inter-University Research Institute System unique to Japan. • To develop a competitive space transportation system by using advanced technologies. • To “start small” for fulfilling our target to achieve innovations in human society. • “Fusion of transportation with exploration” in deep space exploration missions. • “Small flying test bed system” to conduct flying technology demonstrations. Abstract The Space Transportation System Committee of the Institute of Space and Astronautical Science (ISAS) of the Japan Aerospace Exploration Agency (JAXA) has been continuously formulating medium-to long-term strategies in the field of space transportation systems under the Inter-University Research Institute System of ISAS since FY2018. This committee is considering the role of ISAS in cooperation with the organization-wide activities of JAXA to formulate strategies in the field of space transportation systems. Among its previous achievements, the committee assembled a strategic target and scenario for the space transportation system research field at the end of FY2018 and has been continuously revising it. Based on the formulated mission scenario, the committee identified three priority areas related to system technologies that must be tackled. These are a “reusable orbit transportation system” aimed for highly frequent mass transportation from Earth to low Earth orbits, “deep space interorbital transportation system” aimed for a marked improvement in space science and exploration missions in terms of frequency and flexibility, and “small flying test bed system” for flight demonstrations, which is indispensable in the research and development of space transportation systems. In this paper, the authors summarize the medium-to long-term strategies and their concrete implementation measures over the next two decades. Keywords Strategic R&D, Space transportation system, Deep space exploration, Small flying test bed, Start small
  • 徳留真一郎, 野中聡, 小林弘明, 丸祐介, 三浦政司, 坂本勇樹, 山田哲哉, 臼杵智章
    観測ロケットシンポジウム2023 講演集 2024年6月4日  筆頭著者
  • MATSUI Kohei, MATSUURA Yoshiki, TOKUDOME Shinichiro, KITAGAWA Koki
    Journal of Evolving Space Activities 1 n/a 2023年6月  査読有り
    In order to use laser ignition systems for solid rocket motors operating in deep space environments, it is necessary to elucidate the laser ignition characteristics of the ignition charge in low-temperature environments. This study aims to design an experimental system that can confirm the ignition threshold, ignition delay, and ignition temperature by irradiating an ignition charge with a diode laser in a low-temperature environment. Ignition experiments at room temperature were conducted. The data were evaluated statistically to obtain an ignition threshold with the maximum likelihood method. The relationship between the laser irradiation duration and the laser power with respect to the ignition threshold was obtained. The target value of the low-temperature environment temperature was determined as -50 °C. We examined the requirements of the experimental system and conceptually designed the system to simulate the low-temperature environment. It was confirmed that the constructed experimental system cooled the ignition charge to -50 °C. In the ignition experiment, the ignition charge was successfully ignited at room temperature and at low temperature. The ignition delay, the ignition temperature, and the high-speed image were obtained. Eventually, the validity of the experimental system was confirmed through the function tests.
  • Naoki MORISHITA, Yoshitaka MOCHIHARA, Satoshi ARAKAWA, Masashi MIURA, Yuki SAKAMOTO, Yoshiki MATSUURA, Masanori SAKAINO, Toshiaki TAKEMAE, Shinichi TAKEDA, Shinsaku HISADA, Hirotaka IGAWA, Shinichiro TOKUDOME, Takeshi TAKASHIMA
    The 34th International Symposium on Space Technology and Science 2023年6月  
    DESTINY+ requires a high-performance kick stage with a high mass ratio and high launch system safety. The kick stage requires a reliable laser ignition system, which is the subject of this study. Our development efforts included componentizing and dual redundancy elements, such as capacitors and laser diodes in the laser firing unit, which is designated LUUS. LUUS has two types of laser-initiated devices for motor ignition and separation device operation. An optical fiber path also enables a continuity check by an optical frequency domain reflectometry device. Further, we conducted continuity checks and laser ignition tests to validate the design in procedures simulating assembly- and launch-site operations. These tests successfully executed inspections and ignitions as planned. These results confirm the validity of our design, bringing us closer to realizing a reliable laser ignition system for launch operations applicable to DESTINY+. This contribution paves the way for future advances in high-performance, safe launch systems for solid rockets in space exploration.
  • Yoshiki MATSUURA, Koki KITAGAWA, Kohei MATSUI, Shinichiro TOKUDOME, Naoki MORISHITA
    The 34th International Symposium on Space Technology and Science 2023年6月  
    Laser-initiated ignition systems (LIISs) have been developed with the aim of providing essential immunity to electrical disturbances. In the basic configurations of such systems, the electric circuits for generating the laser and detonator signals are electrically separated by a non-conductive optical fiber, increasing the resistance to ignition stimuli other than laser light on the detonator side. In this study, the various environmental resistance tests required for the detonators currently used in rockets were conducted for a new laser-initiated detonator (LID). As all of the tests show results satisfying the requirements, it is considered that the LID has reached the stage of practical use.
  • Satoshi Hirakida, Hirohito Ohtsuka, Takamitsu Horiguchi, Naruhisa Sano, Koichiro Tani, Shinichiro Tokudome, Kensaku Tanaka
    The 34th International Symposium on Space Technology and Science 2023年6月  
    The S-520-RD1 was developed as a test-bed small launcher using the guidance and control system based on SS-520-5 for a cube-sat launcher and successfully launched a supersonic Combustion Tester on July 24, 2022. One of the key points of this launch success is the Rhumb-line control system to achieve the guidance target and the payload test conditions. This paper shows the outline of the guidance and control system and their development, and the flight results.
  • 徳留 真一郎
    観測ロケットシンポジウム2022 講演集 2023年5月12日  招待有り筆頭著者責任著者
    宇宙科学研究所(ISAS)の宇宙輸送系専門委員会において策定されている宇宙科学・探査分野における宇宙輸送系の中長期ミッションシナリオでは,2040年頃の達成を目指すミッションを「多様な宇宙科学の世界をカバーする軌道間輸送ネットワークを構築する」ことと設定している. ミッション達成に向けて,地上から地球周回軌道へ高頻度に大量の物資や人員を輸送する宇宙往還機を実現するためには,往還飛行において「極超音速飛行」を避けることはできない.本稿では,主に宇宙往還機の実現と競争力向上に資する極超音速エンジンの技術実証を中心に,極超音速飛行に係る技術課題に実証的に取り組むための飛行実験機の目的と検討例について紹介する.
  • Kouichiro Tani, Masao Takegoshi, Koichi Takasaski, Shinichiro Tokudome
    25th AIAA International Space Planes and Hypersonic Systems and Technologies Conference 2023年5月  
    To reduce the cost of space transportation, JAXA continues studying fully reusable space transporters with hypersonic airbreathing engines. To fulfill the requirement of acceleration capability from zero to hypersonic speed, the rocket-based combined cycle (RBCC) engine is one of the promising candidates and has been studied in JAXA Kakuda Space Center. In the researches of the engine, the specialized wind tunnel for the airbreathing engines (Ramjet Engine Test Facility, RJTF) has been always a practical tool to investigate the performance and detailed flow phenomena inside the engine. However, to simulate the hypersonic, high enthalpy flow, the wind tunnel uses gas hydrogen and oxygen to heat the flow, resulting the air contamination by water which affects to the combustion phenomenon. To clarify the effect of the contamination, series of the cooperative researches have been conducted in JAXA and universities. The final goal of the researches are to create the adjustment tools for contamination effects, which ensure more accurate estimation for the performances of engine in the real flight. For validating the tools, the real flight data are quite essential. In the researches, a flight experiment had been also planned to get combustion data during hypersonic flight to compare the results in the wind tunnel and estimated values by the tools. In this report, the flight experiment with “S-520-RD1” is described. In early phase of the development, several rocket systems, flight trajectories and flight test bed configurations were explored. For the experiment, the attitude control of the flight test bed was required and it was achieved by the rhumb line device. The flight conditions inwhich actual combustion experiment was conducted were determined by the air data system specifically designed and integrated into the test bed. The duration time for the combustion test reached as long as 5.8 sec, with highest Mach No. of 5.8. The summery of the results of combustion test is also presented.
  • Yuichiro Ide, Yu‐ichiro Izato, Mitsuo Koshi, Atsumi Miyake, Hiroto Habu, Shinichiro Tokudome
    Propellants, Explosives, Pyrotechnics 48(2) 2023年2月  査読有り最終著者
    The ammonium dinitramide-based ionic liquid propellant (ADN-based ILP), which is a mixture of ADN, monomethylamine nitrate (MMAN), and urea, is a low toxic monopropellant with a higher performance than that of hydrazine. To clarify the combustion wave structure of ADN-based ILP, which has low volatility, we focused on the relationship between the phase state and temperature in ADN-based ILP combustion and on clarifying the gas-liquid phase reaction. The combustion still image and temperature distribution of ADN-based ILP were obtained by strand burning tests with a high-speed camera. As a result, two stages of the stable temperature region were found in the gas-liquid phase. The pressure dependences of temperature in the stable temperature region were compared with the vapor pressure curves of some chemical substances and with the decomposition temperatures of ADN, MMAN, and urea. Then, it was inferred that the thermal decompositions of ADN, MMAN, and urea, as well as the evaporation of urea had occurred at the first stage of the stable temperature region. Also, it was found that the liquid ammonium nitrate had been dissociated at the second stage of the stable temperature region. For a report on the existence of dissociation products of MMAN and urea vapor on the burning surface at 1.2 MPa, the dissociation of MMAN and evaporation of urea would occur at the first stage of the stable temperature region at 1.2 MPa. As stated above, the combustion wave structure of ADN-based ILP was developed at 1.2 MPa.
  • Y. Matsuura, K. Nitta, H. Ikeda, M. Kinoshita, K. Ui, S. Tokudome, and K. Hori
    AIAA SCITECH 2023 Forum 2023年1月19日  
  • Shinichiro Tokudome, Yusuke Maru, Satoshi Nonaka
    73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022. 2022年9月20日  筆頭著者責任著者
    The Space Transportation System Committee of the Institute of Space and Astronautical Science of JAXA (ISAS/JAXA) continuously draws up the Medium- to long-term strategy for the research field of space transportation system in ISAS/JAXA since FY2018. The committee is also considering about an ISAS’ role in JAXA in cooperation with a JAXAs organization-wide activity to formulate strategy for the space transportation system field in JAXA. The strategy planning in ISAS/JAXA was begun with the three documents as the point of departure; ”Long-term Vision for Space Transportation System” established by the space policy committee of the Cabinet Office, ”ISAS’ Missions”, and ”Strategic Scenario over the Next Medium- to Long-term Programs for the research field of Space and Astronautical Science” drawn up by the ISAS. As current achievements, the committee have drawn up a strategic target and scenario for the space transportation system research field at the end of last fiscal year and is continuously revising it. Based on the scenario formulated, the committee identified three major research field to be tackled. They are ”reusable orbit transportation system” becoming the key to the activation of space development and utilization, ”inter-orbit and interplanetary transportation systems” effectively supporting deep space explorations, and ”small flying test bed system” promoting the advancement of space transportation system technology. The authors introduce the summary of the medium- to long-term strategy and some medium-term research activities toward the realization of it.
  • 徳留真一郎
    航空原動機・宇宙推進講演会講演論文集(CD-ROM) ROMBUNNO.2A15 2022年  筆頭著者責任著者
  • Keisuke MINAMI, Yoshiki MATSUURA, Koki KITAGAWA, Satoshi ARAKAWA, Naoki MORISHITA, Toshiaki TAKEMAE, Shota IWABUCHI, Asato WADA, Shinichiro TOKUDOME
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 19(5) 807-811 2021年  査読有り
    This paper describes the development status of a laser ignition system for a solid rocket motor. This system is being developed as a simple, lightweight, and small design with a high resistance to electrical disturbances and a high level of safety. The most notable advantage of this system is that its high level of safety can decrease the cost of launching rockets into space. A laser initiator and a laser safe-and-arm device (laser S/A), which are essential components of the proposed system, were developed. In particular, prototypes of the laser initiator and laser S/A for the ignition of an upper stage rocket motor were manufactured, and some environmental tests, which are required for space rocket devices, were conducted. In addition, the lowest laser energy that is needed to ignite the laser initiator was determined by changing the laser power and operating time of the laser S/A. Furthermore, a small rocket motor vacuum fire test was successfully conducted.
  • Shinichiro TOKUDOME, Tsuyoshi YAGISHITA, Ken GOTO, Naohiro SUZUKI, Takayuki YAMAMOTO, Yasuhiro DAIMOH
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 19(2) 186-192 2021年  査読有り筆頭著者責任著者
  • Matthew P. Richardson, Hiroaki Kobayashi, Yuki Sakamoto, Yusuke Maru, Shinichiro Tokudome, Satoshi Nonaka, Shujiro Sawai, Akira Oyama, Daisaku Masaki, Satoshi Takada, Hiromitsu Kakudo, Toru Kaga, Kiyoshi Kinefuchi, Tetsuya Sato
    Accelerating Space Commerce, Exploration, and New Discovery conference, ASCEND 2021 2021年  
    The Japan Aerospace Exploration Agency, in partnership with academia and industry, are developing the Air Turbo Rocket for Innovative Unmanned Mission (ATRIUM) engine: an air turboramjet + rocket combine cycle propulsion system intended to replace conventional liquid rocket engines in Vertical Takeoff Vertical Landing applications, such as reusable sounding rockets. A subscale Flight Test Bed (FTB) vehicle is also being developed to demonstrate the ATRIUM engine in a flight environment. In this paper, the ATRIUM engine and FTB vehicle are introduced, and current progress in their development is summarized. Future test plans and practical applications are also discussed.
  • Ryoma Yamashiro, Shinichiro Tokudome, Takayuki Imoto
    Proceedings of the International Astronautical Congress, IAC 2020- 2020年  
    Since its debut in 2013, the Epsilon, alongside the H2A/B launch vehicles, has been playing a central role as a Japanese flagship space transport system. The fundamental purpose of the Epsilon is "to increase players in space development by the small launch vehicle with excellent operability." To this end, the Epsilon successfully launched four times since 2013. These launches contributed to an increase in newcomers to space. One of our future concepts is the system with a reusable orbiter that can perform operations in space and return to the earth. Such a system will allow more people to participate in space development. We are now studying several versions of this system which differ depending on which part of the present Epsilon is to be replaced. Also described here are several elemental technologies to realize these versions.
  • Shinichiro Tokudome, Ken Goto, Tsuyoshi Yagishita, Naohiro Suzuki, Takayuki Yamamoto
    AIAA Propulsion and Energy 2019 Forum 2019年8月19日  筆頭著者責任著者
  • Ryoma Yamashiro, Shinichiro Tokudome, Kazuhiko Yamada, Takayuki Imoto
    Proceedings of the International Astronautical Congress, IAC 2019- 2019年  
    Many small launch vehicles are being developed and operated to meet the explosively increasing demand for small satellites. Taking this opportunity, we are studying a multipurpose reusable orbiter to be launched by a small launch vehicle. Such orbiters will add further value to small missions and promote space utilization. In this paper, we report the results of the system investigation on a 1-ton class reusable orbiter to be launched by the Epsilon Launch Vehicle and then return to the sea after performing its missions in orbit. Generally, mass design for a reusable orbiter is difficult because it needs a propulsion system for deceleration to re-entry speed and a TPS required for re-entry. Additionally, a conventional reusable TPS has a downside in operational performance as demonstrated by the Space Shuttle. In order to solve these problems, we conducted a trade-off study of propellant and evaluated the application of our innovative aeroshell system based on its sub-size flight test. These results are also included in this paper.
  • YAMASHIRO Ryoma, TOKUDOME Shinichiro, SAITOH Yasuhiro, YAMAMOTO Takayuki, MOCHIHARA Yoshitaka, IKAIDA Hiroki
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 17(2) 160-164 2019年  査読有り
    <p>A new space transportation system with an expendable solid-fuel booster and a reusable liquid-fuel orbiter is under consideration as part of activities in JAXA to construct a fully reusable space transportation system in the future. This paper shows this new system's conceptual study results, the system specifications, the new technology to be applied, the requirements to the subsystems, and the prospects.</p>
  • KITAGAWA Koki, TOKUDOME Shinichiro, HORI Keiichi, TANNO Haruhito, NAKANO Nobuyuki
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 17(3) 289-294 2019年  査読有り
    <p>The development of enhanced propulsion system for the next Epsilon rocket was progressed. The development of Enhanced Epsilon is mainly the renewal of the second stage, and also includes each subsystem's improvement. The second stage motor M-35 was newly designed and manufactured. In order to verify the design, the static firing test of the second motor M-35 under the condition of vacuum ambient was conducted in 2015. The JAXA successfully launched the first Enhanced Epsilon launch vehicle. All solid propulsion systems for the Enhanced Epsilon launch vehicle showed a very good behavior during the flight</p>
  • Koki Kitagawa, Shinichiro Tokudome, Keiichi Hori, Kyoichi Ui, Masahiro Kinoshita, Junichi Hashimoto, Kotaro Ichimura
    Proceedings of the International Astronautical Congress, IAC 2018- 2018年  
    The third Epsilon launch vehicle, which was the Enhanced Epsilon launch vehicle optional configuration, was successfully launched with the payload of ASNARO-2 in January 2018. The post flight analysis was conducted. The chamber pressure and thrust include residual thrust of three main motors and chamber pressure of SMSJ and SPM were analysed to confirm the effectiveness of design and production methodologies. All solid propulsion systems for the third Epsilon launch vehicle showed a very good behaviour during the flight.
  • 井出雄一郎, 高橋拓也, 岩井啓一郎, 野副克彦, 羽生宏人, 徳留真一郎
    宇宙航空研究開発機構研究開発報告 JAXA-RR-(Web) (17-008) 2018年  査読有り最終著者
  • Koki Kitagawa, Shinichiro Tokudome, Keiichi Hori, Junichi Hashimoto, Nobuyuki Nakano, Haruhito Tanno
    Proceedings of the International Astronautical Congress, IAC 13 8590-8596 2017年  
    The development of Enhanced Epsilon is mainly the renewal of the second stage, and also includes each subsystem's improvement. The second-stage motor M-35 was newly designed and manufactured. In order to verify the design, the static firing test of the M-35 under the condition of vacuum ambient was conducted in 2015. The Epsilon's second flight, which was the first Enhanced Epsilon launch vehicle, was successfully conducted with the payload of Exploration of energization and Radiation in Geo-space (ERG) in Dec., 2016. After the flight, chamber pressure and thrust include residual thrust were analysed to confirm the effectiveness of design and production methodologies. All solid propulsion systems for the Enhanced Epsilon launch vehicle showed a very good behaviour during the flight.
  • Ryoma Yamashiro, Yasuhiro Morita, Takayuki Imoto, Shinichiro Tokudome
    Proceedings of the International Astronautical Congress, IAC 15 9759-9762 2017年  
    The Epsilon Launch Vehicle, the newest version of Japan's solid propulsion rocket, has been further developed under the name of "Enhanced Epsilon" since its first flight in 2013. The second Epsilon (Epsilon-2), the first application of Enhanced Epsilon, succeeded in launching the satellite ARASE, the Exploration of energization and Radiation in Aerospace (ERG), into orbit as planned in December 2016. The aims of Enhanced Epsilon's development include the increase of the launch capacity and payload usable volume by enlarging the second stage motor, redesigning the total structure and lightening avionics components. The second flight achieved these aims and confirmed the new design's validity. As for the next plans, the third launch will demonstrate a new PBS (Post Boost Stage) with liquid propulsion system developed for Enhanced Epsilon. The fourth launch is planned to carry multiple payloads on a new PAF (Payload Attach Fitting), which development has just started. Meanwhile, aiming at synergy effect, we have been developing parts and components to be shared with the H3 Launch Vehicle, Japanese large-size next-generation launch vehicle. Looking further ahead, we are planning to start the concept study for the future Epsilon. This paper describes Epsilon-2 launch results, Epsilon's development status, and its plan.
  • Koki Kitagawa, Shinichiro Tokudome, Keiichi Hori, Haruhito Tanno, Nobuyuki Nakano
    Proceedings of the International Astronautical Congress, IAC 2016年  
    The Epsilon launch vehicle, the newest version of Japan's solid propulsion rocket, made its maiden ight in September of 2013. The purpose of the Epsilon rocket is to provide small satellites with responsive launching with low-cost, user-friendly and efficient launch system. Now that the rst ight was successfully nished, JAXA has been conducting intensive researches on a next generation Epsilon to launch a more powerful and lower cost version of Epsilon (Evolved Epsilon). In order to minimize technical risks and to keep up with demand of future payloads, JAXA plans to take a step-by-step approach toward Evolved Epsilon. As the first upgrade toward Evolved Epsilon, JAXA has started the development of Enhanced Epsilon. The Enhanced Epsilon is required to enhance launch capability by ERG satellite mission which have decided to change an orbit to be put into to farther and also to improve on-board capability in size and in weight by ASNARO2 satellite mission. The development of Enhanced Epsilon is mainly the renewal of the second stage, and also includes the each subsystem's improvement. The main change of the solid propulsion system is exposure of the second motor M-35. Currently, the design has been finished. The outside diameter of the motor case is expanded into approximately 2.5 m in order to increase the amount of the solid propellant and the outer shell of the motor case is used as the outer shell of the launch vehicle. Solid propellant which can the high-performance equal to a conventional upper-stage motor developed newly, reducing the cost. A general front ignition system is adopted instead of the rear ignition system of the throw-away type which was adopted for the previous motor. A new development material is applied to the case lining. An expansible nozzle is not adopted because compatibility of high-performance and cost reduction. In order to verify the design, the static firing test of the second motor M-35 on condition of vacuum has been conducted. This paper describes overview of development of the solid propulsion system for Enhanced Epsilon and the results of the M-35 static firing test.
  • Ryoma Yamashiro, Yasuhiro Morita, Takayuki Imoto, Shinichiro Tokudome, Tetsuya Ono
    Proceedings of the International Astronautical Congress, IAC 2016年  
    The Epsilon Launch Vehicle, the newest version of Japan's solid propulsion rocket, has been further developed under the name of "Enhanced Epsilon" since its first flight in September 2013. The development of Enhanced Epsilon includes the increase of the launch capacity and payload usable volume by the development of the new second stage motor and the arrangement of the second stage outside the nose fairing, the application of our new "Low Shock Separation System" for payload environment improvement, and the modification of the avionics system for the operational simplification. This development will make the vehicle much more versatile and user-friendly. This development of Enhanced Epsilon will finish in the spring of 2016. We completed the ground firing test of a real-scale new second stage in the winter of 2015 and are now testing the prototype model with totally improved structures. Enhanced Epsilon will be applied to the coming launches of small payloads. In 2016, we will conduct a flight demonstration of its second launch in the basic configuration without PBS, or Post Boost Stage with liquid propulsion system. Then the third launch will be demonstrated in the optional configuration with PBS. This paper describes the results of Enhanced Epsilon's development on the total system, subsystems and components and the preparation status of Epsilon's second launch.
  • 井出雄一郎, 高橋拓也, 岩井啓一郎, 野副克彦, 羽生宏人, 徳留真一郎
    宇宙航空研究開発機構研究開発報告 JAXA-RR- (15-004) 2016年  査読有り最終著者
  • Tetsuya Ono, Shinichiro Tokudome, Ryoma Yamashiro, Takayuki Yamamoto, Hiroshi Ikaida, Yasuhiro Saito
    Proceedings of the International Astronautical Congress, IAC 2016年  
    Copyright © 2016 by the International Astronautical Federation. All rights reserved. Although reusable launch vehicle's necessity and significance, being cost-effective, eco-friendly and reliable, have been recognized in a long time, practical system still has never been realized except the Space Shuttle. There are two main reasons in this. One reason is that reusable vehicle's recurring cost is high. The other reason is that reusable vehicle, especially that upper stage, have the problem of aerodynamic heating during re-entry. We are considering new upper stage reusable launch vehicle with solid rocket booster, which clear these problems concerning reusable launch vehicle. For the first problem on the recurring cost, the application of the auto inspection system which is cultivated in solid rocket motor's development and launch operation is being considered. That is expected to reduce the inspection cost drastically after the vehicle flight. For the second problem on the re-entry, challenging technologies are applied in the upper stage. Those are material and structure with heat tolerance and lightness, active-cooling system to share the hydrogen with the liquid propulsion system, advanced guidance and control system, and so on. On the other hand, to the lower stage or booster, application of solid rocket is considered. Since the challenging upper stage's size is expected to vary through the iteration of design cycles, the lower stage should be stable and flexible with the thrust level in development phase. Because solid motors of various sizes are developed in JAXA/ISAS since the first small solid motor started to be developed in 1954, those development method has been efficiently accumulated. Then this legacy's utilization for the new system is expected to be quite beneficial. On these technological backgrounds, this paper describes the system study for new upper-stage reusable launch vehicle with the solid rocket booster.
  • IDE Yuichiro, TAKAHASHI Takuya, IWAI Keiichiro, NOZOE Katsuhiko, HABU Hiroto, TOKUDOME Shinichiro
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 14(ists30) Pa_89-Pa_94 2016年  査読有り最終著者
    <p>As a replacement for hydrazine, ammonium-dinitramide-based ionic liquid propellant (ADN-based ILP) has been developed by JAXA and Carlit Holdings Co., Ltd. This propellant is made by mixing three solid powers: ADN, monomethylamine nitrate, and urea. The propellant's theoretical specific impulse is 1.2 times higher than that of hydrazine, and its density is 1.5 times higher at a certain composition. Although ionic liquids were believed to be non-flammable for a long time owing to their low-volatility, recently combustible ILs have been reported. The combustion mechanism of ILs is not yet understood. The objective of this paper is to understand the combustion wave structure of ADN-based ILP. The temperature distribution of the combustion wave in a strand burner test shows a region of constant temperature. This region would indicate boiling in a gas-liquid phase. Thus, the combustion wave structure consists of liquid, gas-liquid, and gas phases. The dependence of boiling point on pressure would identify chemical substances in the gas-liquid phase. The dependence of combustion and ignition characteristics on ADN content is also discussed. </p>
  • Tsutsumi Seiji, Ishii Tatsuya, Ui Kyouichi, Tokudome Shinichiro, Wada K
    Journal of Spacecraft and Rockets 52(2) 350-361 2015年3月  査読有り
    資料番号: PA1510016000
  • Ryoma Yamashiro, Yasuhiro Morita, Takayuki Imoto, Shinichiro Tokudome
    Proceedings of the International Astronautical Congress, IAC 11 8754-8758 2015年  
    The Epsilon Launch Vehicle, the newest version of Japan's solid propulsion rocket, has been further developed since its first flight in 2013. This development succeeds to the original Epsilon's design philosophy that providing small satellite manufactures with the efficient launch system and allowing them to have more flexible designs will increase space activities. As the first step toward this purpose, the effective development is carried out in the short term. That includes the development of the new second stage motor, the compactification of the avionics component, and the optimization of the liquid propulsion system in the post boost stage. The development will increase the launch capacity and payload usable volume, while simplifying the system configuration. The development of Enhanced Epsilon will be finished in 2016.
  • Yuichiro Ide, Takuya Takahashi, Keiichiro Iwai, Katsuhiko Nozoe, Hiroto Habu, Shinichiro Tokudome
    Procedia Engineering 99 332-337 2015年  査読有り最終著者
  • Ryoma Yamashiro, Yasuhiro Morita, Takayuki Imoto, Shinichiro Tokudome, Koichi Okita, Yasuhiro Saito
    Proceedings of the International Astronautical Congress, IAC 10 7565-7568 2014年  
    The Epsilon launch vehicle, the newest version of Japan's solid propulsion rocket, made its maiden flight in September of 2013 and successfully deployed the extreme ultra-violet planetary telescope satellite, "Hisaki". It should be emphasized that JAXA appreciates the advantages of the combined power of standardized small satellites and Epsilon's highly efficient launch system to increase space activities. The purpose of the Epsilon rocket is to provide small satellites with responsive launching with low-cost, user-friendly and efficient launch system. Now that the first flight was successfully finished, the most important thing is what the next step will be. JAXA has been conducting intensive researches on a next generation Epsilon to launch a more powerful and lower cost version of Epsilon (E-l). In order to minimize technical risks and to keep up with demand of future payloads, JAXA plans to take a step-by-step approach toward E-l through lowering the cost and enhancing the launch system performance. As the first upgrade toward E-l, the renewal of the second stage , the simplification of launch operation, and the improvement of the liquid propulsion system are considered. As the second upgrade, the improvement of the solid motor for the first and third stages, the reconstruction of the avionics system, and synergy with Japanese Next Flagship Launcher are considered. Completion of the two-step upgrade will lead to accomplishment of the purpose of the Epsilon rocket.
  • MORITA Yasuhiro, IMOTO Takayuki, TOKUDOME Shinichiro, OHTSUKA Hirohito
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 12(29) Tg_21-Tg_28 2014年  査読有り
    The development of the Epsilon launch vehicle, Japan's next generation solid rocket launcher, has just moved to the final stretch for its first launch scheduled in the summer of 2013 to carry the planetary telescope satellite SPRINT-A. The JAXA appreciates the advantages of combined benefits of the standardized small satellites and the Epsilon's highly efficient launch system in order to increase the level of space activities. The primary purpose of Epsilon is to provide small satellites with a responsive launch that means "Small, Low cost, Fast and Reliable". The attention should be directed toward the innovative design concept of Epsilon, which aims at developing the next generation technologies such as the highly intelligent autonomous checkout system and the mobile launch control. Now that the full-scale development is about to be finished, the most important is what the next step should be beyond the Epsilon. This paper deals with the significance of the Epsilon launch vehicle and how it contributes to the possible evolution of future space transportation systems.
  • 徳留 真一郎, 井元 隆行, 森田 泰弘
    溶接学会誌 83(3) 215-219 2014年  査読有り招待有り筆頭著者責任著者
  • Yasuhiro Morita, Takayuki Imoto, Shinichiro Tokudome, Hirohito Ohtsuka
    Proceedings of the International Astronautical Congress, IAC 11 8242-8248 2013年  
    The Epsilon launch vehicle, the newest version of Japan's solid propulsion rocket, has successfully had its maiden flight in this September carrying the extreme ultra-violet planetary telescope satellite SPRINT- A. It should be emphasized that the JAXA appreciates the advantages of combined power of the standardized small satellites and the Epsilon's highly efficient launch system, both developed by JAXA, to increase the level of space activities. Although the launch site of the Epsilon rocket, the Uchinoura Space Center (USC), was originally considered a highly compact launch complex, some modifications were made to become more efficient. The efficient launch vehicle and the compact USC established one of the most powerful tools that contribute to small missions (tentatively, maximum 1.2 ton into LEO and 450kg into SSO, as of the first flight). The purpose of the Epsilon rocket is to provide small satellites with a responsive launching, which means in this study we focus on a low cost, user friendly and ultimately efficient launch system. To realize this, the design concept of the Epsilon involves various innovative next generation technologies such as the highly intelligent autonomous checkout system and the mobile launch control. Owing to these endeavors, it was proved that the lift-off can be executed in less than 6 days after the first stage motor stand-on although the first flight took longer for extra tests and operations to complete the entire development. Another aspect that small satellites will most welcome is more user-friendly character involving: A reduction in the acoustic vibration level by refined ground facilities an attenuation of the sinusoidal vibration environment by a special vibration attenuator and a highly accurate orbit injection by a liquid propelled upper stage. Their effectiveness was well demonstrated. Now that the first flight was finished, the most important is what the next step will be in the future. JAXA has been conducting intensive researches on a next generation Epsilon to launch a more powerful and lower cost version Epsilon (El) in 2017 (TBD). In order to minimize the level of technical risks, JAXA plans to take a step by step approach to improve the cost and performance of the launch system toward El. According to this strategy, the second flight will be conducted in 2015 with an enhanced launch capacity of more than 500kg into SSO. This paper provides the results of the first flight of the Epsilon and reveals its evolution plan. Copyright© (2013) by the International Astronautical Federation.
  • Takayuki Imoto, Yasuhiro Morita, Shinichiro Tokudome, Hirohito Ohtsuka
    Advances in the Astronautical Sciences 146 625-629 2013年  
    The Epsilon launch vehicle has two main objectives. One is to evolve the highly efficient launch vehicle using the solid rocket system technologies that we have obtained for more than fifty years. The other is to meet the needs of the small satellites whose market will grow in the near future definitely. The needs and the demands of the small satellites have been flowdowned to the requirements of the Epsilon launch vehicle. As a next generation launch system, the Epsilon launch vehicle has several special features. The level of user friendliness is increased including more accurate orbit insertion precision, lower acoustic environment and lower separation shock level. It is optimized from the point of view of both cost and performance. This paper describes the system design of the Epsilon launch vehicle.
  • Shinichiro Tokudome, Hiroto Habu, Kyoichi Ui, Fumio Shimizu, Yusaku Yachi, Naruhisa Sano
    48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2012 2012年12月1日  筆頭著者責任著者
    A new small solid launcher named Epsilon is currently under development in JAXA. The Epsilon launch vehicle is normally three stage rocket system and can be added an optional liquid propulsion system to the third stage for the missions requiring precision orbit insertion. The SRB-A motor boosting the H-IIA vehicle and the H-IIB vehicle will be shared as the first stage motor. Upper-stage motors are inherited from the fifth M-V launch vehicle, from the viewpoints of development cost reduction, performance increase, and advanced technology succession. The solid motor side jet (SMSJ) system, which is used for the roll control during the first stage powered flight and the three-axis control after the SRB-A burnout, will be newly developed based on the technology of the SMSJ for the M-V vehicle. A maiden flight of the first Epsilon is scheduled in the summer of 2013. A successive concept of the advanced propulsion technologies for next-gen Epsilon are also described in the present paper. There are many technical challenges, such as new propellants and mass reduction of nozzle liner, to be tackled with for the next couple of year. © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
  • Yasuhiro Morita, Takayuki Imoto, Shinichiro Tokudome, Hirohito Ohtsuka
    Proceedings of the International Astronautical Congress, IAC 11 8579-8588 2012年  
    The development of the Epsilon launch vehicle, Japan's next generation solid rocket launcher, has just moved on to the final stretch for its first launch scheduled in summer of 2013 carrying the planetary telescope satellite SPRINT-A. It should be emphasized that the JAXA appreciates the advantages of combined power of the standardized small satellites and the Epsilon's highly efficient launch system, both developed by JAXA. The launch site of the Epsilon rocket is the Uchinoura Space Center (USC), the home of Japan's solid rockets, which will be modified to become more efficient although it is already a highly compact launch complex. The efficient launch vehicle and the compact USC will establish one of the most powerful tools that contribute to small missions (maximum 1.2 ton into LEO and 450kg into SSO as of the first flight). The purpose of the Epsilon rocket is to provide small satellites with a responsive launching, which means in this study we focus on a low cost, user friendly and ultimately efficient launch system. To realize this, the design concept of the Epsilon involves various innovative next generation technologies such as the highly intelligent autonomous checkout system and the mobile launch control. Owing to these endeavors, the lift-off will be executed in less than 6 days after the first stage motor stand-on. Another aspect that small satellites will most welcome is more user-friendly characteristics involving improvements in: The acoustic vibration level at ignition by refined ground facilities the sinusoidal vibration environment by a special vibration attenuator and the orbit injection accuracy by a liquid propelled upper stage. Now that the full-scale development is about to be finished, the most important is what the next step should be beyond the Epsilon. JAXA has already announced the post Epsilon development to launch a low cost version Epsilon (El) in 2017. Note that the strategy taken to lower the cost will be mainly based on using lighter and lower cost materials, thus resulting in higher performance as well. In order to minimize the level of technical risks, JAXA plans to take a step by step approach to improve the cost and performance of the launch system toward El and the second flight will be conducted in 2015 with an enhanced launch capacity of more than 500kg into SSO. This paper provides the details of the final phase of the Epsilon development and reveals its evolution plan. Copyright © (2012) by the International Astronautical Federation.
  • 徳留 真一郎, 宇井 恭一, 清水 文男, 羽生 宏人, 谷内 雄作, 佐野 成寿
    日本航空宇宙学会誌 60(7) 272-276 2012年  査読有り招待有り筆頭著者責任著者
    イプシロンロケット二段階開発の最初のステップでは,本質的な低コスト化と即応性の向上を目指す革新的機体システム技術の開発に重きを置いている.推進系の開発においては,H-IIAやM-Vの開発で培われた技術を最大限活用することによって,期間,コスト,リスクを抑え,革新的機体システム技術の早期実証及び近い将来の小型衛星打上げの要求に応える.第1段モータには基幹ロケットのSRB-Aモータを共用し,第2段,第3段にはM-V-5号機の第3段モータ,キックモータをほぼそのまま流用してM-Vをしのぐ輸送効率を達成する.推進系の新しい開発課題は,多様なミッションへの対応能力を高めるPBSの小型液体推進系,そして第1段推力飛行中のロール制御と同コースティング中の3軸制御を担うSMSJ装置である.2013年度の初飛行を目指すイプシロンの推進系開発は,2011年度内に詳細設計を完了して初号機製造に進む見通しである.
  • MORITA Yasuhiro, IMOTO Takayuki, TOKUDOME Shinichiro, OHTSUKA Hirohito
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 10(28) Tg_19-Tg_24 2012年  査読有り
    The Epsilon rocket, formerly called Advanced Solid Rocket (ASR) launcher, proceeded to the full development phase in August 2010 and its launch site was officially declared to be the Uchinoura Space Center (USC), the home of Japanese solid propellant rocket. The primary purpose of Epsilon is to provide small satellites with a responsive launch that means a low cost, user-friendly and ultimately efficient launch system. The slogan is "Small, Cheap, Fast and Reliable". This outcome is also a result of the excellent endeavors of those who devoted themselves to the next generation solid propellant rocket. However, this is not the final destination. Now that the development was approved, the most important is what the next step should be beyond Epsilon. This paper deals with the significance of the development of Epsilon launch vehicle and how it contributes to the possible evolution of future space transportation systems.
  • Shinichiro TOKUDOME, Hiroto HABU, Kyohichi UI, Fumio SHIMIZU, Yasuhiro MORITA, Nobuyuki NAKANO, Yusaku YACHI, Naruhisa SANO, Haruhito TANNO
    The 28th Symposium on Space Technology and Science, Okinawa Convention Center, June 5-12, 2011 2011年6月  筆頭著者
  • Yasuhiro Morita, Takayuki Imoto, Shinichiro Tokudome, Hirohito Ohtsuka
    62nd International Astronautical Congress 2011, IAC 2011 9 7335-7341 2011年  
    In January, 2011, the launch site of the Epsilon rocket was officially declared to be the Uchinoura Space Center (USC), the home of Japanese solid propellant rockets since the Japan's first satellite was launched in 1970. The development of the Epsilon launch vehicle is now about to advance to its detailed design level to prepare for its first flight, scheduled to be carried out in 2013. The primary purpose of Epsilon is to provide small satellites with a responsive launch that means a low cost, user-friendly and ultimately efficient launch system. The innovative design concept of the Epsilon launch vehicle will greatly contribute to increase the level of the space transportation technologies. However, this is not the final destination. Equally important is what the next step should be beyond Epsilon. This paper deals with the current development status of the Epsilon launch vehicle and its intended evolution. Copyright ©2011 by the International Astronautical Federation. All rights reserved.
  • 森田 泰弘, 井元 隆行, 徳留 真一郎, 大塚 浩仁
    日本航空宇宙学会誌 59(695) 371-377 2011年  査読有り招待有り
    イプシロンロケットの目的は,小型衛星に対して即応性豊かな打ち上げシステム,すなわち自在性と機動性に富みユーザーフレンドリな輸送手段を構築,宇宙への敷居を下げて宇宙科学や宇宙利用の裾野を拡大することにある.一方,これを輸送系の視点でみると,打ち上げシステムの革新というひと言に尽きる.すなわち,今後のロケット開発にあたっては,射場設備と運用はもとより,製造プロセスから搭載系に至るまで,およそロケットの打ち上げに必要な設備や運用をとことんコンパクトで身軽なものにしていこう,それが未来への扉を開く鍵であるという理念である.イプシロンロケットでは,このような壮大なビジョンを実現する第一歩として,ロケットのインテリジェント化やモバイル管制などの超革新技術を開拓,これを世界に先駆けて実証するために,初号機を2013年度に打ち上げる計画である.
  • Shinichiro Tokudome, Yoshihiro Naruo, Hatsuo Mori, Tsuyoshi Yagishita, Takayuki Yamamoto
    46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference &amp;amp; Exhibit 2010年7月25日  筆頭著者責任著者
  • Yoshifumi Inatani, H. Ogawa, Y. Naruo, S. Nonaka, S. Tokudome
    61st International Astronautical Congress 2010, IAC 2010 6 5076-5093 2010年  
    ISAS activities for reusable rocket technology and architecture including flight demonstration by the RVT (Reusable Vehicle Testing) have shown various progresses in technical areas such as frequent-flight propulsion systems, reusable rocket engines, returning flight and vertical landing techniques and demonstrations, composite cryogenic LH2 tank studies, new architectures for reusable and repeated flights with quick turnaround and so on. Following these basic studies of reusable rocket, mission definition and system requirement synthesis of the reusable sounding rocket are completed. In addition to the technical and performance related issues, its operational aspects and requirements for the frequent and repeated flight were given stressed. Throughout the studies, technical readiness to the reusable rocket technique and for the system synthesis for the reusable sounding rocket vehicle are in progress. For the sounding rocket's system definition and requirement analysis, research of the flight demand such as the number-of-flight per year and its frequency by the potential user communities. These requirements are from the needs of the middle to upper atmosphere research, studies from micro-gravity community, engineering community which may use this repeated flight opportunity. Copyright ©2010 by the International Astronautical Federation. All rights reserved.
  • Kazuhiro Yagi, Seiji Matsuda, Jun Yokote, Takayoshi Fuji, Kenji Sasaki, Mitsuteru Kaneoka, Shinichiro Tokudome, Yohsuke Nambu, Maasaaki Sugimoto
    23rd Annual AIAA/USU Conference on Small Satellite 2009年  
  • Akihito Itoh, Masashi Watanabe, Hiroto Habu, Shin-Ichiro Tokudome, Keiichi Hori, Hirobumi Saito, Kazuyuki Kondo, Shuji Tanaka, Masayoshi Esashi
    International Journal of Energetic Materials and Chemical Propulsion 8(4) 321-327 2009年  査読有り
    A micro solid propellant thruster for simple attitude control of a 10 kg class small spacecraft is currently under development. The prototype has 0.8 mm micro rocket elements, arrayed at a pitch of 1.2 mm on a 22 × 22 mm substance. Initially, solid propellants were used, obtaining only 20% ignition probability with a very long ignition delay (e.g. 1000 ms) as well as very high ignition energy. While observing the tested prototype sample, it became apparent that the main cause of these problems was a gap between the solid propellants and ignition heater. So, the thruster system was improved so that the propellants adhered to the heater. In addition, an ignition charge was used that starts to burn at 210°C, which was acetone having the form of slurry. As a result, a better ignition probability of over 80% in vacuum and half thrust of expectation were gained.
  • Shinichiro TOKUDOME, Yoshihiro NARUO, Tsuyoshi YAGISHITA, Satoshi NONAKA, Maki SHIDA, Hatsuo MORI, Takeshi NAKAMURA
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, SPACE TECHNOLOGY JAPAN 7(ists26) Ta_19-Ta_25 2009年  査読有り筆頭著者責任著者
  • 徳留 真一郎, 八木下 剛, 羽生 宏人, 鈴木 直洋, 大毛 康弘, 嶋田 徹
    宇宙航空研究開発機構研究開発報告 7 1-15 2008年2月  査読有り筆頭著者責任著者
    無毒で常温貯蔵可能な液体推進剤として亜酸化窒素(N_2O)/エタノールの組合せに着目し,それによる扱い易い液体推進系の実証研究を進めている.当面の目標として大気吸い込み式極超音速推進系の飛行試験に用いる加速用ロケットエンジンへの適用を目指しているが,その低温環境順応性を活かす衛星・探査機搭載推進系への応用も視野に入れている.これまでに,推力700N級の要素試験供試体を用いた燃焼試験を2シリーズ行って,エンジン噴射器設計のための有用なデータと運用特性を取得してきた.併せて,水冷式燃焼器による燃焼器壁面熱流束分布の測定や厚肉のシリカ繊維強化プラスチックSFRP製燃焼器を用いた燃焼試験によって燃焼器への耐熱複合材料適用の可能性も探っている.

主要なMISC

 89
  • 坂本, 勇樹, 小林, 弘明, 丸, 祐介, 徳留, 真一郎, 大山, 聖, 竹内, 伸介, 三浦, 政司, 正木, 大作, 高田, 仁志, 角銅, 洋実, 加賀, 亨, 山城, 龍馬, 杵淵, 紀世志, 真子, 弘泰, 内海, 政春, 中田, 大将, 江口, 光, 湊, 亮二郎, 吹場, 活佳, 川崎, 央, 前田, 慎市, 武田, 洋一, 佐藤, 哲也
    観測ロケットシンポジウム2023 講演集 2024年2月  
    レポート番号: Ⅱ-2
  • 徳留真一郎, 餅原義孝, 三浦政司, 坂本勇樹, 森下直樹, 山本高行, 荒川聡, 竹内伸介, 竹前俊昭, 豊田裕之, 奥平俊暁, 太刀川純孝, 寺島啓太, 紙田徹, 今村裕志, 高島健
    第67回宇宙科学技術連合講演会講演集 2023年10月  筆頭著者責任著者
  • 徳留真一郎, 佐伯孝尚, 津田雄一, 秋月祐樹, 澤田健一郎, 森下直樹, 北川幸樹, 松井康平, 坂本勇樹, 松永哲也, 堀恵一, 荒川聡, 松浦芳樹
    第67回宇宙科学技術連合講演会講演集 2023年10月  筆頭著者責任著者
  • M. Kinoshita, K. Ui, K. Sato, K. Nitta, H. Ikeda, N. Morishita, S. Tokudome, K. Hori, Y. Matsuura
    10th Space Debris Workshop 2022年11月28日  
  • 近藤, 奨一郎, 福﨑, 俊哉, 坂野, 友哉, 杵淵, 紀世志, 藤浦, 彰友, 奈女良, 実央, 中田, 大将, 真子, 弘泰, 徳留, 真一郎, 小林, 弘明, 坂本, 勇樹, 丸, 祐介, KONDO, Shoichiro, FUKUZAKI, Toshiya, BANNO, Yuya, KINEFUCHI, Kiyoshi, FUJIURA, Akitomo, NAMERA, Mio, NAKATA, Daisuke, MANAKO, Hiroyasu, TOKUDOME, Shinichiro, KOBAYASHI, Hiroaki, SAKAMOTO, Yuki, MARU, Yusuke
    令和3年度宇宙輸送シンポジウム: 講演集録 = Proceedings of Space Transportation Symposium FY2021 2022年1月  
    令和3年度宇宙輸送シンポジウム(2022年1月13日-14日. オンライン開催) Space Transportation Symposium FY2021 (January 13-14, 2022. Online Meeting) 著者人数: 12名 資料番号: SA6000173016 STCP-2021-016
  • 藤浦, 彰友, 奈女良, 実央, 住吉, 政哉, 中田, 大将, 内海, 政春, 江口, 光, 近藤, 奨一郎, 坂野, 友哉, 福崎, 俊哉, 杵淵, 紀世志, 真子, 弘泰, 坂本, 勇樹, 丸, 祐介, 小林, 弘明, 徳留, 真一郎, 八木下, 剛, FUJIURA, Akitomo, NAMERA, Mio, SUMIYOSHI, Masaya, NAKATA, Daisuke, UCHIUMI, Masaharu, EGUCHI, Hikaru, KONDO, Shoichiro, BANNO, Yuya, FUKUZAKI, Toshiya, KINEFUCHI, Kiyoshi, MANAKO, Hiroyasu, SAKAMOTO, Yuki, MARU, Yusuke, KOBAYASHI, Hiroaki, TOKUDOME, Shinichiro, YAGISHITA, Tsuyoshi
    令和3年度宇宙輸送シンポジウム: 講演集録 = Proceedings of Space Transportation Symposium FY2021 2022年1月  
    令和3年度宇宙輸送シンポジウム(2022年1月13日-14日. オンライン開催) Space Transportation Symposium FY2021 (January 13-14, 2022. Online Meeting) 著者人数: 16名 資料番号: SA6000173015 STCP-2021-015
  • 小林弘明, 坂本勇樹, 丸祐介, 徳留真一郎, 澤井秀次郎, 野中聡, 後藤健, 加賀亨, 佐藤英一, 山城龍馬, 八木下剛, 高田仁志, 角銅洋実
    宇宙科学技術連合講演会講演集(CD-ROM) 64th 2020年  
  • 丸祐介, 小林弘明, 坂本勇樹, 徳留真一郎, 澤井秀次郎, 野中聡
    宇宙科学技術連合講演会講演集(CD-ROM) 64th 2020年  
  • RAMON Roger Gutierrez, TSUDA Yuichi, SAIKI Takanao, TAKEI Yuto, MIMASU Yuya, MARU Yusuke, NONAKA Satoshi, TOKUDOME Shinichiro
    宇宙科学技術連合講演会講演集(CD-ROM) 64th 2020年  
  • 徳留 真一郎, 野中 聡, 丸 祐介, TOKUDOME Shinichiro, NONAKA Satoshi, MARU Yusuke
    令和元年度宇宙輸送シンポジウム: 講演集録 = Proceedings of Space Transportation Symposium FY2019 2020年1月  筆頭著者責任著者
    令和元年度宇宙輸送シンポジウム(2020年1月16日-17日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)), 相模原市, 神奈川県資料番号: SA6000147015レポート番号: STCP-2019-015
  • 丸 祐介, 佐藤 哲也, 小林 弘明, 徳留 真一郎, 野中 聡, 澤井 秀次郎, Maru Yusuke, Sato Tetsuya, Kobayashi Hiroaki, Tokudome Shinichiro, Nonaka Satoshi, Sawai Shujiro
    観測ロケットシンポジウム2019 講演集 = Proceedings of Sounding Rocket Symposium 2019 2019年8月  
    第2回観測ロケットシンポジウム(2019年8月5日-6日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)), 相模原市, 神奈川県資料番号: SA6000142004レポート番号: Ⅰ-4
  • 丸祐介, 小林弘明, 大山聖, 斉藤巧真, 徳留真一郎, 佐藤哲也
    宇宙科学技術連合講演会講演集(CD-ROM) 63rd 2019年  
  • 小林弘明, 徳留真一郎, 澤井秀次郎, 丸祐介, 坂本勇樹, 佐藤哲也
    宇宙科学技術連合講演会講演集(CD-ROM) 63rd 2019年  
  • Ken GOTO, Shinichiro TOKUDOME, Tsuyoshi YAGISHITA
    SiC/SIC COMPOSITE THRUSTER FOR A NON-TOXIC LIQUID PROPELLANT ROCKET ENGINE 2017年11月  
  • 山城 龍馬, 徳留 真一郎, 齊藤 靖博, 伊海田 皓史, 山本 高行, 小野 哲也
    宇宙科学技術連合講演会講演集 60 6p 2016年9月6日  
  • 徳留 真一郎
    日本航空宇宙学会誌 64(7) 227-230 2016年  査読有り招待有り筆頭著者責任著者
  • 竹内 伸介, 徳留 真一郎, 峯杉 賢治
    宇宙科学技術連合講演会講演集 59 3p 2015年10月7日  
  • 森田 泰弘, 井元 隆行, 山城 龍馬, 徳留 真一郎, 岸 光一, 大塚 浩仁
    日本航空宇宙学会誌 63(8) 265-272 2015年  査読有り
    イプシロンの目指している世界は何か? 来るべき本格的宇宙利用の時代を視野に入れると,出発点はコストと性能である.しかし,これだけで未来永劫世界と勝負できるわけではない.大事なのは付加価値を含めた高い次元の総合力,いわゆるユニバーサルデザインであろう.それは,ユーザの視点では乗り心地や使い勝手に代表される利便性,輸送性の観点としては打ち上げシステムの革新である.言うなれば,F1レーシングカーのように特殊な宇宙ロケットという乗り物を高級乗用車並みに身近な乗り物に転換していこうということである.宇宙もこれからは「おもてなし」の時代なのである.
  • 徳留 真一郎, 齊藤 靖博, 山本 高行
    宇宙科学技術連合講演会講演集 58 1-4 2014年11月12日  筆頭著者責任著者
  • 徳留 真一郎, 齊藤 靖博, 山本 高行, 中谷 幸司, 岩田 直子, 岡田 修平, 羽生 宏人, 森田 泰弘, 沖田 耕一, Tokudome Shinichiro, Saitoh Yasuhiro, Yamamoto Takayuki, Nakaya Koji, Iwata Naoko, Okada Shyuhei, Habu Hiroto, Morita Yasuhiro, Okita Koichi
    第47回月・惑星シンポジウム = Proceedings of the 47th ISAS Lunar and Planetary Symposium 2014年8月  筆頭著者責任著者
    第47回月・惑星シンポジウム (2014年8月4日-6日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)), 相模原市, 神奈川県形態: カラー図版あり資料番号: SA6000033030
  • 井出雄一郎, 高橋拓也, 岩井啓一郎, 野副克彦, 羽生宏人, 徳留真一郎
    火薬学会年会講演要旨集 2014 2014年  最終著者
  • 徳留 真一郎, 宮澤 哲裕, 彦坂 篤志
    宙舞 : 中部支部報 (74) 7-11,図巻頭1p 2014年  
  • 徳留 真一郎, 清水 文男, 和田 英一, 羽生 宏人, 堀 恵一, 反野 晴仁, 中野 信之, 佐野 成寿, Tokudome Shinichiro, Shimizu Fumio, Wada Eiichi, Habu Hiroto, Hori Keiichi, Tanno Haruhito, Nakano Nobuyuki, Sano Naruhisa
    平成25年度宇宙輸送シンポジウム: 講演集録 = Proceedings of Space Transportation Symposium FY2013 2014年  筆頭著者責任著者
    平成25年度宇宙輸送シンポジウム(2014年1月16日-17日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)), 相模原市, 神奈川県資料番号: SA6000016010レポート番号: STCP-2013-010
  • 徳留 真一郎, 宇井 恭一, 清水 文男, 和田 英一, 羽生 宏人, 堀 恵一, 反野 晴仁, 中野 信之, 佐野 成寿, Tokudome Shinichiro, Ui Kyoichi, Shimizu Fumio, Wada Eiichi, Habu Hiroto, Hori Keiichi, Tanno Haruhito, Nakano Nobuyuki, Sano Naruhisa
    平成24年度宇宙輸送シンポジウム: 講演集録 = Proceedings of Space Transportation Symposium: FY2012 54th 1-19 2013年1月  筆頭著者責任著者
    平成24年度宇宙輸送シンポジウム (2013年1月17日-1月18日. 宇宙航空研究開発機構宇宙科学研究所(JAXA)(ISAS)), 相模原市, 神奈川県形態: カラー図版あり形態: PDF資料番号: AA0061856010レポート番号: STCP-2012-010
  • 徳留真一郎, 宇井恭一, 清水文男, 和田英一, 羽生宏人, 堀恵一, 反野晴仁, 中野信之, 佐野成寿
    宇宙科学技術連合講演会講演集(CD-ROM) 56th ROMBUNNO.1B03 2012年  筆頭著者責任著者
  • 徳留 真一郎, 宇井 恭一, 清水 文男, 羽生 宏人, 谷内 雄作, 佐野 成寿
    日本航空宇宙学会誌 60(7) 272-276 2012年  筆頭著者責任著者
    イプシロンロケット二段階開発の最初のステップでは,本質的な低コスト化と即応性の向上を目指す革新的機体システム技術の開発に重きを置いている.推進系の開発においては,H-IIAやM-Vの開発で培われた技術を最大限活用することによって,期間,コスト,リスクを抑え,革新的機体システム技術の早期実証及び近い将来の小型衛星打上げの要求に応える.第1段モータには基幹ロケットのSRB-Aモータを共用し,第2段,第3段にはM-V-5号機の第3段モータ,キックモータをほぼそのまま流用してM-Vをしのぐ輸送効率を達成する.推進系の新しい開発課題は,多様なミッションへの対応能力を高めるPBSの小型液体推進系,そして第1段推力飛行中のロール制御と同コースティング中の3軸制御を担うSMSJ装置である.2013年度の初飛行を目指すイプシロンの推進系開発は,2011年度内に詳細設計を完了して初号機製造に進む見通しである.
  • 徳留真一郎, 羽生宏人, 和田英一
    火薬学会年会講演要旨集 2011 2011年  筆頭著者責任著者
  • 後藤 健, 徳留 真一郎, 奥野 福実夫, 八木下 剛, 羽生 宏人
    年次大会 2011 _S042043-1-_S042043-3 2011年  
    A nozzle and a combustion chamber of a small liquid fuel rocket engine used as an upper stage engine of solid propellant rocket and an apogee engine of a satellite requires to operate without cooling by cryogenic fuels. From this reason, materials that can be used at high temperature in oxidizing environment are highly required for such thrusters. To meet with this demand, trial manufacture of a thruster made of SiC fiber-reinforced SiC matrix composite are carried out in this study. A SiC/SiC composite thruster was successfully manufactured by CVI and PIP combination process. The thruster passed the proof pressurize test up to 5.0 MPa (2.5 times higher than operation pressure, 2.0 MPa). However, First trial ended in an explosion just after the ignition of the engine. By changing engine start sequence (provide fuel and oxidizer just before the ignition to avoid penetration of the liquid into the pores), 30s continuous oneration of the engine succeeded.
  • 徳留真一郎, 宇井恭一, 清水文男, 羽生宏人, 堀恵一, 谷内雄作, 中野信之, 矢代顕慎, 佐野成寿
    宇宙科学技術連合講演会講演集(CD-ROM) 55th ROMBUNNO.2E03 2011年  筆頭著者責任著者
  • 小川博之, 野中聡, 成尾芳博, 稲谷芳文, 吉田誠, 徳留真一郎
    宇宙科学技術連合講演会講演集(CD-ROM) 53rd 2009年  
  • 徳留真一郎, 成尾芳博, 志田真樹, 小川博之, 福吉芙由子, 八木下剛, 野中聡, 岩田直子
    宇宙科学技術連合講演会講演集(CD-ROM) 53rd 2009年  筆頭著者責任著者
  • 堀恵一, 嶋田徹, 徳留真一郎, 羽生宏人
    宇宙航空研究開発機構特別資料 JAXA-SP- (07-023) 41-78 2008年2月29日  
  • 八木下剛, 羽生宏人, 徳留真一郎, 大毛康弘
    宇宙科学技術連合講演会講演集(CD-ROM) 52nd 2008年  
  • 八木下剛, 徳留真一郎, 羽生宏人, 鈴木直洋, 徳永好志, 安田誠一, 嶋田徹, 大毛康弘
    宇宙科学技術連合講演会講演集(CD-ROM) 50th 2006年  
  • 嶋田 徹, 高野 雅弘, 堀 恵一, 徳留 真一郎, 羽生 宏人
    宇宙科学研究所報告 特集 47(47) 85-116 2003年3月  
    資料番号: SA0200131000
  • 徳留 真一郎, 羽生 宏人
    宇宙科学シンポジウム 3 373-376 2003年1月9日  筆頭著者責任著者
  • 徳留真一郎, 羽生宏人, 山本高行, 里吉貴史, 西中村健一, 川口淳一郎
    宇宙輸送シンポジウム 平成14年度 13-16 2003年  筆頭著者責任著者
  • 徳留 真一郎, 細川 隆一郎, 田中 秀治, 堀 恵一, 齋藤 宏文, 渡辺 将史, 江刺 正喜
    年次大会講演論文集 2002 337-338 2002年  筆頭著者責任著者
    The authors have developed the practical prototype of a micro-solid propellant rocket array thruster for attitude control of a 10kg class micro-spacecraft. a target of this activity is to build the array thruster with 10000 of solid propellant micro-rockets arrayed on a 100×100mm substrate. The prototype with the Φ0.8 micro-rockets arrayed at a pitch of 1.2mm on a 20×30mm substrate has built and tested so far. Boron/potassium nitrate (NAB) propellant is used with/without initiator of lead rhodanide/potassium chlorate/nitrocellulose (RK). Impulse thrust was measured by means of a pendulum method. The experimental results show that the prototype has proper ignition characteristics and further experimental studies are needed to evaluate and to control the impulse thrust with accuracy. We are planning to conduct the thrust measurement test under vacuum condition.

主要な講演・口頭発表等

 53
  • Yuki Sakamoto, Tetsuya Sato, Matthew Richardson, Hiromitsu Kakudo, Ryoma Yamashiro, Masashi Miura, Akira Oyama, Shujiro Sawai, Shinichiro Tokudome, Yusuke Maru, Hikaru Eguchi, Daisuke Nakata, Hiroaki Kobayashi
    AJCPP 2023 2023年3月16日 日本航空宇宙学会
  • 小林弘明, 徳留真一郎, 丸祐介, 坂本勇樹, 佐藤哲也
    AJCPP 2023 2023年3月16日 日本航空宇宙学会
  • 徳留 真一郎
    第5回観測ロケットシンポジウム 2023年3月1日 宇宙航空研究開発機構 宇宙科学研究所  招待有り
    宇宙科学研究所(ISAS)の宇宙輸送系専門委員会において策定されている宇宙科学・探査分野における宇宙輸送系の中長期ミッションシナリオでは,2040年頃の達成を目指すミッションを「多様な宇宙科学の世界をカバーする軌道間輸送ネットワークを構築する」ことと設定している. ミッション達成に向けて,地上から地球周回軌道へ高頻度に大量の物資や人員を輸送する宇宙往還機を実現するためには,往還飛行において「極超音速飛行」を避けることはできない.本稿では,主に宇宙往還機の実現と競争力向上に資する極超音速エンジンの技術実証を中心に,極超音速飛行に係る技術課題に実証的に取り組むための飛行実験機の目的と検討例について紹介する.
  • 徳留 真一郎, 野中 聡, 丸 祐介, 小林 弘明, 佐藤 哲也, 三浦 政司, 坂本 勇樹
    令和4年(2022年)度宇宙輸送シンポジウム 2023年1月13日
  • 丸祐介, 徳留真一郎, 佐藤哲也
    令和4年(2022年)度宇宙輸送シンポジウム 2023年1月13日
  • 関二千翔, 渡辺俊作, 吉村拓, 吉田圭一郎, 和田豊, 加藤信治, 徳留真一郎
    令和4年(2022)度宇宙輸送シンポジウム 2023年1月12日
  • 宍戸拓, 伊藤千珠, 真子弘泰, 小林弘明, 丸祐介, 徳留真一郎
    令和4年(2022年)度宇宙輸送シンポジウム 2023年1月
  • 松浦 芳樹, 北川 幸樹, 松井 康平, 徳留 真一郎
    第66回宇宙科学技術連合講演会 2022年11月4日
  • 三浦 政司, 餅原 義孝, 徳留 真一郎, 荒川 聡, 竹前 俊昭, 森下 直樹, 山本 高行, 太刀川 純孝, 竹内 伸介, 豊田 裕之, 奥平 俊暁, 坂本 勇樹, 寺島 啓太, 紙田 徹, 高島 健, 今村 裕志
    第66回宇宙科学技術連合講演会 2022年11月4日
  • 宍戸 拓, 真子 弘泰, 徳留 真一郎, 丸 祐介
    第66回宇宙科学技術連合講演会 2022年11月1日
  • 坂本 勇樹, 小林 弘明, 丸 祐介, 徳留 真一郎, 野中 聡, 澤井 秀次郎, 大山 聖, 三浦 政司, 正木 大作, 髙田 仁志, 角銅 洋実, 加賀 亨, 山城 龍馬, 杵淵 紀世志, 真子 弘泰, 内海 政春, 中田 大将, 江口 光, Richardson Matthew, 佐藤 哲也
    第66回宇宙科学技術連合講演会 2022年11月1日
  • Shinichiro Tokudome, Yusuke Maru, Satoshi Nonaka
    73rd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022. 2022年9月20日 The International Astronautical Federation
    The Space Transportation System Committee of the Institute of Space and Astronautical Science (ISAS) of the Japan Aerospace Exploration Agency (JAXA) has been continuously drafting medium- to long-term strategies in the research field of space transportation system under the Inter-University Research Institute System of ISAS since FY2018. This committee is also considering the role of ISAS in cooperation with the organization-wide activities of JAXA to formulate strategies in the space transportation system field. Among its previous achievements, the committee assembled a strategic target and scenario for the space transportation system research field at the end of the last fiscal year and is continuously revising it. Based on a formulated mission scenario, the committee identified three priority areas related to system technologies that must be tackled. They are a “reusable orbit transportation system” that aims for a highly frequent mass transportation from Earth to low Earth orbit, “deep space interorbital transportation system” that aims for a marked improvement in space science and exploration missions in terms of frequency and flexibility, and “small flying test bed system” for flight demonstrations, which is indispensable in the research and development of space transportation systems. In this paper, the authors summarize the medium- to long term strategies and their concrete implementation measures over the next two decades.
  • 徳留 真一郎
    第22回宇宙科学シンポジウム(FY2021) 2022年1月6日
  • 徳留真一郎
    航空原動機・宇宙推進講演会講演論文集(CD-ROM) 2022年
  • Masahiro Kinoshita, Kyoichi Ui, Kenichi Satoh, Kumi Nitta, Hirohide Ikeda, Naoki Morishita, Shinichiro Tokudome, Keiichi Hori, Yoshiki Matsuura
    11th IAASS Conference - "MANAGING RISK IN SPACE" - (IAASS/JAXA) 2021年10月21日
  • Masanori Sakaino, Shinichiro Tokudome, Toshiaki Takemae, Yoshitaka Mochihara, Satoshi Arakawa, Naoki Morishita, Yoshiki Matsuura
    The 11th IAASS Conference - “Managing Risk in Space”- (IAASS/JAXA) 2021年10月20日
  • 徳留 真一郎
    第21回宇宙科学シンポジウム(FY2020) 2021年1月6日  招待有り
  • Matthew P. Richardson, Hiroaki Kobayashi, Yuki Sakamoto, Yusuke Maru, Shinichiro Tokudome, Satoshi Nonaka, Shujiro Sawai, Akira Oyama, Daisaku Masaki, Satoshi Takada, Hiromitsu Kakudo, Toru Kaga, Kiyoshi Kinefuchi, Tetsuya Sato
    Accelerating Space Commerce, Exploration, and New Discovery conference, ASCEND 2021 2021年
    The Japan Aerospace Exploration Agency, in partnership with academia and industry, are developing the Air Turbo Rocket for Innovative Unmanned Mission (ATRIUM) engine: an air turboramjet + rocket combine cycle propulsion system intended to replace conventional liquid rocket engines in Vertical Takeoff Vertical Landing applications, such as reusable sounding rockets. A subscale Flight Test Bed (FTB) vehicle is also being developed to demonstrate the ATRIUM engine in a flight environment. In this paper, the ATRIUM engine and FTB vehicle are introduced, and current progress in their development is summarized. Future test plans and practical applications are also discussed.
  • Shinichiro TOKUDOME, Tsuyoshi YAGISHITA, Ken GOTO, Naohiro SUZUKI, Takayuki YAMAMOTO, Yasuhiro DAIMOH
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 2021年 Japan Society for Aeronautical and Space Sciences
  • Shinichiro Tokudome, Ken Goto, Tsuyoshi Yagishita, Naohiro Suzuki, Takayuki Yamamoto
    AIAA Propulsion and Energy 2019 Forum 2019年8月19日 American Institute of Aeronautics and Astronautics
  • KITAGAWA Koki, TOKUDOME Shinichiro, HORI Keiichi, TANNO Haruhito, NAKANO Nobuyuki
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 2019年 一般社団法人 日本航空宇宙学会
    <p>The development of enhanced propulsion system for the next Epsilon rocket was progressed. The development of Enhanced Epsilon is mainly the renewal of the second stage, and also includes each subsystem's improvement. The second stage motor M-35 was newly designed and manufactured. In order to verify the design, the static firing test of the second motor M-35 under the condition of vacuum ambient was conducted in 2015. The JAXA successfully launched the first Enhanced Epsilon launch vehicle. All solid propulsion systems for the Enhanced Epsilon launch vehicle showed a very good behavior during the flight</p>
  • IDE Yuichiro, TAKAHASHI Takuya, IWAI Keiichiro, NOZOE Katsuhiko, HABU Hiroto, TOKUDOME Shinichiro
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 2016年 一般社団法人 日本航空宇宙学会
    <p>As a replacement for hydrazine, ammonium-dinitramide-based ionic liquid propellant (ADN-based ILP) has been developed by JAXA and Carlit Holdings Co., Ltd. This propellant is made by mixing three solid powers: ADN, monomethylamine nitrate, and urea. The propellant's theoretical specific impulse is 1.2 times higher than that of hydrazine, and its density is 1.5 times higher at a certain composition. Although ionic liquids were believed to be non-flammable for a long time owing to their low-volatility, recently combustible ILs have been reported. The combustion mechanism of ILs is not yet understood. The objective of this paper is to understand the combustion wave structure of ADN-based ILP. The temperature distribution of the combustion wave in a strand burner test shows a region of constant temperature. This region would indicate boiling in a gas-liquid phase. Thus, the combustion wave structure consists of liquid, gas-liquid, and gas phases. The dependence of boiling point on pressure would identify chemical substances in the gas-liquid phase. The dependence of combustion and ignition characteristics on ADN content is also discussed. </p>
  • Tetsuya Ono, Shinichiro Tokudome, Ryoma Yamashiro, Takayuki Yamamoto, Hiroshi Ikaida, Yasuhiro Saito
    Proceedings of the International Astronautical Congress, IAC 2016年
    Copyright © 2016 by the International Astronautical Federation. All rights reserved. Although reusable launch vehicle's necessity and significance, being cost-effective, eco-friendly and reliable, have been recognized in a long time, practical system still has never been realized except the Space Shuttle. There are two main reasons in this. One reason is that reusable vehicle's recurring cost is high. The other reason is that reusable vehicle, especially that upper stage, have the problem of aerodynamic heating during re-entry. We are considering new upper stage reusable launch vehicle with solid rocket booster, which clear these problems concerning reusable launch vehicle. For the first problem on the recurring cost, the application of the auto inspection system which is cultivated in solid rocket motor's development and launch operation is being considered. That is expected to reduce the inspection cost drastically after the vehicle flight. For the second problem on the re-entry, challenging technologies are applied in the upper stage. Those are material and structure with heat tolerance and lightness, active-cooling system to share the hydrogen with the liquid propulsion system, advanced guidance and control system, and so on. On the other hand, to the lower stage or booster, application of solid rocket is considered. Since the challenging upper stage's size is expected to vary through the iteration of design cycles, the lower stage should be stable and flexible with the thrust level in development phase. Because solid motors of various sizes are developed in JAXA/ISAS since the first small solid motor started to be developed in 1954, those development method has been efficiently accumulated. Then this legacy's utilization for the new system is expected to be quite beneficial. On these technological backgrounds, this paper describes the system study for new upper-stage reusable launch vehicle with the solid rocket booster.
  • 徳留真一郎
    「宇宙科学・探査ロードマップと各分野の将来計画」シンポジウム 2014年5月8日  招待有り
  • 徳留 真一郎
    日本機械学会 宇宙工学部門 2013年度部門賞・一般表彰 記念講演会 2014年3月28日  招待有り
  • MORITA Yasuhiro, IMOTO Takayuki, TOKUDOME Shinichiro, OHTSUKA Hirohito
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 2014年 一般社団法人 日本航空宇宙学会
    The development of the Epsilon launch vehicle, Japan's next generation solid rocket launcher, has just moved to the final stretch for its first launch scheduled in the summer of 2013 to carry the planetary telescope satellite SPRINT-A. The JAXA appreciates the advantages of combined benefits of the standardized small satellites and the Epsilon's highly efficient launch system in order to increase the level of space activities. The primary purpose of Epsilon is to provide small satellites with a responsive launch that means "Small, Low cost, Fast and Reliable". The attention should be directed toward the innovative design concept of Epsilon, which aims at developing the next generation technologies such as the highly intelligent autonomous checkout system and the mobile launch control. Now that the full-scale development is about to be finished, the most important is what the next step should be beyond the Epsilon. This paper deals with the significance of the Epsilon launch vehicle and how it contributes to the possible evolution of future space transportation systems.
  • Shinichiro Tokudome, Hiroto Habu, Kyoichi Ui, Fumio Shimizu, Yusaku Yachi, Naruhisa Sano
    48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit 2012 2012年12月1日
    A new small solid launcher named Epsilon is currently under development in JAXA. The Epsilon launch vehicle is normally three stage rocket system and can be added an optional liquid propulsion system to the third stage for the missions requiring precision orbit insertion. The SRB-A motor boosting the H-IIA vehicle and the H-IIB vehicle will be shared as the first stage motor. Upper-stage motors are inherited from the fifth M-V launch vehicle, from the viewpoints of development cost reduction, performance increase, and advanced technology succession. The solid motor side jet (SMSJ) system, which is used for the roll control during the first stage powered flight and the three-axis control after the SRB-A burnout, will be newly developed based on the technology of the SMSJ for the M-V vehicle. A maiden flight of the first Epsilon is scheduled in the summer of 2013. A successive concept of the advanced propulsion technologies for next-gen Epsilon are also described in the present paper. There are many technical challenges, such as new propellants and mass reduction of nozzle liner, to be tackled with for the next couple of year. © 2012 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
  • 徳留 真一郎, 宇井 恭一, 清水 文男, 羽生 宏人, 谷内 雄作, 佐野 成寿
    日本航空宇宙学会誌 2012年 一般社団法人 日本航空宇宙学会
    イプシロンロケット二段階開発の最初のステップでは,本質的な低コスト化と即応性の向上を目指す革新的機体システム技術の開発に重きを置いている.推進系の開発においては,H-IIAやM-Vの開発で培われた技術を最大限活用することによって,期間,コスト,リスクを抑え,革新的機体システム技術の早期実証及び近い将来の小型衛星打上げの要求に応える.第1段モータには基幹ロケットのSRB-Aモータを共用し,第2段,第3段にはM-V-5号機の第3段モータ,キックモータをほぼそのまま流用してM-Vをしのぐ輸送効率を達成する.推進系の新しい開発課題は,多様なミッションへの対応能力を高めるPBSの小型液体推進系,そして第1段推力飛行中のロール制御と同コースティング中の3軸制御を担うSMSJ装置である.2013年度の初飛行を目指すイプシロンの推進系開発は,2011年度内に詳細設計を完了して初号機製造に進む見通しである.
  • 徳留真一郎, 宇井恭一, 清水文男, 和田英一, 羽生宏人, 堀恵一, 反野晴仁, 中野信之, 佐野成寿
    宇宙科学技術連合講演会講演集(CD-ROM) 2012年
  • MORITA Yasuhiro, IMOTO Takayuki, TOKUDOME Shinichiro, OHTSUKA Hirohito
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, AEROSPACE TECHNOLOGY JAPAN 2012年 一般社団法人 日本航空宇宙学会
    The Epsilon rocket, formerly called Advanced Solid Rocket (ASR) launcher, proceeded to the full development phase in August 2010 and its launch site was officially declared to be the Uchinoura Space Center (USC), the home of Japanese solid propellant rocket. The primary purpose of Epsilon is to provide small satellites with a responsive launch that means a low cost, user-friendly and ultimately efficient launch system. The slogan is "Small, Cheap, Fast and Reliable". This outcome is also a result of the excellent endeavors of those who devoted themselves to the next generation solid propellant rocket. However, this is not the final destination. Now that the development was approved, the most important is what the next step should be beyond Epsilon. This paper deals with the significance of the development of Epsilon launch vehicle and how it contributes to the possible evolution of future space transportation systems.
  • 徳留真一郎, 宇井恭一, 清水文男, 羽生宏人, 堀恵一, 谷内雄作, 中野信之, 矢代顕慎, 佐野成寿
    宇宙科学技術連合講演会講演集(CD-ROM) 2011年
  • 徳留真一郎, 羽生宏人, 和田英一
    火薬学会年会講演要旨集 2011年
  • Shinichiro Tokudome, Yoshihiro Naruo, Hatsuo Mori, Tsuyoshi Yagishita, Takayuki Yamamoto
    46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference &amp;amp; Exhibit 2010年7月25日 American Institute of Aeronautics and Astronautics
  • 徳留真一郎, 成尾芳博, 志田真樹, 小川博之, 福吉芙由子, 八木下剛, 野中聡, 岩田直子
    宇宙科学技術連合講演会講演集(CD-ROM) 2009年
  • Shinichiro TOKUDOME, Yoshihiro NARUO, Tsuyoshi YAGISHITA, Satoshi NONAKA, Maki SHIDA, Hatsuo MORI, Takeshi NAKAMURA
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, SPACE TECHNOLOGY JAPAN 2009年 Japan Society for Aeronautical and Space Sciences
  • 2007年7月 アメリカ航空宇宙学会
  • 徳留 真一郎, 羽生 宏人
    宇宙科学シンポジウム 2003年1月9日 宇宙科学研究所
  • 徳留真一郎, 羽生宏人, 山本高行, 里吉貴史, 西中村健一, 川口淳一郎
    宇宙輸送シンポジウム 平成14年度 2003年
  • 徳留 真一郎, 細川 隆一郎, 田中 秀治, 堀 恵一, 齋藤 宏文, 渡辺 将史, 江刺 正喜
    年次大会講演論文集 2002年 一般社団法人 日本機械学会
    The authors have developed the practical prototype of a micro-solid propellant rocket array thruster for attitude control of a 10kg class micro-spacecraft. a target of this activity is to build the array thruster with 10000 of solid propellant micro-rockets arrayed on a 100×100mm substrate. The prototype with the Φ0.8 micro-rockets arrayed at a pitch of 1.2mm on a 20×30mm substrate has built and tested so far. Boron/potassium nitrate (NAB) propellant is used with/without initiator of lead rhodanide/potassium chlorate/nitrocellulose (RK). Impulse thrust was measured by means of a pendulum method. The experimental results show that the prototype has proper ignition characteristics and further experimental studies are needed to evaluate and to control the impulse thrust with accuracy. We are planning to conduct the thrust measurement test under vacuum condition.

担当経験のある科目(授業)

 4

所属学協会

 2

主要な共同研究・競争的資金等の研究課題

 9
  • JAXA宇宙科学研究所 工学委員会戦略的開発研究経費 2021年4月 - 2035年3月
    徳留真一郎, 津田雄一, 佐伯孝尚, 坂本勇樹, 森下直樹, 澤田健一郎, 秋月祐樹, 北川幸樹, 松井康平, 堀恵一, 松浦芳樹, 松永哲也
  • JAXA宇宙科学研究所 工学委員会戦略的開発研究費 2018年 - 2025年3月
    佐藤哲也, 小林弘明, 丸祐介, 坂本勇樹, 徳留真一郎, 澤井秀次郎, 後藤健, 大山聖, 佐藤英一, 戸部裕史, 高田仁志, 角銅洋実, 山城龍馬, 八木下剛, 野中聡, 三浦政司, 正木大作, 真子弘泰, 加賀亨, 船﨑健一, 吉原信人, 武田洋一, 大志田宜明, 内海政春, 中田大将, 江口光, 室蘭工, 湊亮二郎, 杵淵紀世志, 吹場活佳, 内藤均, 雨宮和久, 天沼光博, 竹内伸介, 小路谷剛, 鎮守裕太, 平松宏健
  • 国立研究開発法人 宇宙航空研究開発機構 JAXAプロジェクト 2019年 - 2024年
    DESTINY PLUSプロジェクトメンバー
  • JAXA宇宙科学研究所と外部機関との共同研究制度 2021年6月 - 2022年3月
    徳留真一郎, 竹前俊昭, 荒川聡, 森下直樹, 餅原義孝, 増田和久, 境野正法, 須藤翔, 松浦芳樹, 五十嵐真二
  • JAXA宇宙科学研究所と外部機関との共同研究制度 2020年2月 - 2022年3月
    徳留真一郎, 竹前俊昭, 鈴木直洋, 入門朋子, 志田真樹, 八木下剛, 森下直樹, 関野展弘, 瀬川泰伸, 森崎浩武, 長沼哲史, 野原勝, 知念克典
  • JAXA宇宙科学研究所と他機関との共同研究制度 2020年10月 - 2021年3月
    徳留真一郎, 竹前俊昭, 荒川聡, 森下直樹, 餅原義孝, 松浦芳樹, 五十嵐真二
  • JAXA宇宙科学研究所 工学委員会戦略的開発研究費(工学) 2010年4月 - 2019年3月
    徳留真一郎, 羽生宏人, 八木下剛, 鈴木直洋, 後藤健, 佐藤英一, 竹内伸介, 山本高行, 佐伯孝尚, 植田修一, 齋藤俊仁, 竹腰正雄, 高田仁志, 姫野武洋, 井上智博
  • JAXA宇宙科学研究所 工学委員会戦略的開発研究費(工学) 2003年4月 - 2009年3月
    徳留真一郎, 羽生宏人, 八木下剛, 鈴木直洋, 後藤健, 佐藤英一, 竹内伸介, 山本高行, 佐伯孝尚, 植田修一, 齋藤俊仁, 竹腰正雄, 高田仁志, 姫野武洋, 井上智博

主要な学術貢献活動

 1

主要な社会貢献活動

 16