基本情報
- 所属
- 国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 教授
- 学位
- 博士(学術)(岡山大学)
- J-GLOBAL ID
- 201901004664301386
- researchmap会員ID
- B000348549
- 外部リンク
Personal HP <https://sites.google.com/site/tomohirousui/>
Google Scholar <https://scholar.google.com/citations?user=iCTuRbUAAAAJ&hl=en>
ISAS astromaterial/curation research group HP <https://curation.isas.jaxa.jp/en/>
研究分野
1経歴
3-
2018年7月 - 現在
-
2016年4月 - 2018年6月
-
2012年4月 - 2016年3月
論文
100-
Science Advances 10(39) 2024年9月27日The isotopic compositions of samples returned from Cb-type asteroid Ryugu and Ivuna-type (CI) chondrites are distinct from other carbonaceous chondrites, which has led to the suggestion that Ryugu/CI chondrites formed in a different region of the accretion disk, possibly around the orbits of Uranus and Neptune. We show that, like for Fe, Ryugu and CI chondrites also have indistinguishable Ni isotope anomalies, which differ from those of other carbonaceous chondrites. We propose that this unique Fe and Ni isotopic composition reflects different accretion efficiencies of small FeNi metal grains among the carbonaceous chondrite parent bodies. The CI chondrites incorporated these grains more efficiently, possibly because they formed at the end of the disk’s lifetime, when planetesimal formation was also triggered by photoevaporation of the disk. Isotopic variations among carbonaceous chondrites may thus reflect fractionation of distinct dust components from a common reservoir, implying CI chondrites/Ryugu may have formed in the same region of the accretion disk as other carbonaceous chondrites.
-
Nature communications 15(1) 8075-8075 2024年9月14日Ryugu is the C-type asteroid from which material was brought to Earth by the Hayabusa2 mission. A number of individual grains and fine-grained samples analysed so far for noble gases have indicated that solar wind and planetary (known as P1) noble gases are present in Ryugu samples with concentrations higher than those observed in CIs, suggesting the former to be more primitive compared to the latter. Here we present results of analyses of three fine-grained samples from Ryugu, in one of which Xe concentration is an order of magnitude higher than determined so far in other samples from Ryugu. Isotopically, this Xe resembles P1, but with a much stronger isotopic fractionation relative to solar wind and significantly lower 36Ar/132Xe ratio than in P1. This previously unknown primordial noble gas component (here termed P7) provides clues to constrain how the solar composition was fractionated to form the planetary components.
-
Nature Communications 15 7488 2024年8月29日 査読有りAbstract Primordial carbon delivered to the early earth by asteroids and meteorites provided a diverse source of extraterrestrial organics from pre-existing simple organic compounds, complex solar-irradiated macromolecules, and macromolecules from extended hydrothermal processing. Surface regolith collected by the Hayabusa2 spacecraft from the carbon-rich asteroid 162173 Ryugu present a unique opportunity to untangle the sources and processing history of carbonaceous matter. Here we show carbonaceous grains in Ryugu can be classified into three main populations defined by spectral shape: Highly aromatic (HA), Alkyl-Aromatic (AA), and IOM-like (IL). These carbon populations may be related to primordial chemistry, since C and N isotopic compositions vary between the three groups. Diffuse carbon is occasionally dominated by molecular carbonate preferentially associated with coarse-grained phyllosilicate minerals. Compared to related carbonaceous meteorites, the greater diversity of organic functional chemistry in Ryugu indicate the pristine condition of these asteroid samples.
-
Geochimica et Cosmochimica Acta 379 172-183 2024年8月15日The surface chemistry of pyrrhotites from intact particles directly collected from asteroid (162173) Ryugu was investigated by micro-Raman spectroscopy. The Raman peak characteristic to pyrrhotite was observed at around 115 cm−1 in Ryugu pyrrhotites, similar to freshly cleaved surfaces of terrestrial pyrrhotites. Additional Raman bands centered at around 220, 275, and 313 cm−1 with broadened features were also detected from the Ryugu pyrrhotites. The set of Raman bands at 220 and 275 cm−1 was assigned to typical Fe-S stretching vibrations of ν2 (225 cm−1) and ν1 (275 cm−1). These bands are not clearly observed in bulk crystals of pyrrhotite but appear in its nanoparticulate phase. These bands are ordinarily seen in amorphous monosulfides that formed under low oxygen fugacity (fO2) conditions in nature, indicating that the structural alteration of pyrrhotite surfaces occurred heterogeneously on the nanoscale under low fO2 conditions. Further, the Raman band at 313 cm−1 was attributed to a characteristic tetrahedral bonding of Fe(III) in the lattice of FeII1-3xFeIII1-2xS, followed by the local breakdown of the crystal lattice structures from planar bonding with Fe(II). In addition, some areas of the Ryugu pyrrhotite grains showed corroded structures with iridescence. Furthermore, assemblages of magnetite particles were also preferentially observed on small areas of the likely-dissolved pyrrhotite crystals in phyllosilicate matrices. These characteristic features in the Raman spectra and in corroded structures of Ryugu pyrrhotites record changes in the local environmental conditions via aqueous alteration. The corrosion of pyrrhotite crystals followed by the preferential formation of magnetite particles by asteroidal water is the likely product of dissolution of Fe(II) from the pyrrhotite surface and its oxidative precipitation in microchemical environments on the Ryugu parent body.
-
Nature communications 15(1) 5708 2024年7月10日We report primordial aqueous alteration signatures in water-soluble organic molecules from the carbonaceous asteroid (162173) Ryugu by the Hayabusa2 spacecraft of JAXA. Newly identified low-molecular-weight hydroxy acids (HO-R-COOH) and dicarboxylic acids (HOOC-R-COOH), such as glycolic acid, lactic acid, glyceric acid, oxalic acid, and succinic acid, are predominant in samples from the two touchdown locations at Ryugu. The quantitative and qualitative profiles for the hydrophilic molecules between the two sampling locations shows similar trends within the order of ppb (parts per billion) to ppm (parts per million). A wide variety of structural isomers, including α- and β-hydroxy acids, are observed among the hydrophilic molecules. We also identify pyruvic acid and dihydroxy and tricarboxylic acids, which are biochemically important intermediates relevant to molecular evolution, such as the primordial TCA (tricarboxylic acid) cycle. Here, we find evidence that the asteroid Ryugu samples underwent substantial aqueous alteration, as revealed by the presence of malonic acid during keto-enol tautomerism in the dicarboxylic acid profile. The comprehensive data suggest the presence of a series for water-soluble organic molecules in the regolith of Ryugu and evidence of signatures in coevolutionary aqueous alteration between water and organics in this carbonaceous asteroid.
MISC
29共同研究・競争的資金等の研究課題
10-
日本学術振興会 科学研究費助成事業 2020年10月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 2022年4月 - 2025年3月
-
日本学術振興会 科学研究費助成事業 2021年4月 - 2024年3月
-
日本学術振興会 科学研究費助成事業 2022年4月 - 2023年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2019年4月 - 2022年3月
-
日本学術振興会 科学研究費助成事業 新学術領域研究(研究領域提案型) 2017年6月 - 2022年3月
-
日本学術振興会 科学研究費助成事業 新学術領域研究(研究領域提案型) 2017年6月 - 2022年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2016年4月 - 2019年3月
-
日本学術振興会 科学研究費助成事業 国際共同研究加速基金(国際共同研究強化) 2016年 - 2019年
-
日本学術振興会 科学研究費助成事業 若手研究(B) 2014年4月 - 2016年3月