研究者業績

辻本 匡弘

ツジモト マサヒロ  (Masahiro Tsujimoto)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 准教授
国立大学法人総合研究大学院大学 物理科学研究科 宇宙科学専攻 准教授
学位
博士(理学)(2003年3月 京都大学)
修士(理学)(2000年3月 京都大学)

連絡先
tsujimotastro.isas.jaxa.jp
研究者番号
10528178
ORCID ID
 https://orcid.org/0000-0002-9184-5556
J-GLOBAL ID
201801010256574610
Researcher ID
ABC-6667-2020
researchmap会員ID
B000296937

外部リンク

論文

 212
  • Masahiro Tsujimoto, Kumiko Morihana, Takayuki Hayashi, Takao Kitaguchi
    Publications of the Astronomical Society of Japan 70(6) 2018年12月1日  
    γ Cas and its dozen analogs comprise a small but distinct class of X-ray sources. They are early Be-type stars with an exceptionally hard thermal X-ray emission. The X-ray production mechanism has been under intense debate. Two competing ideas are (i) the magnetic activities in the Be star and its disk, and (ii) themass accretion onto the unidentified white dwarf (WD). We adopt the latter as a working hypothesis and apply physical models developed to describe the X-ray spectra of classicalWDbinaries containing a latetype companion. Models of non-magnetic and magnetic accreting WDs were applied to γ Cas and its brightest analog HD110432 using the Suzaku and NuSTAR data. The spectra were fitted by the two models, including the Fe fluorescence and the Compton reflection in a consistent geometry. The derived physical parameters are in a reasonable range in comparison to their classical WD binary counterparts. Additional pieces of evidence in the X-ray spectra-partial covering, Fe L lines, Fe I fluorescence-were not conclusive enough to classify these two sources into a subclass of accreting WD binaries. We discuss further observations, especially long-term temporal behaviors, which are important to elucidate the nature of these sources, if indeed they host accreting WDs.
  • Misaki Mizumoto, Chris Done, Kouichi Hagino, Ken Ebisawa, Masahiro Tsujimoto, Hirokazu Odaka
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY 478(1) 971-982 2018年7月  
    X-rays illuminating the accretion disc in active galactic nuclei give rise to an iron K line and its associated reflection spectrum that are lagged behind the continuum variability by the light-travel time from the source to the disc. The measured lag time-scales in the iron band can be as short as similar to R-g/c, where R-g is the gravitational radius, which is often interpreted as evidence for a very small continuum source close to the event horizon of a rapidly spinning black hole. However, the short lags can also be produced by reflection from more distant material, because the primary photons with no time-delay dilute the time-lags caused by the reprocessed photons. We perform a Monte Carlo simulation to calculate the dilution effect in the X-ray reverberation lags from a half-shell of neutral material placed at 100 R-g from the central source. This gives lags of similar to 2 R-g/c, but the iron line is a distinctly narrow feature in the lag-energy plot, whereas the data often show a broader line. We show that both the short lag and the line broadening can be reproduced, if the scattering material is outflowing at similar to 0.1c. The velocity structure in the wind can also give shifts in the line profile in the lag-energy plot calculated at different frequencies. Hence we propose that the observed broad iron reverberation lags and shifts in profile as a function of frequency of variability can arise from a disc wind at fairly large distances from the X-ray source.
  • Maurice A. Leutenegger, Marc Audard, Kevin R. Boyce, Gregory V. Brown, Meng P. Chiao, Megan E. Eckart, Ryuichi Fujimoto, Akihiro Furuzawa, Matteo Guainazzi, Daniel Haas, Takayuki Hayashi, Jan-Willem den Herder, Ryo Iizuka, Manabu Ishida, Yoshitaka Ishisaki, Naomichi Kikuchi, Caroline A. Kilbourne, Shu Koyama, Sho Kurashima, Yoshitomo Maeda, Maxim Markevitch, Dan McCammon, Kazuhisa Mitsuda, Hideyuki Mori, Nozomi Nakaniwa, Takashi Okajima, Stephane Paltani, Robert Petre, F. Scott Porter, Kosuke Sato, Toshiki Sato, Makoto Sawada, Peter J. Serlemitsos, Hiromi Seta, Gary Sneiderman, Yang Soong, Satoshi Sugita, Andrew E. Szymkowiak, Yoh Takei, Makoto Tashiro, Yuzuru Tawara, Masahiro Tsujimoto, Cor P. de Vries, Tomomi Watanabe, Shinya Yamada, Noriko Yamasaki
    JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS 4(2) 2018年4月  
    The Soft X-ray Spectrometer onboard the Astro-H (Hitomi) orbiting x-ray observatory featured an array of 36 silicon thermistor x-ray calorimeters optimized to perform high spectral resolution x-ray imaging spectroscopy of astrophysical sources in the 0.3-to 12-keV band. Extensive preflight calibration measurements are the basis for our modeling of the pulse height-energy relation and energy resolution for each pixel and event grade, telescope collecting area, detector efficiency, and pulse arrival time. Because of the early termination of mission operations, we needed to extract the maximum information from observations performed only days into the mission when the onboard calibration sources had not yet been commissioned and the dewar was still coming into thermal equilibrium, so our technique for reconstructing the per-pixel time-dependent pulse height-energy relation had to be modified. The gain scale was reconstructed using a combination of an absolute energy scale calibration at a single time using a fiducial from an onboard radioactive source and calibration of a dominant time-dependent gain drift component using a dedicated calibration pixel, as well as a residual time-dependent variation using spectra from the Perseus cluster of galaxies. The energy resolution was also measured using the onboard radioactive sources. It is consistent with instrument-level measurements accounting for the modest increase in noise due to spacecraft systems interference. We use observations of two pulsar wind nebulae to validate our models of the telescope area and detector efficiency and to derive a more accurate value for the thickness of the gate-valve Be window, which had not been opened by the time mission operations ceased. We use observations of the Crab nebula to refine the pixel-to-pixel timing and validate the absolute timing. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
  • Frederick S. Porter, Kevin R. Boyce, Meng P. Chiao, Megan E. Eckart, Ryuichi Fujimoto, Yoshitaka Ishisaki, Caroline Anne Kilbourne, Maurice A. Leutenegger, Daniel McCammon, Kazuhisa Mitsuda, Kosuke Sato, Hiromi Seta, Makoto Sawada, Gary A. Sneiderman, Andrew E. Szymkowiak, Yoh Takei, Makoto S. Tashiro, Masahiro Tsujimoto, Tomomi Watanabe, Shinya Yamada
    Journal of Astronomical Telescopes, Instruments, and Systems 4(1) 2018年1月1日  
    The soft x-ray spectrometer (SXS) instrument was launched aboard the Astro-H (Hitomi) observatory on February 17, 2016. The SXS is based on a high-sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and suborbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In preflight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous bandpass from below 0.3 keV to above 12 keV with a timing precision better than 100 μs. In addition, a solid-state anticoincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain stability and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7-eV FWHM at 6-keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here, we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in preflight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.
  • Makoto Tashiro, Hironori Maejima, Kenichi Toda, Richard Kelley, Lillian Reichenthal, James Lobell, Robert Petre, Matteo Guainazzi, Elisa Costantini, Mark Edison, Ryuichi Fujimoto, Martin Grim, Kiyoshi Hayashida, Jan Willem Den Herder, Yoshitaka Ishisaki, Stéphane Paltani, Kyoko Matsushita, Koji Mori, Gary Sneiderman, Yoh Takei, Yukikatsu Terada, Hiroshi Tomida, Hiroki Akamatsu, Lorella Angelini, Yoshitaka Arai, Hisamitsu Awaki, Lurli Babyk, Aya Bamba, Peter Barfknecht, Kim Barnstable, Thomas Bialas, Branimir Blagojevic, Joseph Bonafede, Clifford Brambora, Laura Brenneman, Greg Brown, Kimberly Brown, Laura Burns, Edgar Canavan, Tim Carnahan, Meng Chiao, Brian Comber, Lia Corrales, Cor De Vries, Johannes Dercksen, Maria DIaz-Trigo, Tyrone DIllard, Michael DIpirro, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan Eckart, Teruaki Enoto, Yuichiro Ezoe, Carlo Ferrigno, Yutaka Fujita, Yasushi Fukazawa, Akihiro Furuzawa, Luigi Gallo, Steve Graham, Liyi Gu, Kohichi Hagino, Kenji Hamaguchi, Isamu Hatsukade, Dean Hawes, Takayuki Hayashi, Cailey Hegarty, Natalie Hell, Junko Hiraga, Edmund Hodges-Kluck, Matt Holland, Ann Hornschemeier, Akio Hoshino, Yuto Ichinohe, Ryo Iizuka, Kazunori Ishibashi, Manabu Ishida, Kumi Ishikawa, Kosei Ishimura, Bryan James, Timothy Kallman, Erin Kara, Satoru Katsuda, Steven Kenyon, Caroline Kilbourne, Mark Kimball, Takao Kitaguchi, Shunji Kitamoto, Shogo Kobayashi, Takayoshi Kohmura, Shu Koyama, Aya Kubota, Maurice Leutenegger, Tom Lockard, Mike Loewenstein, Yoshitomo Maeda, Lynette Marbley, Maxim Markevitch, Connor Martz, Hironori Matsumoto
    Proceedings of SPIE - The International Society for Optical Engineering 10699 2018年  
    The ASTRO-H mission was designed and developed through an international collaboration of JAXA, NASA, ESA, and the CSA. It was successfully launched on February 17, 2016, and then named Hitomi. During the in-orbit verification phase, the on-board observational instruments functioned as expected. The intricate coolant and refrigeration systems for soft X-ray spectrometer (SXS, a quantum micro-calorimeter) and soft X-ray imager (SXI, an X-ray CCD) also functioned as expected. However, on March 26, 2016, operations were prematurely terminated by a series of abnormal events and mishaps triggered by the attitude control system. These errors led to a fatal event: the loss of the solar panels on the Hitomi mission. The X-ray Astronomy Recovery Mission (or, XARM) is proposed to regain the key scientific advances anticipated by the international collaboration behind Hitomi. XARM will recover this science in the shortest time possible by focusing on one of the main science goals of Hitomi,"Resolving astrophysical problems by precise high-resolution X-ray spectroscopy".1 This decision was reached after evaluating the performance of the instruments aboard Hitomi and the mission's initial scientific results, and considering the landscape of planned international X-ray astrophysics missions in 2020's and 2030's. Hitomi opened the door to high-resolution spectroscopy in the X-ray universe. It revealed a number of discrepancies between new observational results and prior theoretical predictions. Yet, the resolution pioneered by Hitomi is also the key to answering these and other fundamental questions. The high spectral resolution realized by XARM will not offer mere refinements; rather, it will enable qualitative leaps in astrophysics and plasma physics. XARM has therefore been given a broad scientific charge: "Revealing material circulation and energy transfer in cosmic plasmas and elucidating evolution of cosmic structures and objects". To fulfill this charge, four categories of science objectives that were defined for Hitomi will also be pursued by XARM; these include (1) Structure formation of the Universe and evolution of clusters of galaxies; (2) Circulation history of baryonic matters in the Universe; (3) Transport and circulation of energy in the Universe; (4) New science with unprecedented high resolution X-ray spectroscopy. In order to achieve these scientific objectives, XARM will carry a 6 × 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and a wider field of view. This paper introduces the science objectives, mission concept, and observing plan of XARM.
  • Y. Sekimoto, P. Ade, K. Arnold, J. Aumont, J. Austermann, C. Baccigalupi, A. Banday, R. Banerji, S. Basak, S. Beckman, M. Bersanelli, J. Borrill, F. Boulanger, M. L. Brown, M. Bucher, E. Calabrese, F. J. Casas, A. Challinor, Y. Chinone, F. Columbro, A. Cukierman, D. Curtis, P. De Bernardis, M. De Petris, M. Dobbs, T. Dotani, L. Duband, J. M. Duval, A. Ducout, K. Ebisawa, T. Elleot, H. Eriksen, J. Errard, R. Flauger, C. Franceschet, U. Fuskeland, K. Ganga, R. J. Gao, T. Ghigna, J. Grain, A. Gruppuso, N. Halverson, P. Hargrave, T. Hasebe, M. Hasegawa, M. Hattori, M. Hazumi, S. Henrot-Versille, C. Hill, Y. Hirota, E. Hivon, T. D. Hoang, J. Hubmayr, K. Ichiki, H. Imada, H. Ishino, G. Jaehnig, H. Kanai, S. Kashima, Y. Kataoka, N. Katayama, T. Kawasaki, R. Keskitalo, A. Kibayashi, T. Kikuchi, K. Kimura, T. Kisner, Y. Kobayashi, N. Kogiso, K. Kohri, E. Komatsu, K. Komatsu, K. Konishi, N. Krachmalnicoff, L. C. Kuo, N. Kurinsky, A. Kushino, L. Lamagna, T. A. Lee, E. Linder, B. Maffei, M. Maki, A. Mangilli, E. Martinez-Gonzalez, S. Masi, T. Matsumura, A. Mennella, Y. Minami, K. Mistuda, D. Molinari, L. Montier, G. Morgante, B. Mot, Y. Murata, A. Murphy, M. Nagai, R. Nagata, S. Nakamura, T. Namikawa, P. Natoli
    Proceedings of SPIE - The International Society for Optical Engineering 10698 2018年  
    LiteBIRD is a candidate for JAXA's strategic large mission to observe the cosmic microwave background (CMB) polarization over the full sky at large angular scales. It is planned to be launched in the 2020s with an H3 launch vehicle for three years of observations at a Sun-Earth Lagrangian point (L2). The concept design has been studied by researchers from Japan, U.S., Canada and Europe during the ISAS Phase-A1. Large scale measurements of the CMB B-mode polarization are known as the best probe to detect primordial gravitational waves. The goal of LiteBIRD is to measure the tensor-to-scalar ratio (r) with precision of r < 0:001. A 3-year full sky survey will be carried out with a low frequency (34 - 161 GHz) telescope (LFT) and a high frequency (89 - 448 GHz) telescope (HFT), which achieve a sensitivity of 2.5 μK-arcmin with an angular resolution 30 arcminutes around 100 GHz. The concept design of LiteBIRD system, payload module (PLM), cryo-structure, LFT and verification plan is described in this paper.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furukawa, M., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O.O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ogorzalek, A., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A.
    Publications of the Astronomical Society of Japan 70(2) 2018年  
    Thanks to its high spectral resolution (similar to 5 eV at 6 keV), the Soft X-ray Spectrometer (SXS) on board Hitomi enables us to measure the detailed structure of spatially resolved emission lines from highly ionized ions in galaxy clusters for the first time. In this series of papers, using the SXS we have measured the velocities of gas motions, metallicities and the multi-temperature structure of the gas in the core of the Perseus Cluster. Here, we show that when inferring physical properties from line emissivities in systems like Perseus, the resonant scattering effect should be taken into account. In the Hitomi waveband, resonant scattering mostly affects the Fe XXV He alpha line (w)-the strongest line in the spectrum. The flux measured by Hitomi in this line is suppressed by a factor of similar to 1.3 in the inner similar to 30 kpc, compared to predictions for an optically thin plasma; the suppression decreases with the distance from the center. The w line also appears slightly broader than other lines from the same ion. The observed distortions of the w line flux, shape, and distance dependence are all consistent with the expected effect of the resonant scattering in the Perseus core. By measuring the ratio of fluxes in optically thick (w) and thin (Fe XXV forbidden, He beta, Ly alpha) lines, and comparing these ratios with predictions from Monte Carlo radiative transfer simulations, the velocities of gas motions have been obtained. The results are consistent with the direct measurements of gas velocities from line broadening described elsewhere in this series, although the systematic and statistical uncertainties remain significant. Further improvements in the predictions of line emissivities in plasma models, and deeper observations with future X-ray missions offering similar or better capabilities to the Hitomi SXS, will enable resonant scattering measurements to provide powerful constraints on the amplitude and anisotropy of cluster gas motions.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furukawa, M., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Kato, Y., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A.
    Publications of the Astronomical Society of Japan 70(2) 2018年  
    The present paper explains the temperature structure of X-ray emitting plasma in the core of the Perseus cluster based on 1.8-20.0 keV data obtained with the Soft X-ray Spectrometer (SXS) on board the Hitomi Observatory. A series of four observations was carried out, with a total effective exposure time of 338 ks that covered a central region of ∼7 in diameter. SXS was operated with an energy resolution of ∼5 eV (full width at half maximum) at 5.9 keV. Not only fine structures of K-shell lines in He-like ions, but also transitions from higher principal quantum numbers were clearly resolved from Si through Fe. That enabled us to perform temperature diagnostics using the line ratios of Si, S, Ar, Ca, and Fe, and to provide the first direct measurement of the excitation temperature and ionization temperature in the Perseus cluster. The observed spectrum is roughly reproduced by a single-temperature thermal plasma model in collisional ionization equilibrium, but detailed line-ratio diagnostics reveal slight deviations from this approximation. In particular, the data exhibit an apparent trend of increasing ionization temperature with the atomic mass, as well as small differences between the ionization and excitation temperatures for Fe, the only element for which both temperatures could be measured. The best-fit two-temperature models suggest a combination of 3 and 5 keV gas, which is consistent with the idea that the observed small deviations from a single-temperature approximation are due to the effects of projecting the known radial temperature gradient in the cluster core along the line of sight. A comparison with the Chandra/ACIS and the XMM-Newton/RGS results, on the other hand, suggests that additional lower-temperature components are present in the intracluster medium (ICM), but not detectable with Hitomi/SXS giving its 1.8-20 keV energy band.
  • Moriya, T.J., Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., Mccammon, D., Mcnamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sato, T., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A., Tominaga, N.
    Publications of the Astronomical Society of Japan 70(2) 2018年  
    The Crab nebula originated from a core-collapse supernova (SN) explosion observed in 1054 AD. When viewed as a supernova remnant (SNR), it has an anomalously low observed ejecta mass and kinetic energy for an Fe-core-collapse SN. Intensive searches have been made for a massive shell that solves this discrepancy, but none has been detected. An alternative idea is that SN 1054 is an electron-capture (EC) explosion with a lower explosion energy by an order of magnitude than Fe-core-collapse SNe. X-ray imaging searches were performed for the plasma emission from the shell in the Crab outskirts to set a stringent upper limit on the X-ray emitting mass. However, the extreme brightness of the source hampers access to its vicinity. We thus employed spectroscopic technique using the X-ray micro-calorimeter on board the Hitomi satellite. By exploiting its superb energy resolution, we set an upper limit for emission or absorption features from as yet undetected thermal plasma in the 2-12 keV range. We also re-evaluated the existing Chandra and XMM-Newton data. By assembling these results, a new upper limit was obtained for the X-ray plasma mass of less than or similar to 1 M-circle dot for a wide range of assumed shell radius, size, and plasma temperature values both in and out of collisional equilibrium. To compare with the observation, we further performed hydrodynamic simulations of the Crab SNR for two SN models (Fe-core versus EC) under two SN environments (uniform interstellar medium versus progenitor wind). We found that the observed mass limit can be compatible with both SN models if the SN environment has a low density of less than or similar to 0.03 cm(-3) (Fe core) or less than or similar to 0.1 cm(-3) (EC) for the uniform density, or a progenitor wind density somewhat less than that provided by amass loss rate of 10(-5) M-circle dot yr(-1) at 20 km s(-1) for the wind environment.
  • Tsujimoto, M., Morihana, K., Hayashi, T., Kitaguchi, T.
    Publications of the Astronomical Society of Japan 70(6) 2018年  
    gamma Cas and its dozen analogs comprise a small but distinct class of X-ray sources. They are early Be-type stars with an exceptionally hard thermal X-ray emission. The X-ray production mechanism has been under intense debate. Two competing ideas are (i) the magnetic activities in the Be star and its disk, and (ii) the mass accretion onto the unidentified white dwarf (WD). We adopt the latter as a working hypothesis and apply physical models developed to describe the X-ray spectra of classical WD binaries containing a late-type companion. Models of non-magnetic and magnetic accreting WDs were applied to gamma Cas and its brightest analog HD 110432 using the Suzaku and NuSTAR data. The spectra were fitted by the two models, including the Fe fluorescence and the Compton reflection in a consistent geometry. The derived physical parameters are in a reasonable range in comparison to their classical WD binary counterparts. Additional pieces of evidence in the X-ray spectra - partial covering, Fe L lines, Fe I fluorescence - were not conclusive enough to classify these two sources into a subclass of accreting WD binaries. We discuss further observations, especially long-term temporal behaviors, which are important to elucidate the nature of these sources, if indeed they host accreting WDs.
  • Suzuki, A., Ade, P.A.R., Akiba, Y., Alonso, D., Arnold, K., Aumont, J., Baccigalupi, C., Barron, D., Basak, S., Beckman, S., Borrill, J., Boulanger, F., Bucher, M., Calabrese, E., Chinone, Y., Cho, S., Crill, B., Cukierman, A., Curtis, D.W., de Haan, T., Dobbs, M., Dominjon, A., Dotani, T., Duband, L., Ducout, A., Dunkley, J., Duval, J.M., Elleflot, T., Eriksen, H.K., Errard, J., Fischer, J., Fujino, T., Funaki, T., Fuskeland, U., Ganga, K., Goeckner-Wald, N., Grain, J., Halverson, N.W., Hamada, T., Hasebe, T., Hasegawa, M., Hattori, K., Hattori, M., Hayes, L., Hazumi, M., Hidehira, N., Hill, C.A., Hilton, G., Hubmayr, J., Ichiki, K., Iida, T., Imada, H., Inoue, M., Inoue, Y., Irwin, K.D., Ishino, H., Jeong, O., Kanai, H., Kaneko, D., Kashima, S., Katayama, N., Kawasaki, T., Kernasovskiy, S.A., Keskitalo, R., Kibayashi, A., Kida, Y., Kimura, K., Kisner, T., Kohri, K., Komatsu, E., Komatsu, K., Kuo, C.L., Kurinsky, N.A., Kusaka, A., Lazarian, A., Lee, A.T., Li, D., Linder, E., Maffei, B., Mangilli, A., Maki, M., Matsumura, T., Matsuura, S., Meilhan, D., Mima, S., Minami, Y., Mitsuda, K., Montier, L., Nagai, M., Nagasaki, T., Nagata, R., Nakajima, M., Nakamura, S., Namikawa, T., Naruse, M., Nishino, H., Nitta, T., Noguchi, T., Ogawa, H., Oguri, S., Okada, N., Okamoto, A., Okamura, T., Otani, C., Patanchon, G., Pisano, G., Rebeiz, G., Remazeilles, M., Richards, P.L., Sakai, S., Sakurai, Y., Sato, Y., Sato, N., Sawada, M., Segawa, Y., Sekimoto, Y., Seljak, U., Sherwin, B.D., Shimizu, T., Shinozaki, K., Stompor, R., Sugai, H., Sugita, H., Suzuki, J., Tajima, O., Takada, S., Takaku, R., Takakura, S., Takatori, S., Tanabe, D., Taylor, E., Thompson, K.L., Thorne, B., Tomaru, T., Tomida, T., Tomita, N., Tristram, M., Tucker, C., Turin, P., Tsujimoto, M., Uozumi, S., Utsunomiya, S., Uzawa, Y., Vansyngel, F., Wehus, I.K., Westbrook, B., Willer, M., Whitehorn, N., Yamada, Y., Yamamoto, R., Yamasaki, N., Yamashita, T., Yoshida, M.
    Journal of Low Temperature Physics 2018年  
  • Fujimoto, R., Takei, Y., Mitsuda, K., Yamasaki, N.Y., Tsujimoto, M., Koyama, S., Ishikawa, K., Sugita, H., Sato, Y., Shinozaki, K., Okamoto, A., Kitamoto, S., Hoshino, A., Sato, K., Ezoe, Y., Ishisaki, Y., Yamada, S., Seta, H., Ohashi, T., Tamagawa, T., Noda, H., Sawada, M., Tashiro, M., Yatsu, Y., Mitsuishi, I., Kanao, K., Yoshida, S., Miyaoka, M., Tsunematsu, S., Otsuka, K., Narasaki, K., DiPirro, M.J., Shirron, P.J., Sneiderman, G.A., Kilbourne, C.A., Porter, F.S., Chiao, M.P., Eckart, M.E.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(1) 2018年  
    The soft x-ray spectrometer (SXS) was a cryogenic high-resolution x-ray spectrometer onboard the Hitomi (ASTRO-H) satellite that achieved energy resolution of 5 eV at 6 keV, by operating the detector array at 50 mK using an adiabatic demagnetization refrigerator (ADR). The cooling chain from room temperature to the ADR heat sink was composed of two-stage Stirling cryocoolers, a 4He Joule-Thomson cryocooler, and superfluid liquid helium and was installed in a dewar. It was designed to achieve a helium lifetime of more than 3 years with a minimum of 30 L. The satellite was launched on February 17, 2016, and the SXS worked perfectly in orbit, until March 26 when the satellite lost its function. It was demonstrated that the heat load on the helium tank was about 0.7 mW, which would have satisfied the lifetime requirement. This paper describes the design, results of ground performance tests, prelaunch operations, and initial operation and performance in orbit of the flight dewar and the cryocoolers.
  • Tsujimoto, M., Mitsuda, K., Kelley, R.L., Den Herder, J.-W., Bialas, T.G., Boyce, K.R., Chiao, M.P., De Vries, C.P., Dipirro, M.J., Eckart, M.E., Ezoe, Y., Fujimoto, R., Hoshino, A., Ishikawa, K., Ishisaki, Y., Kilbourne, C.A., Koyama, S., Leutenegger, M.A., Masters, C.M., Mitsuishi, I., Noda, H., Okajima, T., Okamoto, A., Porter, F.S., Sato, K., Sato, Y., Savinell, J.C., Sawada, M., Seta, H., Shirron, P.J., Sneiderman, G.A., Takei, Y., Tamagawa, T., Tashiro, M.S., Watanabe, T., Yamada, S., Yamasaki, N.Y., Yatsu, Y.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(1) 2018年  
    We summarize all of the in-orbit operations of the soft x-ray spectrometer (SXS) onboard the ASTRO-H (Hitomi) satellite. The satellite was launched on February 17, 2016, and the communication with the satellite ceased on March 26, 2016. The SXS was still in the commissioning phase, in which the set-ups were progressively changed. This paper is intended to serve as a concise reference of the events in orbit in order to properly interpret the SXS data taken during its short lifetime and as a test case for planning the in-orbit operation for future microcalorimeter missions. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
  • Ishisaki, Y., Yamada, S., Seta, H., Tashiro, M.S., Takeda, S., Terada, Y., Kato, Y., Tsujimoto, M., Koyama, S., Mitsuda, K., Sawada, M., Boyce, K.R., Chiao, M.P., Watanabe, T., Leutenegger, M.A., Eckart, M.E., Porter, F.S., Kilbourne, C.A.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(1) 2018年  
    We summarize results of the initial in-orbit performance of the pulse shape processor (PSP) of the soft x-ray spectrometer instrument onboard ASTRO-H (Hitomi). Event formats, kind of telemetry, and the pulse-processing parameters are described, and the parameter settings in orbit are listed. The PSP was powered-on 2 days after launch, and the event threshold was lowered in orbit. The PSP worked fine in orbit, and there was neither memory error nor SpaceWire communication error until the break-up of spacecraft. Time assignment, electrical crosstalk, and the event screening criteria are studied. It is confirmed that the event processing rate at 100% central processing unit load is ∼200 c / s / array, compliant with the requirement on the PSP.
  • Ishisaki, Y., Ezoe, Y., Yamada, S., Ichinohe, Y., Fujimoto, R., Takei, Y., Yasuda, S., Ishida, M., Yamasaki, N.Y., Maeda, Y., Tsujimoto, M., Iizuka, R., Koyama, S., Noda, H., Tamagawa, T., Sawada, M., Sato, K., Kitamoto, S., Hoshino, A., Brown, G.V., Eckart, M.E., Hayashi, T., Kelley, R.L., Kilbourne, C.A., Leutenegger, M.A., Mori, H., Okajima, T., Porter, F.S., Soong, Y., McCammon, D., Szymkowiak, A.E.
    Journal of Low Temperature Physics 2018年  
  • AHARONIAN Felix, AKAMATSU Hiroki, AKIMOTO Fumie, ALLEN Steven W., ALLEN Steven W., ANGELINI Lorella, AUDARD Marc, AWAKI Hisamitsu, AXELSSON Magnus, BAMBA Aya, BAUTZ Marshall W., BLANDFORD Roger, BLANDFORD Roger, BRENNEMAN Laura W., BROWN Gregory V., BULBUL Esra, CACKETT Edward M., CHERNYAKOVA Maria, CHIAO Meng P., COPPI Paolo S., COSTANTINI Elisa, DE PLAA Jelle, DE VRIES Cor P., DEN HERDER Jan-Willem, DONE Chris, DOTANI Tadayasu, EBISAWA Ken, ECKART Megan E., ENOTO Teruaki, EZOE Yuichiro, FABIAN Andrew C., FERRIGNO Carlo, FOSTER Adam R., FUJIMOTO Ryuichi, FUKAZAWA Yasushi, FURUZAWA Akihiro, GALEAZZI Massimiliano, GALLO Luigi C., GANDHI Poshak, GIUSTINI Margherita, GOLDWURM Andrea, GOLDWURM Andrea, GU Liyi, GUAINAZZI Matteo, HABA Yoshito, HAGINO Kouichi, HAMAGUCHI Kenji, HAMAGUCHI Kenji, HARRUS Ilana M., HARRUS Ilana M., HATSUKADE Isamu, HAYASHI Katsuhiro, HAYASHI Takayuki, HAYASHIDA Kiyoshi, HIRAGA Junko S., HORNSCHEMEIER Ann, HOSHINO Akio, HUGHES John P., ICHINOHE Yuto, IIZUKA Ryo, INOUE Hajime, INOUE Yoshiyuki, ISHIDA Manabu, ISHIKAWA Kumi, ISHISAKI Yoshitaka, IWAI Masachika, KAASTRA Jelle, KAASTRA Jelle, KALLMAN Tim, KAMAE Tsuneyoshi, KATAOKA Jun, KATSUDA Satoru, KAWAI Nobuyuki, KELLEY Richard L., KILBOURNE Caroline A., KITAGUCHI Takao, KITAMOTO Shunji, KITAYAMA Tetsu, KOHMURA Takayoshi, KOKUBUN Motohide, KOYAMA Katsuji, KOYAMA Shu, KRETSCHMAR Peter, KRIMM Hans A., KRIMM Hans A., KUBOTA Aya, KUNIEDA Hideyo, LAURENT Philippe, LAURENT Philippe, LEE Shiu-Hang, LEUTENEGGER Maurice A., LIMOUSIN Olivier O., LOEWENSTEIN Michael, LONG Knox S., LUMB David, MADEJSKI Greg, MAEDA Yoshitomo, MAIER Daniel, MAIER Daniel, MAKISHIMA Kazuo, MARKEVITCH Maxim, MATSUMOTO Hironori, MATSUSHITA Kyoko, MCCAMMON Dan, MCNAMARA Brian R., MEHDIPOUR Missagh, MILLER Eric D., MILLER Jon M., MINESHIGE Shin, MITSUDA Kazuhisa, MITSUISHI Ikuyuki, MIYAZAWA Takuya, MIZUNO Tsunefumi, MORI Hideyuki, MORI Koji
    Publications of the Astronomical Society of Japan 70(2) 2018年  
  • M. Tsujimoto, H. Nishino, M. Hazumi, Y. Sekimoto, T. Dotani, H. Ishino, A. Kibayashi, Y. Sakurai, T. Matsumura, M. Dobbs, J. F. Cliche, G. Smecher, A. Suzuki, A. T. Lee, K. Arnold, L. Montier, B. Mot, G. Signorelli, P. De Bernardis
    Proceedings of SPIE - The International Society for Optical Engineering 10698 2018年  
    © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. LiteBIRD is a space-borne project for mapping the anisotropy of the linear polarization of the cosmic microwave background (CMB). The project aims to measure the B-mode pattern in a large angular scale to test the cosmic inflation theory. It is currently in the design phase lead by an international team of Japan, US, Canada, and Europe. We report the current status of the design of the electrical architecture of the payload module of the satellite, which is based on the heritages of other cryogenic space science missions using bolometers or microcalorimeters.
  • Koki Okazaki, Kiyoshi Hayashida, Hiroshi Nakajima, Riku Shomura, Tomokage Yoneyama, Hironori Matsumoto, Hiroshi Tsunemi, Koji Mori, Masahiro Tsujimoto, Yoshitomo Maeda, Ken Ebisawa
    HIGH ENERGY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY VIII 10709 2018年  
    X-ray Imaging Spectrometers (XIS) are the X-ray CCD cameras onboard Suzaku. They were operated in orbit from 2005 to 2015 and produced lots of findings with their good energy resolution and low non X-rat background. Precise calibration including the 10 eV accuracy in the energy scale reinforced them. Nevertheless, there has been a unresolved calibration issue in the spectral response around the Si-K edge (1.839 keV) appearing as systematic residuals up to 10%. The residual is negative peaking at 1.85 keV in the front illuminated (FI) sensors and positive peaking at 1.8 keV in the back illuminated (BI) sensor for X-ray sources dominated by continuum X-ray emission. Various attempts to eliminate these residuals by changing response parameters or quantum efficiency models have been insufficient. In this paper, we revisit this problem by focusing on the relation between incident X-ray energy and pulse height. We introduce a jump in that relation at the Si-K edge by modifying the, and optimize its value so as to minimize the residuals in the fit of the X-ray spectra for the black hole binary LMC X-3, a source dominated by continuum emission. We find the introduction of a jump significantly reduces the residuals. The optimized jump values are +4.2 channel, +4.0 channel, and -3.1 channel, corresponding to 15.3 eV, 11.3 eV, and 14.6 eV, for XIS0, XIS3 (FI), and XIS1 (BI), respectively. The direction of the jump is opposite for the FI and for the BI. We revise the response matrices generator so as to include the jump for each XIS sensor, and apply it to the X-ray spectra of the Perseus cluster of galaxies which has various emission lines in the spectra, and the blazar PKS2155-304 which was observed various epoch in the Suzakuoperation. We confirm the residuals are significantly reduced for these sources, too. We finally suggest the jump at Si-K edge in the energy and pulse height relation is qualitatively explained, if some of charges are lost in course of charger collection to the electrode of the CCD in the depletion later, and its amount is large for larger travel length in the depletion layer. If this explanation is correct, the Si-K edge problem and its solution presented in this paper is not specific only for the SuzakuXIS but also for other X-ray CCDs.
  • Takashi Hasebe, Shingo Kashima, Satoru Uozumi, Hirokazu Ishino, Shin Utsunomiya, Hirohumi Noda, Kazuhisa Mitsuda, Yutaro Sekimoto, Tadayasu Dotani, Tomotake Matsumura, Hajime Sugai, Masahiro Tsujimoto, Hiroaki Imada, Masashi Hazumi
    SPACE TELESCOPES AND INSTRUMENTATION 2018: OPTICAL, INFRARED, AND MILLIMETER WAVE 10698 2018年  
    The conceptual thermal design of the payload module (PLM) of LiteBIRD utilizing radiative cooling is studied. The thermal environment and structure design of the PLM strongly depend on the precession angle alpha of the spacecraft. In this study, the geometrical models of the PLM that consist of the sunshield, three layers of V-grooves, and 5 K shield were designed in the cases of alpha = 45 degrees; 30 degrees, and 5 degrees. The mission instruments of LiteBIRD are cooled down below 5 K. Therefore, heat transfers down to the 5 K cryogenic part were estimated in each case of alpha. The radiative heat transfers were calculated by using geometrical models of the PLM. The conductive heat transfers and the active cooling with cryocoolers were considered. We also studied the case that the inner surface of the V-groove is coated by a high-emissivity material.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, L., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A., Sato, T., Nakaniwa, N., Murakami, H., Guest, B.
    Publications of the Astronomical Society of Japan 70(3) 2018年  
    We present results from the Hitomi X-ray observation of a young composite-type supernova remnant (SNR) G21.5-0.9, whose emission is dominated by the pulsar wind nebula (PWN) contribution. The X-ray spectra in the 0.8-80 keV range obtained with the Soft X-ray Spectrometer (SXS), Soft X-ray Imager, and Hard X-ray Imager (HXI) show a significant break in the continuum as previously found with the NuSTAR observation. After taking into account all known emissions from the SNR other than the PWN itself, we find that the Hitomi spectra can be fitted with a broken power law with photon indices of 1 = 1.74 ± 0.02 and 2 = 2.14 ± 0.01 below and above the break at 7.1 ± 0.3 keV, which is significantly lower than the NuSTAR result (∼9.0 keV). The spectral break cannot be reproduced by time-dependent particle injection one-zone spectral energy distribution models, which strongly indicates that a more complex emission model is needed, as suggested by recent theoretical models. We also search for narrow emission or absorption lines with the SXS, and perform a timing analysis of PSR J1833-1034 with the HXI and the Soft Gamma-ray Detector. No significant pulsation is found from the pulsar. However, unexpectedly, narrow absorption line features are detected in the SXS data at 4.2345 keV and 9.296 keV with a significance of 3.65 s. While the origin of these features is not understood, their mere detection opens up a new field of research and was only possible with the high resolution, sensitivity, and ability to measure extended sources provided by an X-ray microcalorimeter.
  • Takahashi, T., Kokubun, M., Mitsuda, K., Kelley, R.L., Ohashi, T., Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Anabuki, N., Angelini, L., Arnaud, K., Asai, M., Audard, M., Awaki, H., Axelsson, M., Azzarello, P., Baluta, C., Bamba, A., Bando, N., Bautz, M.W., Bialas, T., Blandford, R., Boyce, K., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Canavan, E., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., O' Dell, S., DiPirro, M., Done, C., Dotani, T., Doty, J., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Funk, S., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Gilmore, K., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haas, D., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, T., Hayashi, K., Hayashida, K., Den Herder, J.-W., Hiraga, J.S., Hirose, K., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishibashi, K., Ishida, M., Ishikawa, K., Ishimura, K., Ishisaki, Y., Itoh, M., Iwai, M., Iwata, N., Iyomoto, N., Jewell, C., Kaastra, J., Kallman, T., Kamae, T., Kara, E., Kataoka, J., Katsuda, S., Katsuta, J., Kawaharada, M., Kawai, N., Kawano, T., Kawasaki, S., Khangulyan, D., Kilbourne, C.A., Kimball, M., King, A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Konami, S., Kosaka, T., Koujelev, A., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Masters, C., Matsumoto, H., Matsushita, K., McCammon, D., Mcguinness, D., McNamara, B.R., Mehdipour, M., Miko, J., Miller, E.D., Miller, J.M., Mineshige, S., Minesugi, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Moroso, F., Moseley, H., Muench, T., Mukai, K., Murakami, H., Murakami, T., Mushotzky, R.F., Nagano, H., Nagino, R., Nakagawa, T., Nakajima, H., Nakamori, T., Nakano, T., Nakashima, S., Nakazawa, K., Namba, Y., Natsukari, C., Nishioka, Y., Nobukawa, K.K., Nobukawa, M., Noda, H., Nomachi, M., Odaka, H., Ogawa, H., Ogawa, M., Ogi, K., Ohno, M., Ohta, M., Okajima, T., Okamoto, A., Okazaki, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Parmar, A., Petre, R., Pinto, C., De Plaa, J., Pohl, M., Pontius, J., Porter, F.S., Pottschmidt, K., Ramsey, B., Reynolds, C., Russell, H., Safi-Harb, S., Saito, S., Sakai, K., Sakai, S.-I., Sameshima, H., Sasaki, T., Sato, G., Sato, K., Sato, R., Sato, Y., Sawada, M., Schartel, N., Serlemitsos, P.J., Seta, H., Shibano, Y., Shida, M., Shidatsu, M., Shimada, T., Shinozaki, K., Shirron, P., Simionescu, A., Simmons, C., Smith, R.K., Sneiderman, G., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Sugita, H., Szymkowiak, A., Tajima, H., Takahashi, H., Shin'ichiro, T., Takei, Y., Tamagawa, T., Tamura, T., Tamura, K., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Ueno, S., Shin'ichiro, U., Megan Urry, C., Ursino, E., De Vries, C.P., Wada, A., Watanabe, S., Watanabe, T., Werner, N., Wik, D.R., Wilkins, D.R., Williams, B.J., Yamada, S., Yamada, T., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Yoshida, A., Yuasa, T., Zhuravleva, I., Zoghbi, A.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(2) 2018年  
    The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sato, T., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A.
    Publications of the Astronomical Society of Japan 70(2) 2018年  
    We present Hitomi observations of N 132 D, a young, X-ray bright, O-rich core-collapse supernova remnant in the Large Magellanic Cloud (LMC). Despite a very short observation of only 3.7 ks, the Soft X-ray Spectrometer (SXS) easily detects the line complexes of highly ionized S K and Fe K with 16-17 counts in each. The Fe feature is measured for the first time at high spectral resolution. Based on the plausible assumption that the Fe K emission is dominated by He-like ions, we find that the material responsible for this Fe emission is highly redshifted at ∼ 800 km s−1 compared to the local LMC interstellar medium (ISM), with a 90% credible interval of 50-1500 km s−1 if a weakly informative prior is placed on possible line broadening. This indicates (1) that the Fe emission arises from the supernova ejecta, and (2) that these ejecta are highly asymmetric, since no blueshifted component is found. The S K velocity is consistent with the local LMC ISM, and is likely from swept-up ISM material. These results are consistent with spatial mapping that shows the He-like Fe concentrated in the interior of the remnant and the S tracing the outer shell. The results also show that even with a very small number of counts, direct velocity measurements from Doppler-shifted lines detected in extended objects like supernova remnants are now possible. Thanks to the very low SXS background of ∼ 1 event per spectral resolution element per 100 ks, such results are obtainable during short pointed or slew observations with similar instruments. This highlights the power of high-spectral-resolution imaging observations, and demonstrates the new window that has been opened with Hitomi and will be greatly widened with future missions such as the X-ray Astronomy Recovery Mission (XARM) and Athena.
  • Kilbourne, C.A., Sawada, M., Tsujimoto, M., Angellini, L., Boyce, K.R., Eckart, M.E., Fujimoto, R., Ishisaki, Y., Kelley, R.L., Koyama, S., Leutenegger, M.A., Loewenstein, M., McCammon, D., Mitsuda, K., Nakashima, S., Porter, F.S., Seta, H., Takei, Y., Tashiro, M.S., Terada, Y., Yamada, S., Yamasaki, N.Y.
    Publications of the Astronomical Society of Japan 70(2) 2018年  
    The X-Ray Spectrometer (XRS) instrument of Suzaku provided the first measurement of the non-X-ray background (NXB) of an X-ray calorimeter spectrometer, but the data set was limited. The Soft X-ray Spectrometer (SXS) instrument of Hitomi was able to provide a more detailed picture of X-ray calorimeter background, with more than 360 ks of data while pointed at the Earth, and a comparable amount of blank-sky data. These data are important not only for analyzing SXS science data, but also for categorizing the contributions to the NXB in X-ray calorimeters as a class. In this paper, we present the contributions to the SXS NXB, the types and effectiveness of the screening, the interaction of the screening with the broad-band redistribution, and the residual background spectrum as a function of magnetic cut-off rigidity. The orbit-averaged SXS NXB in the range 0.3-12 keV was 4 x 10(-2) counts s(-1) cm(-2). This very low background in combination with groundbreaking spectral resolution gave SXS unprecedented sensitivity to weak spectral lines.
  • Tsujimoto, M., Okajima, T., Eckart, M.E., Hayashi, T., Hoshino, A., Iizuka, R., Kelley, R.L., Kilbourne, C.A., Leutenegger, M.A., Maeda, Y., Mori, H., Porter, F.S., Sato, K., Sato, T., Serlemitsos, P.J., Szymkowiak, A., Yaqoob, T.
    Publications of the Astronomical Society of Japan 70(2) 2018年  
    We present the result of the in-flight calibration of the effective area of the Soft X-ray Spectrometer (SXS) on board the Hitomi X-ray satellite using an observation of the Crab nebula. We corrected for artifacts when observing high count rate sources with the Xray microcalorimeter. We then constructed a spectrum in the 0.5-20 keV band, which we modeled with a single power-law continuum attenuated by interstellar extinction. We evaluated the systematic uncertainty of the spectral parameters by various calibration items. In the 2-12 keV band, the SXS result is consistent with the literature values in flux (2.20 +/- 0.08 x 10(-8) erg s(-1) cm(-2) with a 1 sigma statistical uncertainty) but is softer in the power-law index (2.19 +/- 0.11). The discrepancy is attributable to the systematic uncertainty of about +6%/-7% and +2%/-5% respectively for the flux and the power-law index. The softer spectrum is affected primarily by the systematic uncertainty of the Dewar gate valve transmission and the event screening.
  • Maeda, Y., Sato, T., Hayashi, T., Iizuka, R., Angelini, L., Asai, R., Furuzawa, A., Kelley, R., Koyama, S., Kurashima, S., Ishida, M., Mori, H., Nakaniwa, N., Okajima, T., Serlemitsos, P.J., Tsujimoto, M., Yaqoob, T.
    Publications of the Astronomical Society of Japan 70(2) 2018年  
    We present results of inflight calibration of the point spread function of the Soft X-ray Telescope that focuses X-rays onto the pixel array of the Soft X-ray Spectrometer system. We make a full array image of a point-like source by extracting a pulsed component of the Crab nebula emission. Within the limited statistics afforded by an exposure time of only 6.9 ks and limited knowledge of the systematic uncertainties, we find that the raytracing model of 1.'2 half-power-diameter is consistent with an image of the observed event distributions across pixels. The ratio between the Crab pulsar image and the raytracing shows scatter from pixel to pixel that is 40% or less in all except one pixel. The pixel-to-pixel ratio has a spread of 20%, on average, for the 15 edge pixels, with an averaged statistical error of 17% (1 sigma). In the central 16 pixels, the corresponding ratio is 15% with an error of 6%.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O.O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemitsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A., Kawamuro, T.
    Publications of the Astronomical Society of Japan 70(2) 2018年  
    The origin of the narrow Fe-Kα fluorescence line at 6.4 keV from active galactic nuclei has long been under debate; some of the possible sites are the outer accretion disk, the broad line region, a molecular torus, or interstellar/intracluster media. In 2016 February-March, we performed the first X-ray microcalorimeter spectroscopy with the Soft X-ray Spectrometer (SXS) on board the Hitomi satellite of the Fanaroff-Riley type I radio galaxy NGC 1275 at the center of the Perseus cluster of galaxies. With the high-energy resolution of ∼5 eV at 6 keV achieved by Hitomi/SXS, we detected the Fe-Kα line with ∼5.4 σ significance. The velocity width is constrained to be 500-1600 km s−1 (FWHM for Gaussian models) at 90% confidence. The SXS also constrains the continuum level from the NGC 1275 nucleus up to ∼20 keV, giving an equivalent width of ∼20 eV for the 6.4 keV line. Because the velocity width is narrower than that of the broad Hα line of ∼2750 km s−1, we can exclude a large contribution to the line flux from the accretion disk and the broad line region. Furthermore, we performed pixel map analyses on the Hitomi/SXS data and image analyses on the Chandra archival data, and revealed that the Fe-Kα line comes from a region within ∼1.6 kpc of the NGC 1275 core, where an active galactic nucleus emission dominates, rather than that from intracluster media. Therefore, we suggest that the source of the Fe-Kα line from NGC 1275 is likely a low-covering-fraction molecular torus or a rotating molecular disk which probably extends from a parsec to hundreds of parsecs scale in the active galactic nucleus system.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Shiu-Hang, L.E.E., Leutenegger, M.A., Limousin, O.O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Oshimizu, K., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A., Terasawa, T., Sekido, M., Takefuji, K., Kawai, E., Misawa, H., Tsuchiya, F., Yamazaki, R., Kobayashi, E., Kisaka, S., Aoki, T.
    Publications of the Astronomical Society of Japan 70(2) 2018年  
    To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2 - 300 keV band and the Kashima NICT radio observatory in the 1.4 - 1.7 GHz band with a net exposure of about 2 ks on 25 March 2016, just before the loss of the Hitomi mission. The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1,000 and 100 GRPs were simultaneously observed at the main and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main or inter-pulse phases. All variations are within the 2 sigma fluctuations of the X-ray fluxes at the pulse peaks, and the 3 sigma upper limits of variations of main- or inter-pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2 - 300 keV band. The values become 25% or 110% for main or inter-pulse GRPs, respectively, when the phase width is restricted into the 0.03 phase. Among the upper limits from the Hitomi satellite, those in the 4.5-10 keV and the 70-300 keV are obtained for the first time, and those in other bands are consistent with previous reports. Numerically, the upper limits of main- and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) ×10-11 erg cm-2, respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere and the number of photon-emitting particles temporally increases. However, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a > 0.02% brightening of the pulse-peak flux under such conditions.
  • Eckart, M.E., Adams, J.S., Boyce, K.R., Brown, G.V., Chiao, M.P., Fujimoto, R., Haas, D., Den Herder, J.-W., Hoshino, A., Ishisaki, Y., Kilbourne, C.A., Kitamoto, S., Leutenegger, M.A., McCammon, D., Mitsuda, K., Porter, F.S., Sato, K., Sawada, M., Seta, H., Sneiderman, G.A., Szymkowiak, A.E., Takei, Y., Tashiro, M.S., Tsujimoto, M., De Vries, C.P., Watanabe, T., Yamada, S., Yamasaki, N.Y.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(2) 2018年  
    The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-Throughput soft x-ray telescope to enable high-resolution nondispersive spectroscopy in the soft x-ray waveband (0.3 to 12 keV). We present the suite of ground calibration measurements acquired from 2012 to 2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line-spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.
  • Tsujimoto, M., Tashiro, M.S., Ishisaki, Y., Yamada, S., Seta, H., Mitsuda, K., Boyce, K.R., Eckart, M.E., Kilbourne, C.A., Leutenegger, M.A., Porter, F.S., Kelley, R.L.
    Journal of Low Temperature Physics 193(3-4) 505-511 2018年  
    The pulse shape processor is the onboard digital electronics unit of the X-ray microcalorimeter instrument—the soft X-ray spectrometer—onboard the Hitomi satellite. It processes X-ray events using the optimum filtering with limited resources. It was operated for 36 days in orbit continuously without issues and met the requirement of processing a 150s-1 event rate during the observation of bright sources. Here, we present the results obtained in orbit, focusing on its performance as the onboard digital signal processing unit of an X-ray microcalorimeter.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, L., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A., Uchida, Y.
    Publications of the Astronomical Society of Japan 70(6) 2018年  
    We present the results from the Hitomi Soft Gamma-ray Detector (SGD) observation of the Crab nebula. The main part of SGD is a Compton camera, which in addition to being a spectrometer, is capable of measuring polarization of gamma-ray photons. The Crab nebula is one of the brightest X-ray / gamma-ray sources on the sky, and, the only source from which polarized X-ray photons have been detected. SGD observed the Crab nebula during the initial test observation phase of Hitomi. We performed the data analysis of the SGD observation, the SGD background estimation and the SGD Monte Carlo simulations, and, successfully detected polarized gamma-ray emission from the Crab nebula with only about 5 ks exposure time. The obtained polarization fraction of the phase-integrated Crab emission (sum of pulsar and nebula emissions) is (22.1% +/- 10.6%), and, the polarization angle is 110.degrees 7 + 13.degrees 2 /-13.degrees 0 in the energy range of 60-160 keV (The errors correspond to the 1 sigma deviation). The confidence level of the polarization detection was 99.3%. The polarization angle measured by SGD is about one sigma deviation with the projected spin axis of the pulsar, 124.degrees 0 +/- 0.degrees 1.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hell, N., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A., Raassen, A.J.J.
    Publications of the Astronomical Society of Japan 70(2) 2018年  
    The Hitomi Soft X-ray Spectrometer spectrum of the Perseus cluster, with ∼5 eV resolution in the 2-9 keV band, offers an unprecedented benchmark of the atomic modeling and database for hot collisional plasmas. It reveals both successes and challenges of the current atomic data and models. The latest versions of AtomDB/APEC (3.0.8), SPEX (3.03.00), and CHIANTI (8.0) all provide reasonable fits to the broad-band spectrum, and are in close agreement on best-fit temperature, emission measure, and abundances of a few elements such as Ni. For the Fe abundance, the APEC and SPEX measurements differ by 16%, which is 17 times higher than the statistical uncertainty. This is mostly attributed to the differences in adopted collisional excitation and dielectronic recombination rates of the strongest emission lines. We further investigate and compare the sensitivity of the derived physical parameters to the astrophysical source modeling and instrumental effects. The Hitomi results show that accurate atomic data and models are as important as the astrophysical modeling and instrumental calibration aspects. Substantial updates of atomic databases and targeted laboratory measurements are needed to get the current data and models ready for the data from the next Hitomi-level mission.
  • Alle, S.W., Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O.O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., Mccammon, D., Mcnamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Suru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A., Nakaniwa, N.
    Publications of the Astronomical Society of Japan 70(2) 2018年  
    We report on a Hitomi observation of IGRJ16318-4848, a high-mass X-ray binary system with an extremely strong absorption of NH ∼ 1024cm 2. Previous X-ray studies revealed that its spectrum is dominated by strong fluorescence lines of Fe as well as continuum emission lines. For physical and geometrical insight into the nature of the reprocessing material, we utilized the high spectroscopic resolving power of the X-ray microcalorimeter (the soft X-ray spectrometer: SXS) and the wide-band sensitivity by the soft and hard X-ray imagers (SXI and HXI) aboard Hitomi. Even though the photon counts are limited due to unintended off-axis pointing, the SXS spectrum resolves Fe Kα1 and Kα2 lines and puts strong constraints on the line centroid and line width. The line width corresponds to a velocity of 160+-37000 km s-1. This represents the most accurate, and smallest, width measurement of this line made so far from the any X-ray binary, much less than the Doppler broadening and Doppler shift expected from speeds that are characteristic of similar systems. Combined with the K-shell edge energy measured by the SXI and HXI spectra, the ionization state of Fe is estimated to be in the range of Fe I-IV. Considering the estimated ionization parameter and the distance between the X-ray source and the absorber, the density and thickness of the materials are estimated. The extraordinarily strong absorption and the absence of a Compton shoulder component have been confirmed. These characteristics suggest reprocessing materials that are distributed in a narrow solid angle or scattering, primarily by warm free electrons or neutral hydrogen. This measurement was achieved using the SXS detection of 19 photons. It provides strong motivation for follow-up observations of this and other X-ray binaries using the X-ray Astrophysics Recovery Mission and other comparable future instruments.
  • Sneiderman, G.A., Shirron, P.J., Fujimoto, R., Bialas, T.G., Boyce, K.R., Chiao, M.P., DiPirro, M.J., Eckart, M.E., Hartz, L., Ishisaki, Y., Kilbourne, C.A., Masters, C., McCammon, D., Mitsuda, K., Noda, H., Porter, F.S., Szymkowiak, A.E., Takei, Y., Tsujimoto, M., Yoshida, S.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(2) 2018年  
    The Soft X-ray Spectrometer (SXS) is the first space-based instrument to implement operational redundancy of a sub-Kelvin cooling system. Its cooling system includes a superfluid helium cryostat and five cryocoolers, provided by Japan Aerospace Exploration Agency, and three adiabatic demagnetization refrigerators (ADRs) with four active heat switches, provided by NASA. These elements are configured in one of two ways to control the heat sink of the x-ray microcalorimeter detectors at 50 mK. The "helium mode," the simpler of the two modes, is used while liquid helium is present and uses all five cryocoolers and two ADRs. The first two ADR stages operate together and reject their heat directly to the liquid at ∼1.1 K. In the "cryogen-free mode," for operation after the helium is depleted, the first stage ADR operation is unchanged, the second stage is repurposed to control the empty helium tank at ∼1.5 K, and the third stage transfers heat from the 1.5-K stage to the 4.5-K interface of the Joule-Thomson cooler. The development and verification details of this capability are presented within this paper and offer valuable insights into the challenges, successes, and lessons that can benefit other missions, particularly those employing cryogen-free or hybrid cooling systems.
  • Aharonia, F., Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Canning, R.E.A., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, S., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., Mccammon, D., Mcnamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Amagawa, T.T., Tamura, T., Tanaka, K., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Erashima, Y.T., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Wang, Q.H.S., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A.
    Publications of the Astronomical Society of Japan 70(2) 2018年  
    Extending the earlier measurements reported in Hitomi collaboration (2016, Nature, 535, 117), we examine the atmospheric gas motions within the central 100kpc of the Perseus cluster using observations obtained with the Hitomi satellite. After correcting for the point spread function of the telescope and using optically thin emission lines, we find that the line-of-sight velocity dispersion of the hot gas is remarkably low and mostly uniform. The velocity dispersion reaches a maxima of approximately 200 km s-1 toward the central active galactic nucleus (AGN) and toward the AGN inflated northwestern "ghost" bubble. Elsewhere within the observed region, the velocity dispersion appears constant around 100 km s-1. We also detect a velocity gradient with a 100 km s-1 amplitude across the cluster core, consistent with large-scale sloshing of the core gas. If the observed gas motions are isotropic, the kinetic pressure support is less than 10% of the thermal pressure support in the cluster core. The well-resolved, optically thin emission lines have Gaussian shapes, indicating that the turbulent driving scale is likely below 100 kpc, which is consistent with the size of the AGN jet inflated bubbles. We also report the first measurement of the ion temperature in the intracluster medium, which we find to be consistent with the electron temperature. In addition, we present a new measurement of the redshift of the brightest cluster galaxy NGC 1275.
  • Mizumoto, M., Moriyama, K., Ebisawa, K., Mineshige, S., Kawanaka, N., Tsujimoto, M.
    Publications of the Astronomical Society of Japan 70(3) 2018年  
    Many Seyfert galaxies are known to exhibit Fe-K broad emission line features in their X-ray energy spectra. The observed lines have three distinct features: (1) the line profiles are skewed and show significant low-energy tails, (2) the Fe-K band has low variability, which produces a broad and deep dip in the root-mean-square (rms) spectra, and (3) photons in this band have time lags behind those in the adjacent energy bands with amplitudes of several Rg/c, where Rg is the gravitational radius. The "relativistic lightbending model" is proposed to explain these observed features, where a compact X-ray source ("lamp post") above an extreme Kerr black hole illuminates the innermost area of the accretion disc. In this paper, we critically examine the relativistic light-bending model by computing the rms spectra and the lag features using a ray-tracing technique, when a lamp post moves vertically on the black hole spin axis. As a result, we found that the observed deep rms dip requires that the iron is extremely overabundant (10 solar), whereas the observed lag amplitude is consistent with the normal iron abundance. Furthermore, disappearance of the lag in the high-flux state requires a source height as high as ∼40 Rg, which contradicts the relativistically broad emission line feature. Our simulations agree with the data that the reverberation feature moves to lower frequencies with larger source height; however, if this scenario is correct, the simulations predict the detection of a clear Fe-K lag at low frequencies, which is not constrained in the data. Therefore, we conclude that the relativistic light-bending model may not explain the characteristic Fe-K spectral variations in Seyfert galaxies.
  • De Vries, C.P., Haas, D., Yamasaki, N.Y., Herder, J.-W.D., Paltani, S., Kilbourne, C., Tsujimoto, M., Eckart, M.E., Leutenegger, M.A., Costantini, E., Dercksen, J.P.C., Dubbeldam, L., Frericks, M., Laubert, P.P., Van Loon, S., Lowes, P., McCalden, A.J., Porter, F.S., Ruijter, J., Wolfs, R.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(1) 2018年  
    The soft x-ray spectrometer was designed to operate onboard the Japanese Hitomi (ASTRO-H) satellite. In the beam of this instrument, there was a filter wheel containing x-ray filters and active calibration sources. This paper describes this filter wheel. We show the purpose of the filters and the preflight calibrations performed. In addition, we present the calibration source design and measured performance. Finally, we conclude with prospects for future missions.
  • Hasebe, T., Kashima, S., Ade, P.A.R., Akiba, Y., Alonso, D., Arnold, K., Aumont, J., Baccigalupi, C., Barron, D., Basak, S., Beckman, S., Borrill, J., Boulanger, F., Bucher, M., Calabrese, E., Chinone, Y., Cho, H.-M., Cukierman, A., Curtis, D.W., de Haan, T., Dobbs, M., Dominjon, A., Dotani, T., Duband, L., Ducout, A., Dunkley, J., Duval, J.M., Elleflot, T., Eriksen, H.K., Errard, J., Fischer, J., Fujino, T., Funaki, T., Fuskeland, U., Ganga, K., Goeckner-Wald, N., Grain, J., Halverson, N.W., Hamada, T., Hasegawa, M., Hattori, K., Hattori, M., Hayes, L., Hazumi, M., Hidehira, N., Hill, C.A., Hilton, G., Hubmayr, J., Ichiki, K., Iida, T., Imada, H., Inoue, M., Inoue, Y., Irwin, K.D., Ishino, H., Jeong, O., Kanai, H., Kaneko, D., Katayama, N., Kawasaki, T., Kernasovskiy, S.A., Keskitalo, R., Kibayashi, A., Kida, Y., Kimura, K., Kisner, T., Kohri, K., Komatsu, E., Komatsu, K., Kuo, C.L., Kurinsky, N.A., Kusaka, A., Lazarian, A., Lee, A.T., Li, D., Linder, E., Maffei, B., Mangilli, A., Maki, M., Matsumura, T., Matsuura, S., Meilhan, D., Mima, S., Minami, Y., Mitsuda, K., Montier, L., Nagai, M., Nagasaki, T., Nagata, R., Nakajima, M., Nakamura, S., Namikawa, T., Naruse, M., Nishino, H., Nitta, T., Noguchi, T., Ogawa, H., Oguri, S., Okada, N., Okamoto, A., Okamura, T., Otani, C., Patanchon, G., Pisano, G., Rebeiz, G., Remazeilles, M., Richards, P.L., Sakai, S., Sakurai, Y., Sato, Y., Sato, N., Sawada, M., Segawa, Y., Sekimoto, Y., Seljak, U., Sherwin, B.D., Shimizu, T., Shinozaki, K., Stompor, R., Sugai, H., Sugita, H., Suzuki, A., Suzuki, J., Tajima, O., Takada, S., Takaku, R., Takakura, S., Takatori, S., Tanabe, D., Taylor, E., Thompson, K.L., Thorne, B., Tomaru, T., Tomida, T., Tomita, N., Tristram, M., Tucker, C., Turin, P., Tsujimoto, M., Uozumi, S., Utsunomiya, S., Uzawa, Y., Vansyngel, F., Wehus, I.K., Westbrook, B., Willer, M., Whitehorn, N., Yamada, Y., Yamamoto, R., Yamasaki, N., Yamashita, T., Yoshida, M.
    Journal of Low Temperature Physics 193(5-6) 841-850 2018年  
    The high-frequency telescope for LiteBIRD is designed with refractive and reflective optics. In order to improve sensitivity, this paper suggests the new optical configurations of the HFT which have approximately 7 times larger focal planes than that of the original design. The sensitivities of both the designs are compared, and the requirement of anti-reflection (AR) coating on the lens for the refractive option is derived. We also present the simulation result of a sub-wavelength AR structure on both surfaces of silicon, which shows a band-averaged reflection of 1.1-3.2% at 101-448 GHz.
  • Qazuya Wada, Masahiro Tsujimoto, Ken Ebisawa, Takayuki Hayashi
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN 69(1) 2017年2月  
    X-ray behavior of the dwarf novae (DNe) outside the quiescent state has not been fully understood. We thus assembled 21 data sets of the 15 DNe observed by the Suzaku satellite by the end of 2013, which include spectra taken during not only the quiescence, but also the transitional, outburst, and super-outburst states. Starting with the traditional cooling flow model to explain the X-ray emission from the boundary layer, we made several modifications to account for the observed spectra. As a result, we found that the best-fitting spectral model depends strongly on the state of the DNe with only a few exceptions. Spectra in the quiescent state are explained by the cooling flow model plus a Fe fluorescent line emission attenuated by an interstellar extinction. Spectra in the transitional state require an additional partial covering extinction. Spectra in the outburst and super-outburst state require additional low-temperature thin-thermal plasma component(s). Spectra in the super-outburst state further require a high value of minimum temperature for the boundary layer. We present an interpretation on the required modifications to the cooling flow model for each state.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., Den Herder, J.W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.H., Leutenegger, M.A., Limousine, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Frederick, S.P., Pottschmidt, K., Christopher, S.R., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemitsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, L., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Ichirotakeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Vries, C.P.D., Watanabe, S., Werner, N., Wik, D.R., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A.
    Nature 551(7681) 478-480 2017年  
    The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun, suggesting differences between the nature of type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, high-resolution spectroscopy is required for an accurate determination of the abundances of these elements. Here we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- A nd sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment.
  • Aharonian, F.A., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Arnaud, K.A., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R.D., Bulbul, E., Brenneman, L.W., Brown, G.V., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P., Costantini, E., Plaa, J.D., Herder, J.-W.D., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J., Hornschemeier, A.E., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, S., Inoue, Y., Ishibashi, K., Ishida, M., Ishikawa, K., Ishisaki, Y., Itoh, M., Iwai, M., Iyomoto, N., Kaastra, J.S., Kallman, T., Kamae, T., Kara, E., Kataoka, J., Katsuda, S., Katsuta, J., Kawaharada, M., Kawai, N., Kelley, R.L., Khangulyan, D., Kilbourne, C.A., King, A.L., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, S., Koyama, K., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lebrun, F., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D.H., Madejski, G.M., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Moseley, H., Mukai, K., Murakami, H., Murakami, T., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakano, T., Nakashima, S., Nakazawa, K., Nobukawa, K., Nobukawa, M., Noda, H., Nomachi, M., Dell, S.L.O., Odaka, H., Ohashi, T., Ohno, M., OKajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Parmar, A., Petre, R., Pinto, C., Pohl, M., Porter, F.S., Pottschmidt, K., Ramsey, B.D., Reynolds, C.S., Russell, H.R., Safi-Harb, S., Saito, S., Sakai, K., Sameshima, H., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemitsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A.E., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, K., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y., Tashiro, M., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Ueno, S., Uno, S., Urry, C.M., Ursino, E., Vries, C.P.D., Watanabe, S., Werner, N., Wik, D.R., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Yoshida, A., Zhuravleva, I., Zoghbi, A.
    Astrophysical Journal Letters 837(1) L15-L15 2017年  
    High-resolution X-ray spectroscopy with Hitomi was expected to resolve the origin of the faint unidentified E ≈ 3.5 keV emission line reported in several low-resolution studies of various massive systems, such as galaxies and clusters, including the Perseus cluster. We have analyzed the Hitomi first-light observation of the Perseus cluster. The emission line expected for Perseus based on the XMM-Newton signal from the large cluster sample under the dark matter decay scenario is too faint to be detectable in the Hitomi data. However, the previously reported 3.5 keV flux from Perseus was anomalously high compared to the sample-based prediction. We find no unidentified line at the reported high flux level. Taking into account the XMM measurement uncertainties for this region, the inconsistency with Hitomi is at a 99% significance for a broad dark matter line and at 99.7% for a narrow line from the gas. We do not find anomalously high fluxes of the nearby faint K line or the Ar satellite line that were proposed as explanations for the earlier 3.5 keV detections. We do find a hint of a broad excess near the energies of high-n transitions of S xvi (E ≃ 3.44 keV rest-frame) - a possible signature of charge exchange in the molecular nebula and another proposed explanation for the unidentified line. While its energy is consistent with XMM pn detections, it is unlikely to explain the MOS signal. A confirmation of this interesting feature has to wait for a more sensitive observation with a future calorimeter experiment.
  • Misaki Mizumoto, Ken Ebisawa, Masahiro Tsujimoto, Hajime Inoue
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN 68 2016年6月  
    The X-ray spectrum of GRS1915+105 is known to have a "broad iron spectral feature" in the spectral hard state. Similar spectral features are often observed in active galactic nuclei (AGNs) and other black-hole binaries (BHBs), and several models have been proposed for explaining it. In order to distinguish spectralmodels, time variation provides an important key. In AGNs, variation amplitude has been found to drop significantly at the iron K-energy band at timescales of similar to 10 ks. If spectral variations of black holes are normalized by their masses, the spectral variations of BHBs on timescales of sub-seconds should exhibit similar characteristics to those of AGNs. In this paper, we investigated spectral variations of GRS 1915+105 at timescales down to similar to 10 ms. This was made possible for the first time with the Suzaku XIS Parallel-sum clocking (P-sum) mode, which has the CCD energy-resolution as well as a time-resolution of 7.8 ms. Consequently, we found that the variation amplitude of GRS 1915+105 does not drop at the iron K-energy band on any timescales from 0.06 s to 63000 s, and that the entire X-ray flux and the iron feature are independently variable at timescales of hours. These are naturally understood in the framework of the "partial covering" model, in which variation timescales of the continuum flux and partial absorbers are independent. The difference of the energy dependence of the variation amplitude between AGNs and BHBs is presumably due to different mechanisms of the outflow winds, i.e., the partial absorbers are due to UV-line driven winds (AGNs) or thermally driven winds (BHBs).
  • Gary A. Sneiderman, Peter J. Shirron, Ryuichi Fujimoto, Thomas G. Bialas, Kevin R. Boyce, Meng P. Chiao, Michael J. DiPirro, Megan E. Eckart, Leslie Hartz, Yoshitaka Ishisaki, Richard L. Kelley, Caroline A. Kilbourne, Candace Masters, Dan McCammon, Kazuhisa Mitsuda, Hirofumi Noda, Frederick S. Porter, Andrew E. Szymkowiak, Yoh Takei, Masahiro Tsujimoto, Seiji Yoshida
    Proceedings of SPIE - The International Society for Optical Engineering 9905 2016年  
    The Soft X-ray Spectrometer (SXS) is the first space-based instrument to implement redundancy in the operation of a sub-Kelvin refrigerator. The SXS cryogenic system consists of a superfluid helium tank and a combination of Stirling and Joule-Thompson (JT) cryocoolers that support the operation of a 3-stage adiabatic demagnetization refrigerator (ADR). When liquid helium is present, the x-ray microcalorimeter detectors are cooled to their 50 mK operating temperature by two ADR stages, which reject their heat directly to the liquid at ∼1.1 K. When the helium is depleted, all three ADR stages are used to accomplish detector cooling while rejecting heat to the JT cooler operating at 4.5 K. Compared to the simpler helium mode operation, the cryogen-free mode achieves the same instrument performance by controlling the active cooling devices within the cooling system differently. These include the three ADR stages and four active heat switches, provided by NASA, and five cryocoolers, provided by JAXA. Development and verification details of this capability are presented within this paper and offer valuable insights into the challenges, successes, and lessons that can benefit other missions, particularly those employing cryogen-free cooling systems.
  • M. E. Eckart, J. S. Adams, K. R. Boyce, G. V. Brown, M. P. Chiao, R. Fujimoto, D. Haas, J. W. Den Herder, Y. Ishisaki, R. L. Kelley, C. A. Kilbourne, M. A. Leutenegger, D. McCammon, K. Mitsuda, F. S. Porter, K. Sato, M. Sawada, H. Seta, G. A. Sneiderman, A. E. Szymkowiak, Y. Takei, M. Tashiro, M. Tsujimoto, C. P. De Vries, T. Watanabe, S. Yamada, N. Y. Yamasaki
    Proceedings of SPIE - The International Society for Optical Engineering 9905 2016年  
    The Astro-H (Hitomi) Soft X-ray Spectrometer (SXS) was a pioneering imaging x-ray spectrometer with 5 eV energy resolution at 6 keV. The instrument used a microcalorimeter array at the focus of a high-throughput soft x-ray telescope to enable high-resolution non-dispersive spectroscopy in the soft x-ray waveband (0:3-12 keV). We present the suite of ground calibration measurements acquired from 2012-2015, including characterization of the detector system, anti-coincidence detector, optical blocking filters, and filter-wheel filters. The calibration of the 36-pixel silicon thermistor microcalorimeter array includes parameterizations of the energy gain scale and line spread function for each event grade over a range of instrument operating conditions, as well as quantum efficiency measurements. The x-ray transmission of the set of five Al/polyimide thin-film optical blocking filters mounted inside the SXS dewar has been modeled based on measurements at synchrotron beamlines, including with high spectral resolution at the C, N, O, and Al K-edges. In addition, we present the x-ray transmission of the dewar gate valve and of the filters mounted on the SXS filter wheel (external to the dewar), including beryllium, polyimide, and neutral density filters.
  • Tadayuki Takahashi, Motohide Kokubun, Kazuhisa Mitsuda, Richard Kelley, Takaya Ohashi, Felix Aharonian, Hiroki Akamatsu, Fumie Akimoto, Steve Allen, Naohisa Anabuki, Lorella Angelini, Keith Arnaud, Makoto Asai, Marc Audard, Hisamitsu Awaki, Magnus Axelsson, Philipp Azzarello, Chris Baluta, Aya Bamba, Nobutaka Bando, Marshall Bautz, Thomas Bialas, Roger Blandford, Kevin Boyce, Laura Brenneman, Greg Brown, Esra Bulbul, Edward Cackett, Edgar Canavan, Maria Chernyakova, Meng Chiao, Paolo Coppi, Elisa Costantini, Jelle De Plaa, Jan Willem Den Herder, Michael DiPirro, Chris Done, Tadayasu Dotani, John Doty, Ken Ebisawa, Megan Eckart, Teruaki Enoto, Yuichiro Ezoe, Andrew Fabian, Carlo Ferrigno, Adam Foster, Ryuichi Fujimoto, Yasushi Fukazawa, Akihiro Furuzawa, Massimiliano Galeazzi, Luigi Gallo, Poshak Gandhi, Kirk Gilmore, Margherita Giustini, Andrea Goldwurm, Liyi Gu, Matteo Guainazzi, Daniel Haas, Yoshito Haba, Kouichi Hagino, Kenji Hamaguchi, Atsushi Harayama, Ilana Harrus, Isamu Hatsukade, Takayuki Hayashi, Katsuhiro Hayashi, Kiyoshi Hayashida, Junko Hiraga, Kazuyuki Hirose, Ann Hornschemeier, Akio Hoshino, John Hughes, Yuto Ichinohe, Ryo Iizuka, Yoshiyuki Inoue, Hajime Inoue, Kazunori Ishibashi, Manabu Ishida, Kumi Ishikawa, Kosei Ishimura, Yoshitaka Ishisaki, Masayuki Itoh, Naoko Iwata, Naoko Iyomoto, Chris Jewell, Jelle Kaastra, Timothy Kallman, Tuneyoshi Kamae, Erin Kara, Jun Kataoka, Satoru Katsuda, Junichiro Katsuta, Madoka Kawaharada, Nobuyuki Kawai, Taro Kawano, Shigeo Kawasaki, Dmitry Khangulyan, Caroline Kilbourne, Mark Kimball, Ashley King
    Proceedings of SPIE - The International Society for Optical Engineering 9905 2016年  
    The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
  • Yoshitaka Ishisaki, Shinya Yamada, Hiromi Seta, Makoto S. Tashiro, Sawako Takeda, Yukikatsu Terada, Yuka Kato, Masahiro Tsujimoto, Shu Koyama, Kazuhisa Mitsuda, Makoto Sawada, Kevin R. Boyce, Meng P. Chiao, Tomomi Watanabe, Maurice A. Leutenegger, Megan E. Eckart, F. Scott Porter, Caroline A. Kilbourne, Richard L. Kelley
    Proceedings of SPIE - The International Society for Optical Engineering 9905 2016年  
    We summarize results of the initial in-orbit performance of the pulse shape processor (PSP) of the soft x-ray spectrometer instrument onboard ASTRO-H (Hitomi). Event formats, kind of telemetry, and the pulse processing parameters are described, and the parameter settings in orbit are listed. PSP was powered-on two days after launch, and the event threshold was lowered in orbit. PSP worked fine in orbit, and there were no memory error nor SpaceWire communication error until the break-up of spacecraft. Time assignment, electrical crosstalk, and the event screening criteria are studied. It is confirmed that the event processing rate at 100% CPU load is ∼200 c/s/array, compliant with the requirement on PSP.
  • Ryuichi Fujimoto, Yoh Takei, Kazuhisa Mitsuda, Noriko Y. Yamasaki, Masahiro Tsujimoto, Shu Koyama, Kumi Ishikawa, Hiroyuki Sugita, Yoichi Sato, Keisuke Shinozaki, Atsushi Okamoto, Shunji Kitamoto, Akio Hoshino, Kosuke Sato, Yuichiro Ezoe, Yoshitaka Ishisaki, Shinya Yamada, Hiromi Seta, Takaya Ohashi, Toru Tamagawa, Hirofumi Noda, Makoto Sawada, Makoto Tashiro, Yoichi Yatsu, Ikuyuki Mitsuishi, Kenichi Kanao, Seiji Yoshida, Mikio Miyaoka, Shoji Tsunematsu, Kiyomi Otsuka, Katsuhiro Narasaki, Michael J. DiPirro, Peter J. Shirron, Gary A. Sneiderman, Caroline A. Kilbourne, F. Scott Porter, Meng P. Chiao, Megan E. Eckart, Richard L. Kelley
    SPACE TELESCOPES AND INSTRUMENTATION 2016: ULTRAVIOLET TO GAMMA RAY 9905 2016年  査読有り
    The Soft X-ray Spectrometer (SXS) is a cryogenic high-resolution X-ray spectrometer onboard the ASTRO-H satellite, that achieves energy resolution better than 7 eV at 6 keV, by operating the detector array at 50 mK using an adiabatic demagnetization refrigerator. The cooling chain from room temperature to the ADR heat sink is composed of 2-stage Stirling cryocoolers, a He-4 Joule-Thomson cryocooler, and superfluid liquid He, and is installed in a dewar. It is designed to achieve a helium lifetime of more than 3 years with a minimum of 30 liters. The satellite was launched on 2016 February 17, and the SXS worked perfectly in orbit, until March 26 when the satellite lost its function. It was demonstrated that the heat load on the He tank was about 0.7 mW, which would have satisfied the lifetime requirement. This paper describes the design, results of ground performance tests, prelaunch operations, and initial operation and performance in orbit of the flight dewar and cryocoolers.
  • Frederick S. Porter, Kevin R. Boyce, Meng P. Chiao, Megan E. Eckart, Ryuichi Fujimoto, Yoshitaka Ishisaki, Richard L. Kelley, Caroline A. Kilbourne, Maurice A. Leutenegger, Dan McCammon, Kazuhisa Mitsuda, Kosuke Sato, Hiromi Seta, Makoto Sawada, Gary A. Sneiderman, Andrew E. Szymkowiak, Yoh Takei, Makoto S. Tashiro, Masahiro Tsujimoto, Tomomi Watanabe, Shinya Yamada
    SPACE TELESCOPES AND INSTRUMENTATION 2016: ULTRAVIOLET TO GAMMA RAY 9905 2016年  査読有り
    The SXS instrument was launched aboard the Astro-H observatory on February 17, 2016. The SXS spectrometer is based on a high sensitivity x-ray calorimeter detector system that has been successfully deployed in many ground and sub-orbital spectrometers. The instrument was to provide essential diagnostics for nearly every class of x-ray emitting objects from the atmosphere of Jupiter to the outskirts of galaxy clusters, without degradation for spatially extended objects. The SXS detector system consisted of a 36-pixel cryogenic microcalorimeter array operated at a heat sink temperature of 50 mK. In pre-flight testing, the detector system demonstrated a resolving power of better than 1300 at 6 keV with a simultaneous band-pass from below 0.3 keV to above 12 keV with a timing precision better than 100 mu s. In addition, a solid-state anti-coincidence detector was placed directly behind the detector array for background suppression. The detector error budget included the measured interference from the SXS cooling system and the spacecraft. Additional margin for on-orbit gain-stability, and on-orbit spacecraft interference were also included predicting an on-orbit performance that meets or exceeds the 7 eV FWHM at 6 keV requirement. The actual on-orbit spectral resolution was better than 5 eV FWHM at 6 keV, easily satisfying the instrument requirement. Here we discuss the actual on-orbit performance of the SXS detector system and compare this to performance in pre-flight testing and the on-orbit predictions. We will also discuss the on-orbit gain stability, additional on-orbit interference, and measurements of the on-orbit background.
  • 田代 信, 満田 和久, 山崎 典子, 竹井 洋, 辻本 匡弘, 小川 美奈, 小山 志勇, 酒井 和広, 杉田 寛之, 佐藤 洋一, 篠崎 慶亮, 岡本 篤, 藤本 龍一, 大橋 隆哉, 石崎 欣尚, 江副 祐一郎, 山田 真也, 瀬田 裕美, 寺田 幸功, 北本 俊二, 星野 晶夫, 玉川 徹, 石川 久美, 野田 博文, 佐藤 浩介, 太田 直美, 澤田 真理, 三石 郁之, 村上 正秀, 村上 弘志, 伊豫本 直子, Kelley R. L., Kilbourne C. A., Porter F. S., Boyce K. R., Eckart M. E., Chiao M. P., Leutenegger M. A., Brown G. V., McCammon D., Szymkowiak A., Herder J. -W. den, Haas D., Vries C. de, Costantini E., Akamatsu H., Paltani S., ASTRO-H SXSチーム
    日本物理学会講演概要集 71 509-509 2016年  
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Anabuki, N., Angelini, L., Arnaud, K., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M., Blandford, R., Brenneman, L., Brown, G.V., Bulbul, E., Cackett, E., Chernyakova, M., Chiao, M., Coppi, P., Costantini, E., De Plaa, J., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J., Hornschemeier, A., Hoshino, A., Hughes, J., Iizuka, R., Inoue, H., Inoue, Y., Ishibashi, K., Ishida, M., Ishikawa, K., Ishisaki, Y., Itoh, M., Iyomoto, N., Kaastra, J., Kallman, T., Kamae, T., Kara, E., Kataoka, J., Katsuda, S., Katsuta, J., Kawaharada, M., Kawai, N., Kelley, R., Khangulyan, D., Kilbourne, C., King, A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, S., Koyama, K., Kretschmar, P., Krimm, H., Kubota, A., Kunieda, H., Laurent, P., Lebrun, F., Lee, S.-H., Leutenegger, M., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B., Mehdipour, M., Miller, E., Miller, J., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Moseley, H., Mukai, K., Murakami, H., Murakami, T., Mushotzky, R., Nagino, R., Nakagawa, T., Nakajima, H., Nakamori, T., Nakano, T., Nakashima, S., Nakazawa, K., Nobukawa, M., Noda, H., Nomachi, M., ODell, S., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Parmar, A., Petre, R., Pinto, C., Pohl, M., Porter, F.S., Pottschmidt, K., Ramsey, B., Reynolds, C., Russell, H., Safi-Harb, S., Saito, S., Sakai, K., Sameshima, H., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemitsos, P., Seta, H., Shidatsu, M., Simionescu, A., Smith, R., Soong, Y., Stawarz, L., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, K., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y., Tashiro, M., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Ueno, S., Uno, S., Urry, M., Ursino, E., De Vries, C., Watanabe, S., Werner, N., Wik, D., Wilkins, D., Williams, B., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Yoshida, A., Yuasa, T., Zhuravleva, I., Zoghbi, A.
    Nature 535(7610) 117-121 2016年  
    Clusters of galaxies are the most massive gravitationally bound objects in the Universe and are still forming. They are thus important probes of cosmological parameters and many astrophysical processes. However, knowledge of the dynamics of the pervasive hot gas, the mass of which is much larger than the combined mass of all the stars in the cluster, is lacking. Such knowledge would enable insights into the injection of mechanical energy by the central supermassive black hole and the use of hydrostatic equilibrium for determining cluster masses. X-rays from the core of the Perseus cluster are emitted by the 50-million-kelvin diffuse hot plasma filling its gravitational potential well. The active galactic nucleus of the central galaxy NGC 1275 is pumping jetted energy into the surrounding intracluster medium, creating buoyant bubbles filled with relativistic plasma. These bubbles probably induce motions in the intracluster medium and heat the inner gas, preventing runaway radiative cooling - a process known as active galactic nucleus feedback. Here we report X-ray observations of the core of the Perseus cluster, which reveal a remarkably quiescent atmosphere in which the gas has a line-of-sight velocity dispersion of 164 ± 10 kilometres per second in the region 30-60 kiloparsecs from the central nucleus. A gradient in the line-of-sight velocity of 150 ± 70 kilometres per second is found across the 60-kiloparsec image of the cluster core. Turbulent pressure support in the gas is four per cent of the thermodynamic pressure, with large-scale shear at most doubling this estimate. We infer that a total cluster mass determined from hydrostatic equilibrium in a central region would require little correction for turbulent pressure.
  • Mizumoto, M., Ebisawa, K., Tsujimoto, M., Inoue, H.
    Astronomische Nachrichten 337(4-5) 507-511 2016年  
    The "broad iron spectral features" are often seen in X-ray spectra of active galactic nuclei (AGN) and black-hole binaries (BHB). These features may be explained either by the "relativistic disc reflection" scenario or the "partial covering" scenario: It is hardly possible to determine which model is valid from time-averaged spectral analysis. Thus, X-ray spectral variability has been investigated to constrain spectral models. To that end, it is crucial to study iron structure of BHBs in detail at short time-scales, which is, for the first time, made possible with the Parallel-sum clocking (P-sum) mode of XIS detectors on board of Suzaku. This observational mode has a time-resolution of 7.8 ms as well as a CCD energyresolution. We have carried out systematic calibration of the P-sum mode, and investigated spectral variability of the BHB GRS 1915+105. Consequently, we found that the spectral variability of GRS 1915+105 does not show iron features at sub-seconds. This is totally different from variability of AGN such as 1H0707-495, where the variation amplitude significantly drops at the iron K-energy band. This difference can be naturally explained in the framework of the "partial covering" scenario.

MISC

 25
  • 植松令太, 石野宏和, 桜井雄基, 松村知岳, 高久諒太, HOANG Thuong, 辻本匡弘, 富永愛侑, 富永愛侑, MATSUDA F., 小栗秀悟
    日本物理学会講演概要集(CD-ROM) 78(2) 2023年  
  • 堂谷忠靖, 関本裕太郎, 辻本匡弘, 小栗秀悟, 松田フレドリック, 永田竜, 篠崎慶亮, 小田切公秀, 綿貫一也, 高倉隼人, 富永愛侑, 中野遼, 増村亮, 羽澄昌史, DE HAAN Tijmen, 長谷川雅也, 長崎岳人, 加藤晶大, 片山伸彦, 松村知岳, 桜井雄基, 長谷部孝, GHIGNA Tommaso, 杉山真也, 高久諒太, 星野百合香, 石野宏和, STEVER Samantha, 小松国幹, 高瀬祐介, 長野佑哉, 鹿島伸悟, 小松英一郎
    日本天文学会年会講演予稿集 2021 2021年  
  • 堂谷忠靖, 篠崎慶亮, 関本裕太郎, 高倉隼人, 辻本匡弘, 長谷部孝, 満田和久, 永田竜, 羽澄昌史, 南雄人, 片山伸彦, 桜井雄基, 菅井肇, 高倉理, 松村知岳, 石野宏和, 魚住聖, 鹿島伸悟, 小松英一郎
    日本天文学会年会講演予稿集 2020 2020年  
  • 堂谷忠靖, 関本裕太郎, 篠崎慶亮, 辻本匡弘, 小栗秀悟, 長谷部孝, 永田竜, 羽澄昌史, 南雄人, 長谷川雅也, DE HAAN Tijmen, 長崎岳人, 片山伸彦, 松村知岳, 桜井雄基, 今田大皓, 石野宏和, STEVER Samantha Lynn, 鹿島伸悟, 小松英一郎
    宇宙科学技術連合講演会講演集(CD-ROM) 64th 2020年  
  • 関本裕太郎, 堂谷忠靖, 篠崎慶亮, 高倉隼人, 辻本匡弘, 長谷部孝, 満田和久, 永田竜, 羽澄昌史, 南雄人, 片山伸彦, 桜井雄基, 菅井肇, 高倉理, 松村知岳, 石野宏和, 魚住聖, 鹿島伸悟, 小松英一郎, 今田大皓
    日本天文学会年会講演予稿集 2019 2019年  

共同研究・競争的資金等の研究課題

 7