Osamu Mori, Jun Matsumoto, Toshihiro Chujo, Masanori Matsushita, Hideki Kato, Takanao Saiki, Yuichi Tsuda, Jun’ichiro Kawaguchi, Fuyuto Terui, Yuya Mimasu, Go Ono, Naoko Ogawa, Yuki Takao, Yuki Kubo, Kaoru Ohashi, Ahmed Kiyoshi Sugihara, Tatsuaki Okada, Takahiro Iwata, Hajime Yano
Astrodynamics 4(3) 233-248 2020年9月 査読有り
The solar power sail is an original Japanese concept in which electric power is generated by thin-film solar cells attached on the solar sail membrane. Japan Aerospace Exploration Agency (JAXA) successfully demonstrated the world’s first solar power sail technology through IKAROS (Interplanetary Kite-craft Accelerated by Radiation of the Sun) mission in 2010. IKAROS demonstrated photon propulsion and power generation using thin-film solar cells during its interplanetary cruise. Scaled up, solar power sails can generate enough power to drive high specific impulse ion thrusters in the outer planetary region. With this concept, we propose a landing or sample return mission to directly explore a Jupiter Trojan asteroid using solar power sail-craft OKEANOS (Oversize Kite-craft for Exploration and AstroNautics in the Outer Solar System). After rendezvousing with a Trojan asteroid, a lander separates from OKEANOS to collect samples, and perform in-situ analyses in three proposed mission sequences, including sending samples back to Earth. This paper proposes a system design for OKEANOS and includes analyses of the latest mission.