Curriculum Vitaes

Ishii Masaki

  (石井 雅樹)

Profile Information

Affiliation
Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University
Degree
博士(薬学)(東京大学)

J-GLOBAL ID
201701005290675572
researchmap Member ID
B000285329

Research History

 3

Papers

 35
  • Sachiko TOMA-FUKAI, Yutaro Nakamura, Akihiro Kawamoto, Hikaru Shimizu, Koki Hayama, Ruri Kojima, Kanami Yoshimura, Masaki Ishii, Mika Hirose, Toshiaki Teratani, Shinya Ohata, Takayuki Kato, Hironari Kamikubo, Toshimasa Itoh, Kengo Tomita, Toshiyuki Shimizu
    bioRxib, Sep 17, 2024  
    The spatial and temporal control of protein is essential for normal cellular function. Proteins working in the nucleus have nuclear localization signal (NLS) sequences and are escorted into the nucleus by cognate nuclear transport receptors. A wealth of experimental data about NLS has been accumulated, and nuclear transportation mechanisms are established at the biochemical and structural levels. The peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors that control various biological responses. We recently reported that the transportation of PPARg is mediated by Transportin-1, but PPARg lacks a typical NLS sequence recognized by Transportin-1. Moreover, the recognition mechanism remains largely unknown. In this study, we determined the Cryo-EM structure of PPARg in complex with Transportin-1 and revealed that Transportin-1 gripped the folded DNA binding domain and the Hinge region of PPARg, indicating that PPARg recognizes a folded domain with an extended region as a nuclear localization signal, not a canonical unstructured signal sequence, confirmed by the mutation analyses in vitro and in cultured cells. Our study is the first snapshot structure working in nuclear transportation, not in transcription, of PPARg.
  • Masaki Ishii, Tsuyoshi Yamada, Shinya Ohata
    AMB Express, 14(1) 96, Aug 31, 2024  Peer-reviewedLead authorCorresponding author
  • Masaki Ishii, Yasuhiko Matsumoto, Tsuyoshi Yamada, Hideko Uga, Toshiaki Katada, Shinya Ohata
    iScience, 27(6) 110139, May, 2024  Peer-reviewedLead authorCorresponding author
  • Masaki Ishii, Tsuyoshi Yamada, Kazuki Ishikawa, Koji Ichinose, Michel Monod, Shinya Ohata
    Antimicrobial Agents and Chemotherapy, 68(5) e01609-e01623, Apr 3, 2024  Peer-reviewedLead authorCorresponding author
    ABSTRACT The increasing prevalence of dermatophyte resistance to terbinafine, a key drug in the treatment of dermatophytosis, represents a significant obstacle to treatment. Trichophyton rubrum is the most commonly isolated fungus in dermatophytosis. In T. rubrum , we identified TERG_07844, a gene encoding a previously uncharacterized putative protein kinase, as an ortholog of budding yeast Saccharomyces cerevisiae polyamine transport kinase 2 (Ptk2), and found that T. rubrum Ptk2 (TrPtk2) is involved in terbinafine tolerance. In both T. rubrum and S. cerevisiae , Ptk2 knockout strains were more sensitive to terbinafine compared with the wild types, suggesting that promotion of terbinafine tolerance is a conserved function of fungal Ptk2. Pma1 is activated through phosphorylation by Ptk2 in S. cerevisiae . Overexpression of T. rubrum Pma1 (TrPma1) in T. rubrum Ptk2 knockout strain (ΔTrPtk2) suppressed terbinafine sensitivity, suggesting that the induction of terbinafine tolerance by TrPtk2 is mediated by TrPma1. Furthermore, omeprazole, an inhibitor of plasma membrane proton pump Pma1, increased the terbinafine sensitivity of clinically isolated terbinafine-resistant strains. These findings suggest that, in dermatophytes, the TrPtk2-TrPma1 pathway plays a key role in promoting intrinsic terbinafine tolerance and may serve as a potential target for combinational antifungal therapy against terbinafine-resistant dermatophytes.
  • Atsushi Miyashita, Kazuhiro Mikami, Masaki Ishii, Masanobu Miyauchi, Fumiaki Tabuchi
    bioRxiv, Mar 15, 2024  

Misc.

 10

Major Presentations

 49

Teaching Experience

 9

Professional Memberships

 5

Research Projects

 6

Social Activities

 2