研究者業績

石井 雅樹

イシイ マサキ  (Ishii Masaki)

基本情報

所属
武蔵野大学 薬学部 薬学科 講師
学位
博士(薬学)(東京大学)

J-GLOBAL ID
201701005290675572
researchmap会員ID
B000285329

経歴

 3

学歴

 2

論文

 33
  • Masaki Ishii, Yasuhiko Matsumoto, Tsuyoshi Yamada, Hideko Uga, Toshiaki Katada, Shinya Ohata
    iScience 110139-110139 2024年5月  査読有り筆頭著者責任著者
  • Masaki Ishii, Tsuyoshi Yamada, Shinya Ohata
    bioRxiv 2024年4月19日  筆頭著者責任著者
  • Masaki Ishii, Tsuyoshi Yamada, Kazuki Ishikawa, Koji Ichinose, Michel Monod, Shinya Ohata
    Antimicrobial Agents and Chemotherapy 68(5) e01609-e01623 2024年4月3日  査読有り筆頭著者責任著者
    ABSTRACT The increasing prevalence of dermatophyte resistance to terbinafine, a key drug in the treatment of dermatophytosis, represents a significant obstacle to treatment. Trichophyton rubrum is the most commonly isolated fungus in dermatophytosis. In T. rubrum , we identified TERG_07844, a gene encoding a previously uncharacterized putative protein kinase, as an ortholog of budding yeast Saccharomyces cerevisiae polyamine transport kinase 2 (Ptk2), and found that T. rubrum Ptk2 (TrPtk2) is involved in terbinafine tolerance. In both T. rubrum and S. cerevisiae , Ptk2 knockout strains were more sensitive to terbinafine compared with the wild types, suggesting that promotion of terbinafine tolerance is a conserved function of fungal Ptk2. Pma1 is activated through phosphorylation by Ptk2 in S. cerevisiae . Overexpression of T. rubrum Pma1 (TrPma1) in T. rubrum Ptk2 knockout strain (ΔTrPtk2) suppressed terbinafine sensitivity, suggesting that the induction of terbinafine tolerance by TrPtk2 is mediated by TrPma1. Furthermore, omeprazole, an inhibitor of plasma membrane proton pump Pma1, increased the terbinafine sensitivity of clinically isolated terbinafine-resistant strains. These findings suggest that, in dermatophytes, the TrPtk2-TrPma1 pathway plays a key role in promoting intrinsic terbinafine tolerance and may serve as a potential target for combinational antifungal therapy against terbinafine-resistant dermatophytes.
  • Atsushi Miyashita, Kazuhiro Mikami, Masaki Ishii, Masanobu Miyauchi, Fumiaki Tabuchi
    bioRxiv 2024年3月15日  
  • Masaki Ishii, Yasuhiko Matsumoto, Tsuyoshi Yamada, Hideko Uga, Toshiaki Katada, Shinya Ohata
    Microbiology Spectrum 11(6) e0292323 2023年10月31日  査読有り筆頭著者責任著者
    Dermatophytes invade and colonize host superficial tissues via hyphal growth. Although cytoskeletal reorganization and its regulation are essential for hyphal growth, the molecular mechanisms in dermatophytes and their applicability as antifungal drug targets remain poorly understood. The p21-activated kinase (PAK) is a downstream effector of the small GTPases Rac and CDC42, also known as p21, and is involved in various molecular and cellular functions, including actin polymerization and cell morphogenesis. In this study, we investigated the contribution of the PAK protein TrCla4 to morphogenesis and mycelial growth in Trichophyton rubrum, the most frequently isolated fungus in dermatophytosis (athlete's foot). The actin polymerization inhibitor, cytochalasin A inhibited actin accumulation at the hyphal tip and mycelial growth of T. rubrum, suggesting the involvement of the actin cytoskeleton in mycelial growth. In the Trcla4 knockout strain (ΔTrcla4), we observed defects in mycelial growth, hyphal branching, and the accumulation of polymerized actin at the hyphal tip. Chemical inhibitors of TrRac-dependent TrCla4 kinase activity, FRAX486 and IPA-3, also inhibited spore germination and mycelial growth. Interestingly, ΔTrcla4 showed no additional inhibition of mycelial growth when treated with these inhibitors, indicating that their inhibitory effects are primarily mediated through TrCla4. In an invertebrate dermatophyte infection model, animals infected with ΔTrcla4 had higher survival rates than those infected with the wild-type, and IPA-3 and FRAX486 treatments both significantly improved animal survival rates. These results suggest that the dermatophyte PAK promotes mycelial growth by facilitating actin polymerization at the hyphal tip, making it a potential therapeutic target for dermatophytosis. IMPORTANCE Superficial fungal infections, such as athlete's foot, affect more than 10% of the world's population and have a significant impact on quality of life. Despite the fact that treatment-resistant fungi are a concern, there are just a few antifungal drug targets accessible, as opposed to the wide range of therapeutic targets found in bacterial infections. As a result, additional alternatives are sought. In this study, we generated a PAK TrCla4 deletion strain (∆Trcla4) of Trichophyton rubrum. The ∆Trcla4 strain exhibited deficiencies in mycelial growth, hyphal morphology, and polarized actin localization at the hyphal tip. IPA-3 and FRAX486, small chemical inhibitors of mammalian PAK, were discovered to limit fungal mycelial proliferation. According to our findings, fungal PAKs are interesting therapeutic targets for the development of new antifungal medicines.

MISC

 1

主要な講演・口頭発表等

 47

担当経験のある科目(授業)

 9

所属学協会

 5

共同研究・競争的資金等の研究課題

 5

社会貢献活動

 1