Sachiko TOMA-FUKAI, Yutaro Nakamura, Akihiro Kawamoto, Hikaru Shimizu, Koki Hayama, Ruri Kojima, Kanami Yoshimura, Masaki Ishii, Mika Hirose, Toshiaki Teratani, Shinya Ohata, Takayuki Kato, Hironari Kamikubo, Toshimasa Itoh, Kengo Tomita, Toshiyuki Shimizu
bioRxib 2024年9月17日
The spatial and temporal control of protein is essential for normal cellular function. Proteins working in the nucleus have nuclear localization signal (NLS) sequences and are escorted into the nucleus by cognate nuclear transport receptors. A wealth of experimental data about NLS has been accumulated, and nuclear transportation mechanisms are established at the biochemical and structural levels. The peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors that control various biological responses. We recently reported that the transportation of PPARg is mediated by Transportin-1, but PPARg lacks a typical NLS sequence recognized by Transportin-1. Moreover, the recognition mechanism remains largely unknown. In this study, we determined the Cryo-EM structure of PPARg in complex with Transportin-1 and revealed that Transportin-1 gripped the folded DNA binding domain and the Hinge region of PPARg, indicating that PPARg recognizes a folded domain with an extended region as a nuclear localization signal, not a canonical unstructured signal sequence, confirmed by the mutation analyses in vitro and in cultured cells. Our study is the first snapshot structure working in nuclear transportation, not in transcription, of PPARg.