研究者業績

Hirona Ichikawa

  (市川 裕菜)

Profile Information

Affiliation
Faculty of Pharmacy Department of Pharmaceutical Sciences, Musashino University

J-GLOBAL ID
201801000026794780
researchmap Member ID
B000290391

Research Areas

 1

Papers

 8
  • Katsutoshi Yuasa, Aimi Masubuchi, Tomo Okada, Miho Shinya, Yui Inomata, Honoka Kida, Sayoko Shyouji, Hirona Ichikawa, Tetsuyuki Takahashi, Masashi Muroi, Takao Hijikata
    Genes to cells : devoted to molecular & cellular mechanisms, 30(1) e13188, Jan, 2025  
    We previously suggested that the signal transducer and activator of transcription 1 (STAT1) gene is autoregulated in an interferon (IFN)-dependent manner via a distal regulatory region approximately 5.5-6.2 kb upstream of the murine and human STAT1 promoters (designated 5.5URR). Here, we examined whether this IFN-dependent positive feedback mechanism of the STAT1 gene actually functions in cells. First, we created human embryonic kidney 293 cell mutants lacking the IFN-responsive transcription factor binding sites (IFN-stimulated response element and IFN-gamma-activated sequence) within the 5.5URR and stimulated them with IFN-α/γ. The mutants showed a loss of response to IFN, indicating that the 5.5URR is essential for IFN-induced transcriptional enhancement in STAT1 gene expression. Second, we cloned the full-length 11 kb human STAT1 promoter, including the region upstream of the 5.5URR, from the start codon and linked it to a luciferase gene. Reporter assays showed that IFN-α/γ significantly activated the STAT1 promoter via the 5.5URR. Furthermore, recombinant DNA linking the full-length STAT1 promoter to STAT1 cDNA was introduced into STAT1-deficient cells. In vitro reconstitution experiments showed that IFN-α/γ stimulation increased STAT1 protein levels via the 5.5URR. These results demonstrate that the 5.5URR confers IFN-dependent autoregulation of the STAT1 promoter.
  • Tetsuyuki Takahashi, Yuri Ando, Hirona Ichikawa, Koichi Tsuneyama, Takao Hijikata
    The FEBS Journal, in press, Apr, 2023  Peer-reviewed
  • Tetsuyuki Takahashi, Hirona Ichikawa, Yukiko Okayama, Manami Seki, Takao Hijikata
    Non-Coding RNA, 8(4) 57-57, Jul, 2022  Peer-reviewed
    Virus-encoded microRNAs (miRNAs) target viral and host mRNAs to repress protein production from viral and host genes, and regulate viral persistence, cell transformation, and evasion of the immune system. The present study demonstrated that simian virus 40 (SV40)-encoded miRNA miR-S1 targets a cellular miRNA miR-1266 to derepress their respective target proteins, namely, T antigens (Tags) and telomerase reverse transcriptase (TERT). An in silico search for cellular miRNAs to interact with viral miR-S1 yielded nine potential miRNAs, five of which, including miR-1266, were found to interact with miR-S1 in dual-luciferase tests employing reporter plasmids containing the miRNA sequences with miR-S1. Intracellular bindings of miR-1266 to miR-S1 were also verified by the pull-down assay. These miRNAs were recruited into the Ago2-associated RNA-induced silencing complex. Intracellular coexpression of miR-S1 with miR-1266 abrogated the downregulation of TERT and decrease in telomerase activity induced by miR-1266. These effects of miR-S1 were also observed in miR-1266-expressing A549 cells infected with SV40. Moreover, the infected cells contained more Tag, replicated more viral DNA, and released more viral particles than control A549 cells infected with SV40, indicating that miR-S1-induced Tag downregulation was antagonized by miR-1266. Collectively, the present results revealed an interplay of viral and cellular miRNAs to sequester each other from their respective targets. This is a novel mechanism for viruses to manipulate the expression of viral and cellular proteins, contributing to not only viral lytic and latent replication but also cell transformation observed in viral infectious diseases including oncogenesis.
  • Misa Tokorodani†, Hirona Ichikawa†, Katsutoshi Yuasa, Tetsuyuki Takahashi, Takao Hijikata, †M.T, H.I. contributed equally to this study
    Biological and Pharmaceutical Bulletin, 43(11) 1715-1728, Nov 1, 2020  Peer-reviewedLead author
  • Tetsuyuki Takahashi, Hirona Ichikawa, Yuuki Morimoto, Koichi Tsuneyama, Takao Hijikata
    Biochemical and Biophysical Research Communication, 516 388-396, Sep, 2019  Peer-reviewed

Books and Other Publications

 1
  • 市川 裕菜 (Role: Contributor, ポリオーマウイルス関連疾患とマイクロRNAによる治療戦略の項目)
    医学書院, Aug, 2018

Presentations

 17

Professional Memberships

 2

Research Projects

 1

資格・免許

 1
  • Subject
    薬剤師免許
    Date
    2014