Tsuyoshi Shuto, Shunsuke Kamei, Hirofumi Nohara, Haruka Fujikawa, Yukihiro Tasaki, Takuya Sugahara, Tomomi Ono, Chizuru Matsumoto, Yuki Sakaguchi, Kasumi Maruta, Ryunosuke Nakashima, Taisei Kawakami, Mary Ann Suico, Yoshitaka Kondo, Akihito Ishigami, Toru Takeo, Ken-ichiro Tanaka, Hiroshi Watanabe, Naomi Nakagata, Kohei Uchimura, Kenichiro Kitamura, Jian-Dong Li, Hirofumi Kai
SCIENTIFIC REPORTS 6 39305 2016年12月 査読有り
Protease-antiprotease imbalance and oxidative stress are considered to be major pathophysiological hallmarks of severe obstructive lung diseases including chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), but limited information is available on their direct roles in the regulation of pulmonary phenotypes. Here, we utilized beta ENaC-transgenic (Tg) mice, the previously established mouse model of severe obstructive lung diseases, to produce lower-mortality but pathophysiologically highly useful mouse model by backcrossing the original line with C57/BL6J mice. C57/BL6J-beta ENaC-Tg mice showed higher survival rates and key pulmonary abnormalities of COPD/CF, including mucous hypersecretion, inflammatory and emphysematous phenotypes and pulmonary dysfunction. DNA microarray analysis confirmed that protease-and oxidative stress-dependent pathways are activated in the lung tissue of C57/BL6J-beta ENaC-Tg mice. Treatments of C57/BL6J-beta ENaC-Tg mice with a serine protease inhibitor ONO-3403, a derivative of camostat methylate (CM), but not CM, and with an anti-oxidant N-acetylcystein significantly improved pulmonary emphysema and dysfunction. Moreover, depletion of a murine endogenous antioxidant vitamin C (VC), by genetic disruption of VC-synthesizing enzyme SMP30 in C57/BL6J-beta ENaC-Tg mice, exaggerated pulmonary phenotypes. Thus, these assessments clarified that protease-antiprotease imbalance and oxidative stress are critical pathways that exacerbate the pulmonary phenotypes of C57/BL6J-beta ENaC-Tg mice, consistent with the characteristics of human COPD/CF.