研究者業績

川原 正博

カワハラ マサヒロ  (KAWAHARA MASAHIRO)

基本情報

所属
武蔵野大学 薬学部 薬学科 教授
学位
薬学博士

J-GLOBAL ID
200901081715723083
researchmap会員ID
5000092188

論文

 153
  • Saho Yuzawa, Motonari Nakashio, Suzuna Ichimura, Mikako Shimoda, Ayaka Nakashima, Yuka Marukawa-Hashimoto, Yusuke Kawano, Kengo Suzuki, Kenichi Yoshitomi, Masahiro Kawahara, Ken-Ichiro Tanaka
    Cells 13(3) 2024年1月25日  
    Neuronal cell death is a key mechanism involved in the development and exacerbation of Parkinson's disease (PD). The excessive production of reactive oxygen species (ROS) is a major cause leading to neuronal death; therefore, compounds that prevent oxidative stress-dependent neuronal death may be promising as a preventive method for PD. Ergothioneine is a natural amino acid with antioxidant properties, and its protective functions in the body are attracting attention. However, there has been no investigation into the protective functions of ergothioneine using in vivo and in vitro PD models. Thus, in this study, we analyzed the efficacy of ergothioneine against 6-hydroxydopamine (6-OHDA)-dependent neuronal cell death using immortalized hypothalamic neurons (GT1-7 cells). First, we found that ergothioneine prevents 6-OHDA-dependent neuronal cell death by suppressing ROS overproduction in GT1-7 cells. The cytoprotective effect of ergothioneine was partially abolished by verapamil, an inhibitor of OCTN1, which is involved in ergothioneine uptake. Furthermore, ergothioneine-rich Rice-koji (Ergo-koji) showed cytoprotective and antioxidant effects similar to those of ergothioneine. Taken together, these results suggest that ergothioneine or foods containing ergothioneine may be an effective method for preventing the development and progression of PD.
  • Dai Mizuno, Masahiro Kawahara, Keiko Konoha-Mizuno, Terumasa Ogawara, Ryoji Hama, Kentaro Yamazaki
    International Journal of Molecular Sciences 24(14) 11583-11583 2023年7月18日  
    Thallium (Tl), is a highly toxic heavy metal that exists in monovalent (Tl(I)) and trivalent (Tl(III)) ionic states. This study aimed to compare the toxicities of Tl(I) and Tl(III) in a mouse hypothalamic GT1-7 neuronal cell line. Decreased viability and increased cytotoxicity were observed in the GT1-7 cells 16 h after Tl(I) or Tl(III) treatment. Tl(III) was more cytotoxic, than Tl(I), as indicated by extracellular lactate dehydrogenase levels. Both treatments induced caspase 3 activity, DNA fragmentation, malondialdehyde (MDA) production, and superoxide dismutase activity in the cells. MDA production was higher after Tl(III) than after Tl(I) treatment. Moreover, co-treatment with antioxidants, such as mannitol, ascorbic acid, or tocopherol, significantly attenuated the Tl-induced decrease in GT1-7 cell numbers. Therefore, both treatments induced oxidative stress-related apoptosis. Furthermore, Tl(III) reduced the cell viability more subtly than Tl(I) after 1 and 3 h of treatment. This effect was enhanced by co-treatment with maltol or citric acid, which promoted the influx of metallic elements into the cells. Thus, Tl(III) entered GT1-7 cells later than Tl(I) and had a delayed onset of toxicity. However, Tl(III) likely produces more extracellular lipid peroxides, which may explain its stronger cytotoxicity.
  • Okina Sakakibara, Mikako Shimoda, Gaku Yamamoto, Youichirou Higashi, Mayumi Ikeda-Imafuku, Yu Ishima, Masahiro Kawahara, Ken-Ichiro Tanaka
    International journal of molecular sciences 24(11) 2023年6月5日  
    Parkinson's disease (PD) is a neurodegenerative disorder caused by oxidative stress-dependent loss of dopaminergic neurons in the substantia nigra and elevated microglial inflammatory responses. Recent studies show that cell loss also occurs in the hypothalamus in PD. However, effective treatments for the disorder are lacking. Thioredoxin is the major protein disulfide reductase in vivo. We previously synthesized an albumin-thioredoxin fusion protein (Alb-Trx), which has a longer plasma half-life than thioredoxin, and reported its effectiveness in the treatment of respiratory and renal diseases. Moreover, we reported that the fusion protein inhibits trace metal-dependent cell death in cerebrovascular dementia. Here, we investigated the effectiveness of Alb-Trx against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in vitro. Alb-Trx significantly inhibited 6-OHDA-induced neuronal cell death and the integrated stress response. Alb-Trx also markedly inhibited 6-OHDA-induced reactive oxygen species (ROS) production, at a concentration similar to that inhibiting cell death. Exposure to 6-OHDA perturbed the mitogen-activated protein kinase pathway, with increased phosphorylated Jun N-terminal kinase and decreased phosphorylated extracellular signal-regulated kinase levels. Alb-Trx pretreatment ameliorated these changes. Furthermore, Alb-Trx suppressed 6-OHDA-induced neuroinflammatory responses by inhibiting NF-κB activation. These findings suggest that Alb-Trx reduces neuronal cell death and neuroinflammatory responses by ameliorating ROS-mediated disruptions in intracellular signaling pathways. Thus, Alb-Trx may have potential as a novel therapeutic agent for PD.
  • Masahiro Kawahara, Midori Kato-Negishi, Ken-Ichiro Tanaka
    Nutrients 15(9) 2023年4月25日  
    Trace elements such as iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) are absorbed from food via the gastrointestinal tract, transported into the brain, and play central roles in normal brain functions. An excess of these trace elements often produces reactive oxygen species and damages the brain. Moreover, increasing evidence suggests that the dyshomeostasis of these metals is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, prion diseases, and Lewy body diseases. The disease-related amyloidogenic proteins can regulate metal homeostasis at the synapses, and thus loss of the protective functions of these amyloidogenic proteins causes neurodegeneration. Meanwhile, metal-induced conformational changes of the amyloidogenic proteins contribute to enhancing their neurotoxicity. Moreover, excess Zn and Cu play central roles in the pathogenesis of vascular-type senile dementia. Here, we present an overview of the intake, absorption, and transport of four essential elements (Fe, Zn, Cu, Mn) and one non-essential element (aluminum: Al) in food and their connections with the pathogenesis of neurodegenerative diseases based on metal-protein, and metal-metal cross-talk.
  • 川原 正博, 大久保 里咲, 榊原 緒妃菜, 中塩 元成, 根岸 みどり, 田中 健一郎
    Biomedical Research on Trace Elements 33(1) 109-109 2022年9月  

MISC

 61

書籍等出版物

 9

講演・口頭発表等

 14

担当経験のある科目(授業)

 4

共同研究・競争的資金等の研究課題

 21

教育上の能力に関する大学等の評価

 2
  • 件名
    順正学園優秀教員賞
    年月日(From)
    2010/04/10
  • 件名
    第8回順正学園学術交流コンファレンス 総長賞 「未来型薬剤師養成のための教務システム構築」
    年月日(From)
    2012