研究者業績

Yamaki Fumiko

  (八巻 史子)

Profile Information

Affiliation
Faculty of Pharmaceutical Sciences Faculty of Pharmaceutical Sciences, Musashino University
Degree
博士(薬学)(東邦大学)

J-GLOBAL ID
200901081820300260
researchmap Member ID
5000029772

Papers

 38
  • 橋本 怜史, 西丸 宏, 八巻 史子, 加瀬 義夫
    薬学教育, 7, Jul, 2023  
  • Keisuke Obara, Ayana Kawaguchi, Rikako Inaba, Mirai Kawakita, Rika Yamaguchi, Haruna Yamashita, Keyue Xu, Guanghan Ou, Fumiko Yamaki, Kento Yoshioka, Yoshio Tanaka
    Biological & pharmaceutical bulletin, 44(8) 1129-1139, 2021  
    Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are n-3 polyunsaturated fatty acids (PUFAs), and are abundant in fish oil. These n-3 PUFAs have been reported to improve the lower gastrointestinal (LGI) disorders such as ulcerative colitis and Crohn's disease through their anti-inflammatory effects. However, there are few studies on the effect of n-3 PUFAs on motility of the LGI tract, such as the ileum and colon, the parts frequently affected by these inflammatory disorders. To elucidate the effects of DHA and EPA on the LGI tract motility, we performed comparative evaluation of their effects and linoleic acid (LA), an n-6 PUFA, on contractions in the ileal and colonic longitudinal smooth muscles (LSMs) isolated from guinea pigs. In the ileal and colonic LSMs, DHA and EPA (3 × 10-5 M each) significantly inhibited contractions induced by acetylcholine (ACh), histamine, and prostaglandin (PG) F2α (vs. control), and these effects are stronger than that of LA (3 × 10-5 M). In the colonic LSMs, DHA and EPA also significantly inhibited contractions induced by PGD2 (vs. control). In addition, DHA and EPA significantly inhibited CaCl2-induced ileal and colonic LSM contractions in Ca2+-free 80 mM-KCl solution (vs. control). Any ileal and colonic LSM contractions induced by ACh, histamine, PGF2α, and CaCl2 were completely suppressed by verapamil (10-5 M), a voltage-gated/dependent Ca2+ channel (VGCC/VDCC) inhibitor. These findings suggest that DHA and EPA could improve the abnormal contractile functions of the LGI tract associated with inflammatory diseases, partly through inhibition of VGCC/VDCC-dependent ileal and colonic LSM contractions.
  • Keisuke Obara, Yuka Matsuoka, Naoya Iwata, Yukako Abe, Yohei Ikegami, Nanako Shioda, Yume Hattori, Shoko Hamamatsu, Kento Yoshioka, Fumiko Yamaki, Kazuhiro Matsuo, Takashi Yoshio, Yoshio Tanaka
    Biological & pharmaceutical bulletin, 44(8) 1140-1150, 2021  
    The clinical applications of antipsychotics for symptoms unrelated to schizophrenia, such as behavioral and psychological symptoms, in patients with Alzheimer's disease, and the likelihood of doctors prescribing antipsychotics for elderly people are increasing. In elderly people, drug-induced and aging-associated urinary disorders are likely to occur. The most significant factor causing drug-induced urinary disorders is a decrease in urinary bladder smooth muscle (UBSM) contraction induced by the anticholinergic action of therapeutics. However, the anticholinergic action-associated inhibitory effects of antipsychotics on UBSM contraction have not been sufficiently assessed. In this study, we examined 26 clinically available antipsychotics to determine the extent to which they inhibit acetylcholine (ACh)-induced contraction in rat UBSM to predict the drugs that should not be used by elderly people to avoid urinary disorders. Of the 26 antipsychotics, six (chlorpromazine, levomepromazine (phenothiazines), zotepine (a thiepine), olanzapine, quetiapine, clozapine (multi-acting receptor targeted antipsychotics (MARTAs))) competitively inhibited ACh-induced contractions at concentrations corresponding to clinically significant doses. Further, 11 antipsychotics (perphenazine, fluphenazine, prochlorperazine (phenothiazines), haloperidol, bromperidol, timiperone, spiperone (butyrophenones), pimozide (a diphenylbutylpiperidine), perospirone, blonanserin (serotonin-dopamine antagonists; SDAs), and asenapine (a MARTA)) significantly suppressed ACh-induced contraction; however, suppression occurred at concentrations substantially exceeding clinically achievable blood levels. The remaining nine antipsychotics (pipamperone (a butyrophenone), sulpiride, sultopride, tiapride, nemonapride (benzamides), risperidone, paliperidone (SDAs), aripiprazole, and brexpiprazole (dopamine partial agonists)) did not inhibit ACh-induced contractions at concentrations up to 10-5 M. These findings suggest that chlorpromazine, levomepromazine, zotepine, olanzapine, quetiapine, and clozapine should be avoided by elderly people with urinary disorders.
  • Fumiko Yamaki, Xiaoyue Zhang, Nanako Shioda, Kento Yoshioka, Keisuke Obara, Yoshio Tanaka
    European journal of pharmacology, 877 173079-173079, Jun 15, 2020  Peer-reviewed
    Certain catecholamine metabolites exert significant pharmacological effects. Herein, we evaluated the pharmacological activities of catecholamine metabolites in the rat thoracic aorta, prostate, and spleen to determine whether these metabolites affect the contractile functions of smooth muscle tissue via direct action on α-adrenoceptors and α-adrenoceptor subtypes. Among the catecholamine metabolites examined, normetadrenaline and metadrenaline (10-4 M each) produced relatively strong contractions in the rat thoracic aorta. Maximum aortic contractions induced by normetadrenaline (≈70% of phenylephrine (3 × 10-7 M)-induced contractions) and metadrenaline (≈45%) were significantly smaller than those induced by phenylephrine (≈95%). Normetadrenaline and metadrenaline (10-4 M each) inhibited phenylephrine (3 × 10-7 M)-induced aortic contractions, which were not affected by propranolol (10-6 M), by 5-20%. Normetadrenaline- and metadrenaline (3 × 10-5 M each)-induced aortic contractions were strongly inhibited by prazosin (10-8 M; an α1-adrenoceptor antagonist) and BMY 7378 (10-8-10-7 M; a selective α1D-adrenoceptor antagonist). Metadrenaline (3 × 10-5 M)-induced aortic contractions were also significantly inhibited by silodosin (10-9 M; a selective α1A-adrenoceptor antagonist). Normetadrenaline and metadrenaline (3 × 10-5 M each) caused silodosin (10-9 M)-sensitive prostate contractions but did not cause a prominent spleen contraction. Maximum prostate contractions induced by metadrenaline (≈100% of phenylephrine (3 × 10-5 M)-induced contractions) were nearly identical to those induced by phenylephrine (≈100%) but were significantly larger than those induced by normetadrenaline (≈80%). These findings suggest that normetadrenaline and metadrenaline act as a partial α1D/α1A-adrenoceptor agonist and partial α1D-adrenoceptor/full α1A-adrenoceptor agonist, respectively, functioning as adrenaline system stabilizers in α1D/α1A-adrenoceptor-abundant smooth muscle tissues.
  • Fumiko Yamaki, Anna Koike, Hikari Kono, Xiaoyue Zhang, Kento Yoshioka, Keisuke Obara, Yoshio Tanaka
    Biological & pharmaceutical bulletin, 43(3) 493-502, 2020  Peer-reviewed
    The β-adrenoceptor (β-AR)-mediated pharmacological effects of catecholamine (CA) metabolites are not well known. We examined the effects of seven CA metabolites on smooth muscle relaxation in mouse and guinea pig (GP) tracheas and rat thoracic aorta. Among them, metadrenaline (MA) significantly relaxed GP trachea (β2-AR dominant), even in the presence of clorgiline, a monoamine oxidase-A inhibitor. In mouse trachea (β1-AR dominant), normetadrenaline (NMA) and MA (10-4 M each) apparently did not affect isoprenaline (ISO)-induced relaxation, but significantly inhibited it in the presence of clorgiline. ISO-induced relaxation was also unaffected by 3,4-dihydroxyphenylglycol (DHPG) (10-4 M), but significant suppression was observed with the addition of 3,5-dinitrocatechol, a catechol-O-methyltransferase inhibitor. In GP trachea, NMA, MA, 3,4-dihydroxymandelic acid (DOMA), and DHPG (10-4 M each) significantly augmented ISO-induced relaxation. However, in the presence of clorgiline plus 3,5-dinitrocatechol, both NMA and MA (10-4 M) significantly suppressed ISO-induced relaxation. DHPG (10-4 M) also significantly suppressed ISO-induced relaxation in the presence of 3,5-dinitrocatechol. In rat thoracic aorta, DHPG (10-4 M) significantly suppressed relaxation induced by CGP-12177 A (a β3-AR partial agonist) in the presence of 3,5-dinitrocatechol plus propranolol. Our findings indicate that 1) MA may possess β2-AR agonistic action; 2) NMA and MA augment β2-AR-mediated tracheal relaxation in the absence of CA metabolic inhibitors, though themselves possessing β1-, β2-AR antagonistic action (β2 > β1); 3) DHPG exhibits β1-, β2-, β3-AR antagonistic action, and this is particularly marked for β3-AR. Our observations may help explain some of the pathologies associated with pheochromocytoma, which is characterized by increased CA metabolite levels.

Misc.

 31

Presentations

 54

Teaching Experience

 10

Research Projects

 3