研究者業績

高石 武史

タカイシ タケシ  (Takeshi Takaishi)

基本情報

所属
武蔵野大学 工学部 数理工学科 教授
学位
工学修士(大阪大学)
博士(理学)(広島大学)

J-GLOBAL ID
200901011015741945
researchmap会員ID
1000196373

論文

 23
  • Kimura Masato, Takaishi Takeshi, Tanaka Yoshimi
    Philosophical Transactions of the Royal Society A 382 20230297 2024年7月  査読有り
  • 丸野 恵蔵, 高石 武史, 谷口 隆晴
    武蔵野大学数理工学センター紀要 (8) 59-68 2023年3月1日  査読有り責任著者
  • Gaku Ishii, Yusaku Yamamoto, Takeshi Takaishi
    Mathematics 9(18) 2248 2021年9月13日  査読有り
  • Masato Kimura, Takeshi Takaishi, Sayahdin Alfat, Takumi Nakano, Yoshimi Tanaka
    SN Applied Sciences 3(9) 2021年8月21日  査読有り
    <title>Abstract</title>Three new industrial applications of irreversible phase field models for crack growth are presented in this study. The phase field model for irreversible crack growth in an elastic material is derived as a unidirectional gradient flow of the Francfort–Marigo energy with the Ambrosio–Tortorelli regularization, which is known to be consistent with classic Griffith fracture theory. The obtained compact parabolic-elliptic system of PDEs including two regularization parameters for space and time enables us to simulate various kinds of crack behaviors with standard finite element software, without any geometric restriction on the crack path. We extend the irreversible phase field model to thermal cracking in solder and to cracking in a viscoelastic material, keeping the compact forms of the PDEs and the energy consistency. On the other hand, for hydrogen-assisted cracking in metal, we propose a compact phase field model focusing on a kinematic jamming effect of the hydrogen by a weak coupling approach. Several numerical experiments for these three models show not only their reasonableness and usefulness but also flexible extendability of the phase field approach in fracture mechanics.
  • 高石 武史
    武蔵野大学数理工学センター紀要 (6) 39-48 2021年3月1日  査読有り
  • Yoshimi Tanaka, Takeshi Takaishi
    Journal of the Physical Society of Japan 89(8) 084801-084801 2020年8月15日  査読有り
  • 高石 武史
    武蔵野大学数理工学センター紀要 4 33-41 2019年3月  査読有り
  • 高石 武史
    計算工学講演会論文集 23 D-10-03 2018年5月  査読有り
  • Takeshi Takaishi
    MATHEMATICAL ANALYSIS OF CONTINUUM MECHANICS AND INDUSTRIAL APPLICATIONS 26 27-34 2017年  
    As an application of the phase field model for crack propagation in elastic body, chemical-diffuse crack growth model with the effect of the hydrogen embrittlement is considered. Numerical results show the difference of crack path between data with the effects and data without the effect. Temporal evolution of the normalized difference of phase field depict the time when start the difference of crack path.
  • Armanda I, M. Kimura, T. Takaishi, Maharani A. U
    Recent Development in Computational Science, Kanazawa e-Publishing 6 35-41 2015年  査読有り
  • Masato Kimura, Takeshi Takaishi
    A mathematical approach to research problems of science and technology Mathematics for Industry 5 161-170 2014年  
  • M.Kimura, T.Takaishi
    Theoretical and Applied Mecanics Japan 95 85-90 2011年  査読有り
  • Takeshi Takaishi, Masato Kimura
    KYBERNETIKA 45(4) 605-614 2009年  査読有り
    A phase field model for anti-plane shear crack growth in two dimensional isotropic elastic material is proposed. We introduce a phase field to represent the shape of the crack with a regulaxization parameter epsilon &gt; 0 and we approximate the Francfort-Marigo type energy using the idea of Ambrosio and Tortorelli. The phase field model is derived as a gradient flow of this regularized energy. We show several numerical examples of the crack growth computed with an adaptive mesh finite element method.
  • 高石武史
    日本応用数理学会 論文誌 19(3) 351-369 2009年  査読有り
    フェーズフィールドを用い,モードIII亀裂進展を記述する,数値計算に好適な時間発展方程式を導出し,実際に亀裂進展現象が再現できることを数値計算で示した.特に2本の初期亀裂からサブクラック等への進展を再現し,モデルの有用性を検証した.このモデルでは,固定計算領域など数値計算上の利点が多く,また既存の計算手法が利用できるため,亀裂進展現象の解析において有用な手法の一つになり得ると期待される.
  • M.Kimura, H.Komura, M.Mimura, H.Miyoshi, T.Takaishi, D.Ueyama
    Proceedings of the Czech-Japanese Seminar in Applied Mathematics 2006, COE Lecture Note Vol.6, Faculty of Mathematics, Kyushu University ISSN 1881-4042 114-136 2007年  
  • M.Kimura, H.Komura, M.Mimura, H.Miyoshi, T.Takaishi, D.Ueyama
    Proceedings of the Czech-Japanese Seminar in Applied Mathematics 2005, COE Lecture Note Vol.3, Faculty of Mathematics, Kyushu University ISSN 1881-4042 56-68 2006年  
  • T Takaishi, M Yabuhara, K Nishikawa
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 70(1) 138-143 2001年1月  査読有り
    A general formula for the dispersion characteristics of electrostatic waves in dusty plasmas in the presence of charge fluctuation of dust particles is derived based on the linear response theory. The formula is applicable to arbitrary plasma models and waves. Charging equation due to plasma current on the dust surface is employed to describe the charge fluctuation effect. In particular, temperature fluctuation associated with the space charge fluctuation is taken into account in the charging equation and is found to make an important contribution to the damping or growth of the wave. Stability of low frequency waves where the electron response can be treated as static is discussed in detail. It is shown that the dust charge fluctuation contributes to damping when the dust is negatively charged, but to growth when the dust is positively charged. Results are applied to ion waves with positive dust charge.
  • T Takaishi, K Nishikawa
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN 68(9) 2962-2964 1999年9月  査読有り
    Linear dispersion characteristics of ion acoustic waves in a dusty plasma is studied in the fluid model. It is shown that charge variation of dust particles has a destabilizing effect of the wave in the short wavelength region where the electron Debye shielding of the ion space charge becomes incomplete. Secondary electron emission effect is also investigated and the charge variation is shown to have a destabilizing effect at all wavelengths except the longest one, if the dust particles are positively charged.
  • T.Takaishi, K.Kusano
    Journal of Plasma and Fusion Research Series 2 177-179 1999年  査読有り
  • H Kokubu, K Mischaikow, Y Nishiura, H Oka, T Takaishi
    JOURNAL OF DIFFERENTIAL EQUATIONS 140(2) 309-364 1997年11月  査読有り
    The shadow system u(t) = epsilon(2)u(xx) + f(u) - xi, xi(t) = integral(t) g(u,xi) dx, is a scalar reaction diffusion equation coupled with an ODE. The extra freedom coming from the ODE drastically influences the solution structure and dynamics as compared to that of a single scalar reaction diffusion system. In fact, it causes secondary bifurcations and coexistence of multiple stable equilibria. Our long term goal is a complete description of the global dynamics on its global attractor A as a function of epsilon, f, and g. Since this is still far beyond our capabilities, we focus on describing the dynamics of solutions to the shadow system which are monotone in x, and classify the global connecting orbit structures in the monotone solution space up to the semi-conjugacy. The maximum principle and hence the lap number arguments, which have played a central role in the analysis of one dimensional scalar reaction diffusion equations, cannot be directly applied to the shadow system, although there is a Lyapunov function in an appropriate parameter regime. In order to overcome this difficulty, we resort to the Conley index theory. This method is topological in nature, and allows us to reduce the connection problem to a series of algebraic computations. The semi-conjugacy property can be obtained once the connectin problem is solved. The shadow system turns out to exhibit minimal dynamics which displays the mechanism of basic pattern formation, namely it explains the dynamic relation among the trivial rest states (constant solutions) and the event patterns (large amplitude inhomogeneous solutions). (C) 1997 Academic Press.
  • Takeshi Takaishi, Masayasu Mimura, Yasumasa Nishiura
    Japan Journal of Industrial and Applied Mathematics 12(3) 385-424 1995年10月  査読有り
    A simplified coupled reaction-diffusion system is derived from a diffusive membrane coupling of two reaction-diffusion systems of activator-inhibitor type. It is shown that the dynamics of the original decoupled systems persists for weak coupling, while new coupled stationary patterns of alternated type emerge at a critical strength of coupling and become stable for strong coupling independently of the dynamics of the decoupled systems. The approach which we use here is singular perturbation techniques and complementarily numerical methods. © 1995 JJIAM Publishing Committee.
  • Y.Nishiura, J.Shidawara, T.Takaishi
    Dynamical Systems and Applications 4 549-561 1995年  査読有り
  • N.Satomi, S.Goto, Y.Honda, Y.Kato, M.Nagata, M.Nishikawa, A.Ozaki, T.Takaishi, T.Uyama, K.Watanabe, T.Sato, T.Hayashi
    Nucl. Fusion supplement (2) 529-539 1987年  査読有り

MISC

 34

書籍等出版物

 1

講演・口頭発表等

 105

担当経験のある科目(授業)

 11

共同研究・競争的資金等の研究課題

 7

産業財産権

 1
  • 高石 武史
    本発明は多結晶シリコンをチャネル部の一部に含み、シリコンとアルミニウムのコンタクトを少なくともその一部に有する半導体装置の作成方法に関する。