Curriculum Vitaes

TAKESHI TSUSAKA

  (津坂 剛史)

Profile Information

Affiliation
Assistant Professor, Faculty of Pharmacy Department of Pharmaceutical Sciences, Musashino University
Degree
Ph.D.(Mar, 2018, Kyoto University)

ORCID ID
 https://orcid.org/0009-0003-3749-9749
J-GLOBAL ID
202501004748463133
researchmap Member ID
R000094336

Papers

 13
  • Takeshi Tsusaka, Mohd Altaf Najar, Benjamin Schwarz, Eric Bohrnsen, Juan A Oses-Prieto, Helena Neudorf, Christina Lee, Jonathan P Little, Alma L Burlingame, Catharine M Bosio, George M Burslem, Emily L Goldberg
    Nature chemical biology, 21(9) 1387-1396, Sep, 2025  Peer-reviewedLead author
    The dynamic modification of proteins by many metabolites suggests an intimate link between energy metabolism and post-translational modifications (PTMs). For instance, starvation and low-carbohydrate diets lead to the accumulation of β-hydroxybutyrate (BHB), whose blood concentrations can reach millimolar levels, concomitant with the accumulation of lysine β-hydroxybutyrylation (Kbhb) of proteins. Here we report that class I histone deacetylases (HDACs) unexpectedly catalyze the formation of Kbhb. Through mutational analysis, we show a shared reliance on key active site amino acids for classical deacetylation and noncanonical HDAC-catalyzed β-hydroxybutyrylation. On the basis of these data, we propose that HDACs catalyze a condensation reaction between the free amine group on lysine and the BHB carboxylic acid, thereby generating an amide bond. This reversible HDAC activity is not limited to BHB and extends to multiple short-chain fatty acids, representing a novel mechanism of PTM deposition relevant to metabolically sensitive proteome modifications.
  • Helena Neudorf, Roderick E Sandilands, Spencer Ursel, Hillary Shaba, Darren Barg, Takeshi Tsusaka, María Dolores Moya-Garzón, Erica Vaz, Patricia Schimweg, Emily L Goldberg, Jonathan Z Long, Karsten Krüger, Hashim Islam, Jonathan P Little
    iScience, 28(7) 112872-112872, Jul 18, 2025  Peer-reviewed
    Fasting and ketosis are gaining interest for treating obesity-related immunometabolic dysfunction. We aimed to (1) characterize systemic and T cell immunometabolic responses to a 48-h fast in humans and (2) determine if responses differed between individuals with (O-BMI) and without (L-BMI) obesity (n = 16 per group). Despite similar increases in systemic fat oxidation, increases in blood β-hydroxybutyrate (BHB), BHB-amino acid conjugates, and lysine β-hydroxybutyrylation were blunted in obesity. T cells from the L-BMI group upregulated their relative capacity for fat oxidation while the O-BMI group did not. The O-BMI group had a greater proportion of Th17 cells and secreted more interleukin-17 (IL-17), even after fasting. CD8 expression decreased in both groups and CD4 expression only decreased in the L-BMI group. The balance of anti-to pro-inflammatory cytokines increased less in the O-BMI group. Collectively, these findings show that humans living with obesity have a blunted systemic and T cell immunometabolic response to fasting. NCT05886738.
  • Takeshi Tsusaka, Juan A Oses-Prieto, Christina Lee, Brian C DeFelice, Alma L Burlingame, Emily L Goldberg
    iScience, 26(7) 107235-107235, Jul 21, 2023  Peer-reviewedLead author
    Ketone bodies are short-chain fatty acids produced in the liver during periods of limited glucose availability that provide an alternative energy source for the brain, heart, and skeletal muscle. Beyond this metabolic role, β-hydroxybutyrate (BHB), is gaining recognition as a signaling molecule. Lysine β-hydroxybutyrylation (Kbhb) is a newly discovered post-translational modification in which BHB is covalently attached to lysine ε-amino groups. This protein adduct is metabolically sensitive, dependent on BHB concentration, and found on proteins in multiple intracellular compartments. Therefore, Kbhb is hypothesized to be an important component of ketone body-regulated physiology. Kbhb on histones is proposed to be an epigenetic regulator, which links metabolic alterations to gene expression. However, we found that the widely used antibody against β-hydroxybutyrylated lysine 9 on histone H3 (H3K9bhb) also recognizes other modification(s) that likely include acetylation. Therefore, caution must be used when interpreting gene regulation data acquired with the H3K9bhb antibody.
  • Emily L Goldberg, Irina Shchukina, Yun-Hee Youm, Seungjin Ryu, Takeshi Tsusaka, Kyrlia C Young, Christina D Camell, Tamara Dlugos, Maxim N Artyomov, Vishwa Deep Dixit
    Cell metabolism, 33(11) 2277-2287, Nov 2, 2021  Peer-reviewed
    Aging impairs the integrated immunometabolic responses, which have evolved to maintain core body temperature in homeotherms to survive cold stress, infections, and dietary restriction. Adipose tissue inflammation regulates the thermogenic stress response, but how adipose tissue-resident cells instigate thermogenic failure in the aged are unknown. Here, we define alterations in the adipose-resident immune system and identify that type 2 innate lymphoid cells (ILC2s) are lost in aging. Restoration of ILC2 numbers in aged mice to levels seen in adults through IL-33 supplementation failed to rescue old mice from metabolic impairment and increased cold-induced lethality. Transcriptomic analyses revealed intrinsic defects in aged ILC2, and adoptive transfer of adult ILC2s are sufficient to protect old mice against cold. Thus, the functional defects in adipose ILC2s during aging drive thermogenic failure.
  • Takeshi Tsusaka, Kei Fukuda, Chikako Shimura, Masaki Kato, Yoichi Shinkai
    Epigenetics & chromatin, 13(1) 52-52, Nov 30, 2020  Peer-reviewedLead author
    BACKGROUND: The histone methyltransferase SETDB1 (also known as ESET) represses genes and various types of transposable elements, such as endogenous retroviruses (ERVs) and integrated exogenous retroviruses, through a deposition of trimethylation on lysine 9 of histone H3 (H3K9me3) in mouse embryonic stem cells (mESCs). ATF7IP (also known as MCAF1 or AM), a binding partner of SETDB1, regulates the nuclear localization and enzymatic activities of SETDB1 and plays a crucial role in SETDB1-mediated transcriptional silencing. In this study, we further dissected the ATF7IP function with its truncated mutants in Atf7ip knockout (KO) mESCs. RESULTS: We demonstrated that the SETDB1-interaction region within ATF7IP is essential for ATF7IP-dependent SETDB1 nuclear localization and silencing of both ERVs and integrated retroviral transgenes, whereas its C-terminal fibronectin type-III (FNIII) domain is dispensable for both these functions; rather, it has a role in efficient silencing mediated by the SETDB1 complex. Proteomic analysis identified a number of FNIII domain-interacting proteins, some of which have a consensus binding motif. We showed that one of the FNIII domain-binding proteins, ZMYM2, was involved in the efficient silencing of a transgene by ATF7IP. RNA-seq analysis of Atf7ip KO and WT or the FNIII domain mutant of ATF7IP-rescued Atf7ip KO mESCs showed that the FNIII domain mutant re-silenced most de-repressed SETDB1/ATF7IP-targeted ERVs compared to the WT. However, the silencing activity of the FNIII domain mutant was weaker than that of the ATF7IP WT, and some of the de-repressed germ cell-related genes in Atf7ip KO mESCs were not silenced by the FNIII domain mutant. Such germ cell-related genes are targeted and silenced by the MAX/MGA complex, and MGA was also identified as another potential binding molecule of the ATF7IP FNIII domain in the proteomic analysis. This suggests that the FNIII domain of ATF7IP acts as a binding hub of ATF7IP-interacting molecules possessing a specific interacting motif we named FAM and contributes to one layer of the SETDB1/ATF7IP complex-mediated silencing mechanisms. CONCLUSIONS: Our findings contributed to further understanding the function of ATF7IP in the SETDB1 complex, revealed the role of the FNIII domain of ATF7IP in transcriptional silencing, and suggested a potential underlying molecular mechanism for it.

Misc.

 12
  • Alexander D Brown, Annarita Scaramozza, Hanzhi Zhang, Samiha Mahin, Nivedita Suresh, Takeshi Tsusaka, Susan Eliazer, Xuhui Liu, Brian Feeley, Andrew S Brack
    bioRxiv : the preprint server for biology, Sep 29, 2025  
  • Takeshi Tsusaka, Mohd Altaf Najar, Isha Sharma, Mariola M Marcinkiewicz, Claudia Veronica Da Silva Crispim, Nathaniel W Snyder, George M Burslem, Emily L Goldberg
    bioRxiv : the preprint server for biology, Feb 28, 2025  Lead author
    Metabolism and post-translational modifications (PTMs) are intrinsically linked and the number of identified metabolites that can covalently modify proteins continues to increase. This metabolism/PTM crosstalk is especially true for lactate, the product of anaerobic metabolism following glycolysis. Lactate forms an amide bond with the ε-amino group of lysine, a modification known as lysine lactylation, or Kla. Multiple independent mechanisms have been proposed in the formation of Kla, including p300/CBP-dependent transfer from lactyl-CoA, via a high-energy intermediate lactoylglutathione species that non-enzymatically lactylates proteins, and several enzymes are reported to have lactyl transferase capability. We recently discovered that class I histone deacetylases (HDACs) 1, 2, and 3 can all reverse their canonical chemical reaction to catalyze lysine β-hydroxybutyrylation. Here we tested the hypothesis that HDACs can also catalyze Kla formation. Using biochemical, pharmacological, and genetic approaches, we found that HDAC-catalyzed lysine lactylation accounts for the majority of Kla formation in cells. Dialysis experiments confirm this is a reversible reaction that depends on lactate concentration. We also directly quantified intracellular lactyl-CoA and found that Kla abundance can be uncoupled from lactyl-CoA levels. Therefore, we propose a model in which the majority of Kla is formed through enzymatic addition of lactate by HDACs 1, 2, and 3.
  • 津坂剛史, NAJAR Mohd. Altaf, SCHWARZ Benjamin, BOHRNSEN Eric, OSES-PRIETO Juan, LEE Christina, BURLINGAME Alma, BOSIO Catharine, BURSLEM George, GOLDBERG Emily, GOLDBERG Emily
    日本分子生物学会年会プログラム・要旨集(Web), 47th, 2024  
  • Takeshi Tsusaka, Mohd Altaf Najar, Benjamin Schwarz, Eric Bohrnsen, Juan A Oses-Prieto, Christina Lee, Alma L Burlingame, Catharine M Bosio, George M Burslem, Emily L Goldberg
    bioRxiv : the preprint server for biology, Nov 17, 2023  Lead author
    Starvation and low carbohydrate diets lead to the accumulation of the ketone body, β-hydroxybutyrate (BHB), whose blood concentrations increase more than 10-fold into the millimolar range. In addition to providing a carbon source, BHB accumulation triggers lysine β-hydroxybutyrylation (Kbhb) of proteins via unknown mechanisms. As with other lysine acylation events, Kbhb marks can be removed by histone deacetylases (HDACs). Here, we report that class I HDACs unexpectedly catalyze protein lysine modification with β-hydroxybutyrate (BHB). Mutational analyses of the HDAC2 active site reveal a shared reliance on key amino acids for classical deacetylation and non-canonical HDAC-catalyzed β-hydroxybutyrylation. Also consistent with reverse HDAC activity, Kbhb formation is driven by mass action and substrate availability. This reverse HDAC activity is not limited to BHB but also extends to multiple short-chain fatty acids. The reversible activity of class I HDACs described here represents a novel mechanism of PTM deposition relevant to metabolically-sensitive proteome modifications.
  • Takeshi Tsusaka, Juan A Oses-Prieto, Christina Lee, Brian C DeFelice, Alma L Burlingame, Emily Goldberg
    bioRxiv : the preprint server for biology, Apr 13, 2023  Lead author
    Ketone bodies are short chain fatty acids produced in the liver during periods of limited glucose availability that provide an alternative source of energy for the brain, heart, and skeletal muscle. Beyond this classical metabolic role, β-hydroxybutyrate (BHB), is gaining recognition as a pleiotropic signaling molecule. Lysine β-hydroxybutyrylation (Kbhb) is a newly discovered post-translational modification in which BHB is covalently attached to lysine ε-amino groups. This novel protein adduct is metabolically sensitive, dependent on BHB concentration, and found on proteins in multiple intracellular compartments, including the mitochondria and nucleus. Therefore, Kbhb is hypothesized to be an important component of ketone body-regulated physiology. Kbhb on histones is proposed to be an epigenetic regulator, which links metabolic alterations to gene expression. However, we found that the widely used antibody against the β-hydroxybutyrylated lysine 9 on histone H3 (H3K9bhb) also recognizes other modification(s), which are increased by deacetylation inhibition and include likely acetylations. Therefore, caution must be used when interpreting gene regulation data acquired with the H3K9bhb antibody.

Presentations

 3

Professional Memberships

 2