Daisuke Hayashi, Tomohiro Ueda, Yusuke Nakai, Haruka Kyakuno, Yasumitsu Miyata, Takahiro Yamamoto, Takeshi Saito, Kenji Hata, Yutaka Maniwa
Applied Physics Express, 9(2) 025102-025102, Feb 1, 2016 Peer-reviewedLead author
The Seebeck coefficient S and the electrical resistivity ρ of single-wall carbon nanotube (SWCNT) films were investigated as a function of the SWCNT diameter and carrier concentration. The S and ρ significantly changed in humid environments through p-type carrier doping. Experiments, combined with theoretical simulations based on the non-equilibrium Green’s function theory, indicated that the power factor P can be increased threefold by the enrichment of semiconducting SWCNTs, but the nanotube diameter has little effect. The improvement of the film resistivity strongly enhances the film thermoelectric performance, manifested as increasing the value of P above 1200 µW/(m·K2).