Faculty of Science and Technology

髙瀨 将道

タカセ マサミチ  (Masamichi TAKASE)

基本情報

所属
成蹊大学 理工学部 理工学科 教授
学位
博士(数理科学)(東京大学大学院数理科学研究科)

J-GLOBAL ID
201001063484257877
researchmap会員ID
6000022176

外部リンク

経歴

 3

委員歴

 1

論文

 17
  • Naohiko Kasuya, Masamichi Takase
    INTERNATIONAL JOURNAL OF MATHEMATICS 30(12) 2019年11月  査読有り
    This note corrects an error in Theorem 5.2(c) of our paper "Generic immersions and totally real embeddings".
  • Naohiko Kasuya, Masamichi Takase
    INTERNATIONAL JOURNAL OF MATHEMATICS 29(11) 2018年10月  査読有り
    We show that, for a closed orientable n-manifold, with n not congruent to 3 modulo 4, the existence of a CR-regular embedding into complex (n - 1)-space ensures the existence of a totally real embedding into complex n-space. This implies that a closed orientable (4k + 1)-manifold with non-vanishing Kervaire semi-characteristic possesses no CR-regular embedding into complex 4k-space. We also pay special attention to the cases of CR-regular embeddings of spheres and of simply-connected 5-manifolds.
  • Naohiko Kasuya, Masamichi Takase
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY 370(3) 2023-2038 2018年3月  査読有り
    It is shown that every knot or link is the set of complex tangents of a 3-sphere smoothly embedded in the 3-dimensional complex space. We show in fact that a 1-dimensional submanifold of a closed orientable 3-manifold can be realised as the set of complex tangents of a smooth embedding of the 3 manifold into the 3-dimensional complex space if and only if it represents the trivial integral homology class in the 3-manifold. The proof involves a new application of singularity theory of differentiable maps.
  • Masamichi Takase, Kokoro Tanaka
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY 161(2) 237-246 2016年9月  査読有り
    For each diagram D of a 2-knot, we provide a way to construct a new diagram D' of the same knot such that any sequence of Roseman moves between D and D' necessarily involves branch points. The proof is done by developing the observation that no sphere eversion can be lifted to an isotopy in 4-space.
  • Osamu Saeki, Masamichi Takase
    Journal of Gökova Geometry Topology 7 1-24 2013年  査読有り

MISC

 4

共同研究・競争的資金等の研究課題

 10