CVClient

本田 敏志

ホンダ サトシ  (Satoshi Honda)

基本情報

所属
兵庫県立大学 自然・環境科学研究所 宇宙天文系 宇宙天文部門 准教授
学位
博士(理学)(2002年3月 総合研究大学院大学)

ORCID ID
 https://orcid.org/0000-0001-6653-8741
J-GLOBAL ID
202001012251638629
researchmap会員ID
R000007165

論文

 62
  • Kosuke Namekata, Hiroyuki Maehara, Yuta Notsu, Satoshi Honda, Kai Ikuta, Daisaku Nogami, Kazunari Shibata
    The Astrophysical Journal 2025年11月1日  
  • Shinnosuke Ichihara, Daisaku Nogami, Kosuke Namekata, Hiroyuki Maehara, Yuta Notsu, Kai Ikuta, Satoshi Honda, Takato Otsu, Kazunari Shibata
    Publications of the Astronomical Society of Japan 2025年10月7日  査読有り
    White-light flares are explosive phenomena accompanied by brightening of continuum from near-ultraviolet to optical, which occur on the Sun and stars. In order to investigate the mechanism of white-light flares, we carried out simultaneous optical photometry (TESS : 6000-10000 Å) and spectroscopy (Seimei Telescope : 4100-8900 Å) of a M-dwarf EV Lac on 2019 September 14. We detected a flare with high-time-cadence ($\sim 50$ sec) spectroscopic observation. At the peak, the continuum of the flare component is well fitted by a blackbody spectrum with temperature of $T = 8122 \pm 273$ K, which is comparable with the results of previous studies that reported the spectral energy distribution of near-ultraviolet to optical during the flare could be approximated by single-temperature blackbody radiation at $T \sim 10^{4}$ K. We also estimated the time evolution of the flare temperature during the decay phase. The radiative energy of this flare within the optical range is $4.4 \times 10^{32}$ erg, taking into account the time-dependent variation in the decreasing flare temperature and expanding flare area. Furthermore, we detected a delayed increase in the flux of H$\alpha$ after the photometric flare peak, secondary increase, and gradual increase even after the white-light flare ended. Comparison of our results with light curves obtained by the Sun-as-a-star analysis of solar flares indicates that these signals may be due to postflare loops near the stellar limb. Our result about time evolution of white-light continuum will help to gain more insight into the mechanism of white-light flares both on the Sun and stars. Additionally, since extreme ultraviolet radiation from flare loops plays a key role in planetary atmospheric escape, the existence of postflare loops on stellar flares and its time evolution will help future studies about habitability of close-in planets.
  • Jing-Kun Zhao, Guang-Wei Li, Wako Aoki, Gang Zhao, Guo-Chao Yang, Jian-Rong Shi, Hai-Ning Li, Tadafumi Matsuno, Miho Ishigaki, Takuma Suda, Satoshi Honda, Yu-Qin Chen, Qian-Fan Xing, Hong-Liang Yan, Yong Yang, Xian-Hao Ye
    2025年8月1日  査読有り
    We present the first detailed chemical abundances for seven GD-1 stream stars from Subaru/HDS spectroscopy. Atmospheric parameters were derived via color calibrations ($T\rm_{eff}$) and iterative spectroscopic analysis. LTE abundances for 14 elements ($\alpha$, odd-Z, iron-peak, n-capture) were measured. Six stars trace the main orbit, one resides in a `blob'. All exhibit tightly clustered metallicities ([Fe/H] = -2.38, {\bf intrinsic dispersion smaller than 0.05 dex, average uncertainty is about 0.13 dex}). While one star shows binary mass transfer signatures, the other six display consistent abundance patterns (dispersions $<$ uncertainties). Their iron-peak elements (Sc, Cr, Mn, Ni) match Milky Way halo stars. In contrast, Y and Sr are systematically lower than halo stars of similar [Fe/H]. Significantly, six stars show consistently enhanced [Eu/Fe] $\sim$ 0.60 ($\sigma$ = 0.08). A tight Ba-Eu correlation (r = 0.83, p=0.04) exists, with [Ba/Fe] = -0.03 $\pm$ 0.05, indicating a common r-process origin. This extreme chemical homogeneity strongly supports an origin from a single disrupted globular cluster. The lack of light-element anti-correlations may stem from our sample size or the progenitor's low mass.
  • Yangming Lin, Haining Li, Ruizheng Jiang, Wako Aoki, Satoshi Honda, Zhenyu He, Ruizhi Zhang, Zhuohan Li, Gang Zhao
    The Astrophysical Journal Letters 984(2) L43-L43 2025年5月6日  査読有り
    Abstract We report the discovery of an actinide-boost, very metal-poor ( ), r-process-enhanced ( ) star, LAMOST J0804+5740, within the Gaia-Sausage-Enceladus (GSE). Based on the high-resolution (R ∼ 36,000 and 60,000) and high signal-to-noise ratio spectra obtained with the High Dispersion Spectrograph on the Subaru Telescope, the abundances of 48 species are determined. Its establishes it as the first confirmed actinide-boost star within the GSE. Comparative analysis of its abundance pattern with theoretical r-process models reveals that the magnetorotationally driven jet supernova r-process model with = 0.2 provides the best fit and successfully reproduces the actinide-boost signature. Kinematic analysis of actinide-boost stars reveals that approximately two-thirds of them are classified as ex situ stars, suggesting that actinide-boost stars are more likely to originate from accreted dwarf galaxies. As the first actinide-boost star identified within the GSE, J0804+5740 will provide valuable insights into r-process nucleosynthesis in accreted dwarf galaxies like the GSE, especially on the production of the heaviest elements.
  • Wako Aoki, Timothy C. Beers, Satoshi Honda, Tadafumi Matsuno, Vinicius M. Placco, Jinmi Yoon, Masayuki Kuzuhara, Hiroki Harakawa, Teruyuki Hirano, Takayuki Kotani, Takashi Kurokawa, Jun Nishikawa, Masashi Omiya, Motohide Tamura, Sebastien Vievard
    Publications of the Astronomical Society of Japan 2025年3月14日  査読有り
    Abstract The abundances of five elements, Na, Mg, Al, Si, and Sr, are investigated for 44 very metal-poor stars ($-4.0 &amp;lt; [{\rm Fe/H}] &amp;lt; -1.5$) in the Galactic halo system based on a local thermodynamic equilibrium (LTE) analysis of high-resolution near-infrared spectra obtained with the Infrared Doppler instrument (IRD) on the Subaru Telescope. Mg and Si abundances are determined for all 44 stars. The Si abundances are determined from up to 29 lines, which provide reliable abundance ratios compared to previous results from a few optical lines. The Mg and Si levels of these stars are overabundant relative to iron and are well explained by chemical-evolution models. No significant scatter is found in the abundance ratios of both elements with respect to iron, except for a few outliers. The small scatter of the abundance ratios of these elements provides constraints on the variations of stellar and supernova yields at very low metallicity. Al abundances are determined for 27 stars from near-infrared lines (e.g., 1312 nm), which are expected to be less affected by non-LTE (NLTE) effects than optical resonance lines. The average of the $[{\rm Al/Fe}]$ ratios is close to the solar value, and no dependence on metallicity is found over $-3.0 &amp;lt; [{\rm Fe/H}] &amp;lt; -2.0$. Na abundances are determined for 12 stars; they exhibit solar abundance ratios and no dependence on metallicity. The Sr abundances determined from the Sr ii triplet are significantly higher than those from the optical resonance lines obtained by previous studies for our sample. This discrepancy shows a clear dependence on temperature and surface gravity, supporting models that predict large NLTE effects on the near-infrared lines for metal-poor red giants.

MISC

 108
  • 幾田佳, 森万由子, 福井暁彦, 成田憲保, 行方宏介, 前原裕之, 野津湧太, 本田敏志, 野上大作, 柴田一成
    日本天文学会年会講演予稿集 2023 2023年  
  • Yuta Notsu, Adam F. Kowalski, Hiroyuki Maehara, Kosuke Namekata, Satoshi Honda, Teruaki Enoto, Kenji Hamaguchi, Isaiah Tristan, Suzanne L. Hawley, James R. A. Davenport, Soshi Okamoto, Kai Ikuta, Daisaku Nogami, Kazunari Shibata
    2021年7月23日  
    Flares are releases of magnetic energy in the stellar atmosphere, and they have strong emissions from radio to X-rays. During some M dwarf flares, chromospheric line profiles show blue asymmetries, although red asymmetries are more commonly observed in solar flares. Similar enhancements of the blue wings of Balmer lines may provide clues for investigating the early phases of stellar coronal mass ejections (CMEs), but this is still controversial. Thus, we need more observations to understand the relationship between mass ejections and flares. We have conducted simultaneous spectroscopic and photometric observations of mid M dwarf flare stars using APO 3.5m/ARCES, SMARTS1.5m/CHIRON, TESS, and etc. During 34 night observations, we detected 48 flares in Balmer lines (e.g. Hα). At least 7 flares show clear blue asymmetries. Blue asymmetry durations are different among the 7 events (20min ~ 2hr). These results suggest upward flows of chromospheric plasma during flare events. By assuming that the blue asymmetries were caused by prominence eruptions, we estimated the mass and kinetic energy. The estimated masses are comparable to expectations from the empirical relation between the flare X-ray energy and mass of solar CMEs.
  • Kosuke Namekata, Hiroyuki Maehara, Ryo Sasaki, Hiroki Kawai, Yuta Notsu, Adam F. Kowalski, Joel C. Allred, Wataru Iwakiri, Yoko Tsuboi, Katsuhiro L. Murata, Masafumi Niwano, Kazuki Shiraishi, Ryo Adachi, Kota Iida, Motoki Oeda, Satoshi Honda, Miyako Tozuka, Noriyuki Katoh, Hiroki Onozato, Soshi Okamoto, Keisuke Isogai, Mariko Kimura, Naoto Kojiguchi, Yasuyuki Wakamatsu, Yusuke Tampo, Daisaku Nogami, Kazunari Shibata
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN 73(2) 485-485 2021年4月  
  • Kosuke Namekata, Hiroyuki Maehara, Satoshi Honda, Yuta Notsu, Soshi Okamoto, Jun Takahashi, Masaki Takayama, Tomohito Ohshima, Tomoki Saito, Noriyuki Katoh, Miyako Tozuka, Katsuhiro Murata, Futa Ogawa, Masafumi Niwano, Ryo Adachi, Motoki Oeda, Kazuki Shiraishi, Keisuke Isogai, Takako Ishii, Kiyoshi Ichimoto, Daisaku Nogami, Kazunari Shibata
    2021年2月26日  
    Solar and stellar flares are caused by the sudden release of magnetic energy on the surfaces. In the case of the Sun, mass ejections often accompany solar flares and affect the Earth’s environment. Active solar-type stars (G-type main-sequence stars) sometimes show larger `superflares' (Maehara et al. 2012) that may cause more huge mass ejections than those of solar flares. The stellar mass ejections can greatly affect the exoplanet habitability and the stellar mass evolution (e.g. Airapetian et al. 2020). However, no observational indication of mass ejection has been reported especially for solar-type stars. We conducted spectroscopic monitoring observations of the active young solar analog EK Dra (a famous zero-age main-sequence G-dwarf) by our new 3.8-m Seimei telescope, simultaneously with TESS photometry. Our time-resolved optical spectroscopic observation shows clear evidence for a stellar mass ejection associated with a superflare on the solar-type star (Namekata et al. submitted). After the superflare brightening with the radiated energy of 2.0×1033 erg observed by TESS, a blue-shifted H-alpha absorption component with a velocity of -510 km s-1 appeared. The velocity gradually decayed in 2 hours and the deceleration 0.34 km s-2 was consistent with the surface gravity on EK Dra (0.30 ± 0.05 km s-2). The temporal changes in the spectra greatly resemble that of a solar mass ejection observed by the SMART telescope at Hida observatory. Moreover, the ejected mass of 1.1×1018 g roughly corresponds to those predicted from solar flare-energy/ejected-mass relation. These discoveries imply that a huge stellar mass ejection occurs possibly in the same way as solar ones. Our high-quality dataset can be helpful for future studies to estimate its impacts on the young-planet atmosphere around young solar-type stars as well as stellar mass/angular momentum evolution.
  • 幾田佳, 前原裕之, 野津湧太, 行方宏介, 加藤太一, 岡本壮師, 野津翔太, 本田敏志, 野上大作, 柴田一成
    日本天文学会年会講演予稿集 2021 2021年  

共同研究・競争的資金等の研究課題

 12