CVClient

福田 育夫

Ikuo Fukuda

基本情報

所属
兵庫県立大学大学院 情報科学研究科 (特任教授)
学位
博士(理学)

J-GLOBAL ID
201901006194016143
researchmap会員ID
B000366807

論文

 53
  • Ikuo Fukuda, Kei Moritsugu
    Journal of Physics A: Mathematical and Theoretical 2025年3月31日  
  • Junichi Higo, Kota Kasahara, Shun Sakuraba, Gert-Jan Bekker, Narutoshi Kamiya, Ikuo Fukuda, Takuya Takahashi, Yoshifumi Fukunishi
    Biophysics and physicobiology 22(2) e220011 2025年  
    Ligand-receptor docking simulation is difficult when the biomolecules have high intrinsic flexibility. If some knowledge on the ligand-receptor complex structure or inter-molecular contact sites are presented in advance, the difficulty of docking problem considerably decreases. This paper proposes a generalized-ensemble method "cartesian-space division mD-VcMD" (or CSD-mD-VcMD), which calculates stable complex structures without assist of experimental knowledge on the complex structure. This method is an extension of our previous method that requires the knowledge on the ligand-receptor complex structure in advance. Both the present and previous methods enhance the conformational sampling, and finally produce a binding free-energy landscape starting from a completely dissociated conformation, and provide a free-energy landscape. We applied the present method to same system studied by the previous method: A ligand (ribocil A or ribocil B) binding to an RNA (the aptamer domain of the FMN riboswitch). The two methods produced similar results, which explained experimental data. For instance, ribocil B bound to the aptamer's deep binding pocket more strongly than ribocil A did. However, this does not mean that two methods have a similar performance. Note that the present method did not use the experimental knowledge of binding sites although the previous method was supported by the knowledge. The RNA-ligand binding site could be a cryptic site because RNA and ligand are highly flexible in general. The current study showed that CSD-mD-VcMD is actually useful to obtain a binding free-energy landscape of a flexible system, i.e., the RNA-ligand interacting system.
  • Ikuo Fukuda, Kei Moritsugu, Junichi Higo, Yoshifumi Fukunishi
    The Journal of chemical physics 159(23) 2023年12月21日  
    We introduce a simple cutoff-based method for precise electrostatic energy calculations in the molecular dynamics (MD) simulations of point-particle systems. Our method employs a theoretically derived smooth pair potential function to define electrostatic energy, offering stability and computational efficiency in MD simulations. Instead of imposing specific physical conditions, such as dielectric environments or charge neutrality, we focus on the relationship represented by a single summation formula of charge-weighted pair potentials. This approach allows an accurate energy approximation for each particle, enabling a straightforward error analysis. The resulting particle-dependent pair potential captures the charge distribution information, making it suitable for heterogeneous systems and ensuring an enhanced accuracy through distant information inclusion. Numerical investigations of the Madelung constants of crystalline systems validate the method's accuracy.
  • Junichi Higo, Gert-Jan Bekker, Narutoshi Kamiya, Ikuo Fukuda, Yoshifumi Fukunishi
    Biophysics and physicobiology 20(4) e200047-n/a 2023年  
    A small and flexible molecule, ribocil A (non-binder) or B (binder), binds to the deep pocket of the aptamer domain of the FMN riboswitch, which is an RNA molecule. This binding was studied by mD-VcMD, which is a generalized-ensemble simulation method. Ribocil A and B are structurally similar because they are optical isomers to each other. In the initial conformation of simulation, the ligands and the aptamer were completely dissociated in explicit solvent. The aptamer-ribocil B binding was stronger than the aptamer-ribocil A binding, which agrees with experiments. The computed free-energy landscape for the aptamer-ribocil B binding was funnel-like, whereas that for the aptamer-ribocil A binding was rugged. When passing through the gate (named "front gate") of the binding pocket, each ligand interacted with bases of the riboswitch by non-native π-π stackings, and the stackings restrained the ligand's orientation to be advantageous to reach the binding site smoothly. When the ligands reached the binding site in the pocket, the non-native stackings were replaced by the native stackings. The ligand's orientation restriction is discussed referring to a selection mechanism reported in an earlier work on a drug-GPCR interaction. The present simulation showed another pathway leading the ligands to the binding site. The gate ("rear gate") for this pathway was located completely opposite to the front gate on the aptamer's surface. However, the approach from the rear gate required overcoming a free-energy barrier regarding ligand's rotation before reaching the binding site.
  • Ikuo Fukuda, Haruki Nakamura
    Biophysical reviews 14(6) 1315-1340 2022年12月  
    In molecular simulations, it is essential to properly calculate the electrostatic interactions of particles in the physical system of interest. Here we consider a method called the non-Ewald method, which does not rely on the standard Ewald method with periodic boundary conditions, but instead relies on the cutoff-based techniques. We focus on the physicochemical and mathematical conceptual aspects of the method in order to gain a deeper understanding of the simulation methodology. In particular, we take into account the reaction field (RF) method, the isotropic periodic sum (IPS) method, and the zero-multipole summation method (ZMM). These cutoff-based methods are based on different physical ideas and are completely distinguishable in their underlying concepts. The RF and IPS methods are "additive" methods that incorporate information outside the cutoff region, via dielectric medium and isotropic boundary condition, respectively. In contrast, the ZMM is a "subtraction" method that tries to remove the artificial effects, generated near the boundary, from the cutoff sphere. Nonetheless, we find physical and/or mathematical similarities between these methods. In particular, the modified RF method can be derived by the principle of neutralization utilized in the ZMM, and we also found a direct relationship between IPS and ZMM.

MISC

 30
  • BEKKER Gert-Jan, KAMIYA Narutoshi, KAMIYA Narutoshi, ARAKI Mitsugu, FUKUDA Ikuo, OKUNO Yasushi, NAKAMURA Haruki
    日本蛋白質科学会年会プログラム・要旨集 17th 2017年  
  • BEKKER Gert-Jan, KAMIYA Narutoshi, ARAKI Mitsugu, FUKUDA Ikuo, OKUNO Yasushi, NAKAMURA Haruki
    生物物理(Web) 57(Supplement 1-2) 2017年  
  • 福田 育夫
    日本物理学会誌 72(11) 793-799 2017年  
    <p>分子シミュレーション法は,原子間の力をできるだけ正確にモデル化することで,原子からなる多体系(生体分子や材料など)の性質をミクロな立場から調べることのできる重要な計算手法である.ただし,この分子シミュレーション法で最も厄介なのが長距離相互作用の扱いである.というのも,古典系では基本的に自由度数の二乗に比例する計算コストがかかり,また境界条件についても悩ましい問題があるからである.さらに,クーロン静電相互作用は,長距離相互作用の中でも取り扱いが自明ではない.距離の関数としてのクーロン関数の減衰が遅いため,最も簡単な計算スキームである単純カットオフ(ある所まで距離が離れたら力をゼロとする)が許されないからである.但し,クーロン相互作用は,重力(万有引力)と同様な関数形を持ちながらも,正負の符号がある点が異なり,これが物理現象の本質を捉える上でも,また効率的な計算スキームを考える上でも非常に重要になる.</p><p>我々は,この正負の符号によって生じる相互作用のキャンセルという物理的アイデアを,数学的に定式化することで,「零多重極子和法」(Zero-Multipole summation Method; ZMM)という静電相互作用計算法を作った.この計算法では,クーロン関数の原子ペア毎の和の代わりに,クーロン関数を変形して得られたある関数の原子ペア毎のカットオフ形式での和を採用する.この変形は,静電相互作用がキャンセルされるという「中性条件」を満たした配置からの寄与を効果的に取り入れるために導入される.カットオフ形式での原子ペア毎の和で相互作用エネルギーが定義されるため,大規模系では系のスケールに比例する計算コストで済む.また,周期境界条件は必須では無くなるため,本来非周期的な系への周期境界条件の適用による不自然な問題は生じない.さらに,波数空間部分の計算も不要なため,高速フーリエ変換を用いた際の通信等の問題も回避でき,並列計算時等における大幅な計算時間短縮につながる.これらの点は,従来のエバルト法に基づいた方法と異なる.また,運動方程式を考えた時のエネルギー及び全運動量の保存則を壊すことも無い.</p><p>ZMMを完全な対称性を持つイオン結晶系,及びその対称性が熱揺らぎにより崩れた液体イオン系に適用して高精度なエネルギーを得た.その際に得られた精度の,ZMMの持つパラメタへの依存性は理論的に説明できるものであった.さらに,ZMMを水分子系に適用し,エネルギー及び諸物理量を測定して,高精度な結果を得た.個々の水分子は永久双極子のため双極子中性条件を満たさないにも拘らず,良好な結果が得られた解釈として,常温・常圧の水分子系ではランダムに永久双極子が配向して,相互作用のキャンセルが起こるためだと考えることができる.しかし,そのようなことが起こらないはずの強誘電性結晶に適用しても良い結果が得られた.その完全な理解には到達していないが,相互作用の相殺以外の概念から導かれた静電相互作用計算手法とZMMとの関連を考察することが有効であろう.</p>
  • 福田 育夫, 神谷 成敏, 笠原 浩太, 寺田 透, Wang Han, 桜庭 俊, 中村 春木
    日本物理学会講演概要集 71 3184-3184 2016年  
  • 福田 育夫, Wang Han, 中村 春木
    日本物理学会講演概要集 70 3293-3293 2015年  

共同研究・競争的資金等の研究課題

 4