研究者業績

餅井 真

モチイ マコト  (Makoto Mochii)

基本情報

所属
兵庫県立大学 大学院 理学研究科 準教授
学位
理学博士(名古屋大学)

J-GLOBAL ID
200901023000794838
researchmap会員ID
1000144622

研究キーワード

 2

論文

 30
  • Makoto Mochii, Kai Akizuki, Hero Ossaka, Norie Kagawa, Yoshihiko Umesono, Ken-Ichi T Suzuki
    Developmental biology 506 42-51 2023年12月3日  査読有り筆頭著者責任著者
    Xenopus laevis is a widely used model organism in developmental and regeneration studies. Despite several reports regarding targeted integration techniques in Xenopus, there is still room for improvement of them, especially in creating reporter lines that rely on endogenous regulatory enhancers/promoters. We developed a CRISPR-Cas9-based simple method to efficiently introduce a fluorescent protein gene into 5' untranslated regions (5'UTRs) of target genes in Xenopus laevis. A donor plasmid DNA encoding an enhanced green fluorescent protein (eGFP) flanked by a genomic fragment ranging from 66 bp to 878 bp including target 5'UTR was co-injected into fertilized eggs with a single guide RNA and Cas9 protein. Injections for krt12.2.L, myod1.S, sox2.L or brevican.S resulted in embryos expressing eGFP fluorescence in a tissue-specific manner, recapitulating endogenous expression of target genes. Integrations of the donor DNA into the target regions were examined by genotyping PCR for the eGFP-expressing embryos. The rate of embryos expressing the specific eGFP varied from 2.1% to 13.2% depending on the target locus and length of the genomic fragment in the donor plasmids. Germline transmission of an integrated DNA was observed. This simple method provides a powerful tool for exploring gene expression and function in developmental and regeneration research in X. laevis.
  • Yuki Shibata, Akinori Okumura, Makoto Mochii, Ken-ichi T. Suzuki
    STAR Protocols 4(3) 102382-102382 2023年9月  査読有り
  • Yuki Shibata, Miyuki Suzuki, Nao Hirose, Ayuko Takayama, Chiaki Sanbo, Takeshi Inoue, Yoshihiko Umesono, Kiyokazu Agata, Naoto Ueno, Ken-ichi T. Suzuki, Makoto Mochii
    Developmental Biology 2022年6月  査読有り最終著者責任著者
  • Okumura A, Hayashi T, Ebisawa M, Yoshimura M, Sasagawa Y, Nikaido I, Umesono Y, Mochii M
    Development, growth & differentiation 61(9) 447-456 2019年12月  査読有り最終著者責任著者
  • Kazutaka Hosoda, Minako Motoishi, Takuya Kunimoto, Osamu Nishimura, Byulnim Hwang, Sumire Kobayashi, Shigenobu Yazawa, Makoto Mochii, Kiyokazu Agata, Yoshihiko Umesono
    Development, growth & differentiation 60(6) 341-353 2018年8月  査読有り
    Planarians have established a unique body pattern along the anterior-posterior (AP) axis, which consists of at least four distinct body regions arranged in an anterior to posterior sequence: head, prepharyngeal, pharyngeal (containing a pharynx), and tail regions, and possess high regenerative ability. How they reconstruct the regional continuity in a head-to-tail sequence after amputation still remains unknown. We use as a model planarian Dugesia japonica head regeneration from tail fragments, which involves dynamic rearrangement of the body regionality of preexisting tail tissues along the AP axis, and show here that RNA interference of the gene D. japonica mek kinase 1 (Djmekk1) caused a significant anterior shift in the position of pharynx regeneration at the expense of the prepharyngeal region, while keeping the head region relatively constant in size, and accordingly led to development of a relatively longer tail region. Our data suggest that DjMEKK1 regulates anterior extracellular signal-regulated kinase (ERK) and posterior β-catenin signaling pathways in a positive and negative manner, respectively, to establish a proper balance resulting in the regeneration of planarian's scale-invariant trunk-to-tail patterns across individuals. Furthermore, we demonstrated that DjMEKK1 negatively modulates planarian β-catenin activity via its serine/threonine kinase domain, but not its PHD/RING finger domain, by testing secondary axis formation in Xenopus embryos. The data suggest that Djmekk1 plays an instructive role in the coordination between the establishment of the prepharyngeal region and posteriorizing of pharynx formation by balancing the two opposing morphogenetic signals along the AP axis during planarian regeneration.

MISC

 89
  • Takuji Sugiura, Akira Tazaki, Naoto Ueno, Kenji Watanabe, Makoto Mochii
    MECHANISMS OF DEVELOPMENT 126(1-2) 56-67 2009年1月  
    Amputation of the larval tail of Xenopus injures the notochord, spinal cord, muscle masses, mesenchyme, and epidermis, induces the growth and differentiation of cells in those tissues, and results in tail regeneration. A dorsal incision in the larval tail injures the same tissues and induces cell growth and differentiation, but never results in the formation of any extra appendages. The first sign of tail regeneration is the multilayered wound epidermis and Xwnt-5a expression in the distal region, neither of which is observed in the recovering region after a dorsal incision. To evaluate the role of Xwnt-5a in tail regeneration, Xwnt-5a was overexpressed in the recovering region. When an animal cap injected with Xwnt-5a mRNA was grafted into the dorsal incision, an ectopic protrusion was formed. Morphological and molecular analyses revealed that the protrusion was an ectopic larval tail, which was equivalent to the regenerating tail but different from the tail that develops from the embryonic tail bud. Lineage labeling revealed that the major differentiated structures of the ectopic tail were formed from host cells, suggesting that Xwnt-5a induced host cells to make a complete tail. The ectopic tail was not induced by Xwnt-8 or Xwnt-11, demonstrating the specificity of Xwnt-5a in this process. A pharmacological study showed that JNK signaling is required in tail regeneration. These results support the proposition that Xwnt-5a plays an instructive role in larval tail regeneration via Wnt/JNK signaling. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
  • Hidefumi Fujii, Masao Sakai, Shin-ichiro Nishimatsu, Tsutomu Nohno, Makoto Mochii, Hidefumi Orii, Kenji Watanabe
    DEVELOPMENT GROWTH & DIFFERENTIATION 50(3) 169-180 2008年4月  
    We examined several candidate posterior/mesodermal inducing molecules using permanent blastula-type embryos (PBEs) as an assay system. Candidate molecules were injected individually or in combination with the organizer factor chordin mRNA. Injection of chordin alone resulted in a white hemispherical neural tissue surrounded by a large circular cement gland, together with anterior neural gene expression and thus the development of the anterior-most parts of the embryo, without mesodermal tissues. When VegT, eFGF or Xbra mRNAs were injected into a different blastomere of the chordin-injected PBEs, the embryos elongated and formed eye, muscle and pigment cells, and expressed mesodermal and posterior neural genes. These embryos formed the full spectrum of the anteroposterior embryonic axis. In contrast, injection of CSKA-Xwnt8 DNA into PBEs injected with chordin resulted in eye formation and expression of En2, a midbrain/hindbrain marker, and Xnot, a notochord marker, but neither elongation, muscle formation nor more posterior gene expression. Injection of chordin and posteriorizing molecules into the same cell did not result in elongation of the embryo. Thus, by using PBEs as the host test system we show that (i) overall anteroposterior neural development, mesoderm (muscle) formation, together with embryo elongation can occur through the synergistic effect(s) of the organizer molecule chordin, and each of the 'overall posteriorizing molecules' eFGF, VegT and Xbra; (ii) Xwnt8-mediated posteriorization is restricted to the eye level and is independent of mesoderm formation; and (iii) proper anteroposterior patterning requires a separation of the dorsalizing and posteriorizing gene expression domains.
  • Yuka Taniguchi, Takuji Sugiura, Akira Tazaki, Kenji Watanabe, Makoto Mochii
    DEVELOPMENT GROWTH & DIFFERENTIATION 50(2) 109-120 2008年2月  
    Tail regeneration in urodeles is dependent on the spinal cord (SC), but it is believed that anuran larvae regenerate normal tails without the SC. To evaluate the precise role of the SC in anuran tail regeneration, we developed a simple operation method to ablate the SC completely and minimize the damage to the tadpole using Xenopus laevis. The SC-ablated tadpole regenerated a twisted and smaller tail. These morphological abnormalities were attributed to defects in the notochord (NC), as the regenerated NC in the SC-ablated tail was short, slim and twisted. The SC ablation never affected the early steps of the regeneration, including closure of the amputated surface with epidermis and accumulation of the NC precursor cells. The proliferation rate of the NC precursor cells, however, was reduced, and NC cell maturation was retarded in the SC-ablated tail. These results show that the SC has an essential role in the normal tail regeneration of Xenopus larvae, especially in the proliferation and differentiation of the NC cells. Gene expression analysis and implantation of a bead soaked with growth factor showed that fibroblast growth factor-2 and -10 were involved in the signaling molecules, which were expressed in the SC and stimulated growth of the NC cells.
  • Makoto Mochii, Yuka Taniguchi, Isshin Shikata
    DEVELOPMENT GROWTH & DIFFERENTIATION 49(2) 155-161 2007年2月  
    The tail of the Xenopus tadpole contains major axial structures, including a spinal cord, notochord and myotomes, and regenerates within 2 weeks following amputation. The tail regeneration in Xenopus can provide insights into the molecular basis of the regeneration mechanism. The regenerated tail has some differences from the normal tail, including an immature spinal cord and incomplete segmentation of the muscle masses. Lineage analyses have suggested that the tail tissues are reconstructed with lineage-restricted stem cells derived from their own tissues in clear contrast to urodele regeneration, in which multipotent blastema cells derived from differentiated cells play a major role. Comprehensive gene expression analyses resulted in the identification of a panel of genes involved in sequential steps of the regeneration. Manipulation of genes' activities suggested that the tail regeneration is regulated through several major signaling pathways.
  • 渡辺 憲二, 餅井 真, 織井 秀文
    兵庫県立大学大学院物質理学研究科・生命理学研究科研究一覧 17 165-165 2006年10月10日  

共同研究・競争的資金等の研究課題

 21