The double differential cross-sections (DDXs) of photoneutron production via the photonuclear reaction on tantalum, tungsten, and bismuth for 13 and 17 MeV linearly polarized photon beams were measured using the time-of-flight method at the NewSUBARU-BL01 facility. Polarized photons were obtained by the Laser Compton backscattering (LCS) technique. Two distinct components were observed on the spectra: the lowenergy component up to 4 MeV and the high-energy above 4 MeV. The angular distribution of the low-energy component was isotropic, whereas the high-energy was distributed anisotropically and influenced by the angle between direction of photon polarization and neutron emission, especially for 17 MeV photon energy. These phenomena were similar to those of 197Au target observed in the previous studies. The low-energy neutron distributions at 13 and 17 MeV photon energies were almost identical for all three targets. The DDX energy integration was calculated and compared among the three targets for two-photon energies. Given the horizontal polarization (plane parallel to the x-axis) of the incident photons, the emission angles of 90° on the x-axis and y-axis recorded the maximum and minimum photoneutron yield, respectively. The differences between these two positions were minor for 181Ta and natW at 13 MeV photon energy and noticeable for other cases. An underestimation of the TENDL nuclear data library was observed on the photoneutron DDXs compared to the experimental results for 181Ta and 209Bi.
Journal of Instrumentation 18(06) T06005-T06005 2023年6月1日 査読有り
Abstract
The intensity and energy spatial distributions of collimated laser Compton scattering (LCS) γ-ray beams and of the associated bremsstrahlung beams have been investigated as functions of the electron beam energy, electron beam phase space distribution, laser optics conditions and laser polarization. We show that the beam halo is affected to different extents by variations in the above listed parameters. In the present work, we have used laser Compton scattering simulations performed with the eliLaBr code (https://github.com/dan-mihai-filipescu/eliLaBr) and real LCS and bremsstrahlung γ-ray beams produced at the NewSUBARU synchrotron radiation facility. A 500 μm MiniPIX X-ray camera was used as beamspot monitor in a wide γ-ray beam energy range between 1.73 MeV and 38.1 MeV.
Dan Filipescu, Ioana Gheorghe, Konstantin Stopani, Sergey Belyshev, Satoshi Hashimoto, Shuji Miyamoto, Hiroaki Utsunomiya
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1047 167885-167885 2023年2月 査読有り
Y. Arikawa, T. Sato, A. Yogo, A. Morace, S. Hashimoto, S. Miyamoto, S. Fujioka, Z. Lan, T. Wei, J. Yamasaki, K. Sato, T. Yasuda, K. Miyanishi, A. Kagawa, M. Negoro, M. Kitagawa, R. Kodama
INTERNATIONAL CONFERENCE ON HIGH ENERGY DENSITY SCIENCES 2023