Syusaku Nakamura, Wataru Nakamura, Shunjiro Fujii, Shin ichi Honda, Masahito Niibe, Mititaka Terasawa, Yuji Higo, Keisuke Niwase
Diamond and Related Materials 123 2022年3月 査読有り
To clarify the nature of defects presented in neutron (n)-irradiated highly oriented pyrolytic graphite (HOPG), in situ X-ray diffraction (XRD) observation at room temperature (RT) and high pressure was conducted with synchrotron radiation (SPring-8). We focused on the graphite (002) [G(002)] peak under compression to 18.1 GPa and also under decompression. For comparison, unirradiated HOPG was also placed in the same high-pressure cell. We found that the G(002) peak can be represented by two components, the S and L peaks, for the n-irradiated HOPG, whereas it can be represented by only one component for the unirradiated HOPG. The d-spacing for the n-irradiated and unirradiated HOPG samples gradually decreased with increasing pressure. At 18.1 GPa, the d-spacing of the S peak of the irradiated sample became almost the same as that of the unirradiated one, but that of the L peak was larger. Under decompression, the behavior of the d-spacing was almost opposite to that under compression, and the d-spacing was restored to its value before compression. Also, taking account of the changes in the peak widths, we referred to and considered irradiation-induced defects of interstitial-type defects existing between the basal planes and in-plane defects of dislocation dipoles as possible defects that affect the changes in the G(002) peak.