CVClient

後藤 忠徳

ゴトウ タダノリ  (Tada-nori Goto)

基本情報

所属
兵庫県立大学 理学研究科 教授
学位
博士(理学)(1997年7月 京都大学)

研究者番号
90303685
J-GLOBAL ID
202301006620127872
researchmap会員ID
R000046789

論文

 92
  • Keiichi Ishizu, Ayako Oda, Tada-nori Goto, Takafumi Kasaya, Toshiki Watanabe, Hideaki Machiyama
    Scientific Reports 14(1) 2024年7月1日  
    Abstract Near-seafloor concentrated gas hydrates (GHs) containing large amounts of methane have been identified at various gas chimney sites. Although understanding the spatial distribution of GHs is fundamental for assessing their dissociation impact on aggravating global warming and resource potential, the spatial distribution of GHs within gas chimneys remains unclear. Here, we estimate the subseafloor distribution of GHs at a gas chimney site in the Japan Sea using marine electrical resistivity tomography data. The resulting two-dimensional subseafloor resistivity structure shows high anomalies (10–100 Ωm) within seismically inferred gas chimneys. As the resistivity anomalies are aligned with high amplitude seismic reflections and core positions recovering GHs, we interpret the resistivity anomalies are near-seafloor concentrated GH deposits. We also detect various distribution patterns of the high resistivity anomalies including 100-m wide and 40-m thick anomaly near the seafloor and 500-m wide anomaly buried 50 m below the seafloor, suggesting that GHs are heterogeneously distributed. Therefore, considering such heterogeneous GH distribution within gas chimneys is critical for in-depth assessments of GH environmental impacts and energy resources.
  • Shohei Albert TOMITA, Katsuaki KOIKE, Takafumi KASAYA, Tada-nori GOTO, Katsuhiko SUZUKI
    Journal of MMIJ 140(6) 101-111 2024年6月28日  
  • Yusuke Ohta, Tada-nori Goto, Katsuaki Koike, Koki Kashiwaya, Weiren Lin, Osamu Tadai, Takafumi Kasaya, Toshiya Kanamatsu, Hideaki Machiyama
    Earth, Planets and Space 76(1) 2024年4月8日  
    Abstract The physical properties of seafloor massive sulfides are crucial for interpreting sub-seafloor images from geophysical surveys, shedding light on the evolution of seafloor mineral deposits. While some studies have explored the relationship between electrical properties and the volume of conductive minerals in rocks from seafloor massive sulfide deposits, they primarily focused on artificial samples, leaving the characteristics of natural samples less understood. Moreover, there has been no comprehensive study detailing the general characteristics of electrical properties, particularly chargeability and relaxation time, in relation to the volumetric fraction of sulfides in rocks from massive sulfide mounds in typical hydrothermal areas. In this study, we employed complex conductivity measurements, elemental concentration analysis, and mineral content identification on to rock samples from the active hydrothermal zones of the Okinawa Trough in Japan. The complex conductivity observed was remarkably high, with a pronounced imaginary component and a broad frequency range. This is attributed to induced polarization extending beyond our measurement range. The rock samples were rich in conductive sulfide minerals such as pyrite, chalcopyrite, and galena. Using the Cole–Cole rock physics model, we established a correlation between rock chargeability and relaxation time coefficient with the volume fraction of conductive sulfide minerals, which deviated from previous findings. The intensity of induced polarization was notably higher than anticipated in earlier studies using artificial samples. Furthermore, we observed a distinct positive correlation between the coefficient of relaxation time and the increase in sulfide volume, likely due to the geometric characteristics of the sulfide minerals. Our findings suggest that rocks in massive sulfide mounds may generally construct sulfide clusters that lengthen the conductive path of the electrical carrier. Graphical Abstract
  • Keiichi Ishizu, Takafumi Kasaya, Tada-Nori Goto, Katsuaki Koike, Weerachai Siripunvaraporn, Hisanori Iwamoto, Yoshifumi Kawada, Jun-Ichiro Ishibashi
    GEOPHYSICS 1-50 2024年2月19日  
    Deep-sea massive sulfide deposits formed by hydrothermal fluid circulation are potential metal resources. They can exist not only as mound manifestations on the seafloor (seafloor massive sulfides) but also as embedded anomalies buried beneath the seafloor (embedded massive sulfides). The distribution of embedded massive sulfides is largely unknown, despite their expected high economic value. Recent drilling surveys have revealed a complex model suggesting embedded massive sulfides coexist beneath seafloor massive sulfides. In the coexisting case, geophysical methods are required to distinguish and map both seafloor and embedded massive sulfides for accurate resource estimation. Marine controlled-source electromagnetic (CSEM) methods are useful for mapping massive sulfides as they exhibit higher electrical conductivity compared to the surrounding host rock. However, CSEM applications capable of distinguishing and mapping both massive sulfides are lacking. We employ a towed electric dipole transmitter with two types of receivers: stationary ocean bottom electric (OBE) and short-offset towed receivers. This combination utilizes differences in sensitivity: the towed receiver data are sensitive to seafloor massive sulfides and the stationary OBE receiver data are sensitive to embedded massive sulfides. Our synthetic data example demonstrates that the combined inversion of towed and OBE data can recover resistivities and positions of both massive sulfides more accurately than the existing inversion methods using individual applications. We perform the combined inversion of measured CSEM data obtained from the middle Okinawa Trough. The inversion models demonstrate that a combined inversion can map the location and shape of embedded massive sulfides identified during drilling more accurately than the inversion of individual datasets.
  • Hiroshi Ichihara, Takafumi Kasaya, Kiyoshi Baba, Tada-nori Goto, Makoto Yamano
    Earth, Planets and Space 75(1) 2023年5月15日  査読有り

MISC

 178

書籍等出版物

 1

講演・口頭発表等

 40

担当経験のある科目(授業)

 1

共同研究・競争的資金等の研究課題

 25