研究者業績

村上 豪

ムラカミ ゴウ  (Go Murakami)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 助教

J-GLOBAL ID
201901001752900088
researchmap会員ID
B000359749

論文

 143
  • Lina Z. Hadid, Dominique Delcourt, Yuki Harada, Mathias Rojo, Sae Aizawa, Yoshifumi Saito, Nicolas André, Austin N. Glass, Jim M. Raines, Shoichiro Yokota, Markus Fränz, Bruno Katra, Christophe Verdeil, Björn Fiethe, Francois Leblanc, Ronan Modolo, Dominique Fontaine, Norbert Krupp, Harald Krüger, Frédéric Leblanc, Henning Fischer, Jean-Jacques Berthelier, Jean-André Sauvaud, Go Murakami, Shoya Matsuda
    Communications Physics 7(1) 2024年10月3日  
  • Yuki Harada, Yoshifumi Saito, Lina Z. Hadid, Dominique Delcourt, Sae Aizawa, Mathias Rojo, Nicolas André, Moa Persson, Markus Fraenz, Shoichiro Yokota, Andréi Fedorov, Wataru Miyake, Emmanuel Penou, Alain Barthe, Jean‐André Sauvaud, Bruno Katra, Shoya Matsuda, Go Murakami
    Journal of Geophysical Research: Space Physics 129(8) 2024年8月2日  
    Abstract Although solar wind‐driven convection is expected to dominate magnetospheric circulation at Mercury, its exact pattern remains poorly characterized by observations. Here we present BepiColombo Mio observations during the third Mercury flyby indicative of convection‐driven transport of low‐energy dense ions into the deep magnetosphere. During the flyby, Mio observed an energy‐dispersed ion population from the duskside magnetopause to the deep region of the midnight magnetosphere. A comparison of the observations with backward test particle simulations suggests that the observed energy dispersion structure can be explained in terms of energy‐selective transport by convection from the duskside tail magnetopause. We also discuss the properties and origins of more energetic ions observed in the more dipole‐like field regions of the magnetosphere in comparison to previously reported populations of the plasma sheet horn and ring current ions. Additionally, forward test particle simulations predict that most of the observed ions on the nightside will precipitate onto relatively low‐latitude regions of the nightside surface of Mercury for a typical convection case. The presented observations and simulation results reveal the critical role of magnetospheric convection in determining the structure of Mercury's magnetospheric plasma. The upstream driver dependence of magnetospheric convection and its effects on other magnetospheric processes and plasma‐surface interactions should be further investigated by in‐orbit BepiColombo observations.
  • M. Rojo, N. André, S. Aizawa, J.-A. Sauvaud, Y. Saito, Y. Harada, A. Fedorov, E. Penou, A. Barthe, M. Persson, S. Yokota, C. Mazelle, L. Z. Hadid, D. Delcourt, D. Fontaine, M. Fränz, B. Katra, N. Krupp, G. Murakami
    Astronomy & Astrophysics 687 A243-A243 2024年7月17日  
    Context. The Mercury electron analyzer (MEA) obtained new electron observations during the first three Mercury flybys by BepiColombo on October 1, 2021 (MFB1), June 23 , 2022 (MFB2), and June 19, 2023 (MFB3). BepiColombo entered the dusk side magnetotail from the flank magnetosheath in the northern hemisphere, crossed the Mercury solar orbital equator around midnight in the magnetotail, traveled from midnight to dawn in the southern hemisphere near the closest approach, and exited from the post-dawn magnetosphere into the dayside magnetosheath. Aims. We aim to identify the magnetospheric boundaries and describe the structure and dynamics of the electron populations observed in the various regions explored along the flyby trajectories. Methods. We derive 4s time resolution electron densities and temperatures from MEA observations. We compare and contrast our new BepiColombo electron observations with those obtained from the Mariner 10 scanning electron spectrometer (SES) 49 yr ago. Results. A comparison to the averaged magnetospheric boundary crossings of MESSENGER indicates that the magnetosphere of Mercury was compressed during MFB1, close to its average state during MFB2, and highly compressed during MFB3. Our new MEA observations reveal the presence of a wake effect very close behind Mercury when BepiColombo entered the shadow region, a significant dusk-dawn asymmetry in electron fluxes in the nightside magnetosphere, and strongly fluctuating electrons with energies above 100s eV in the dawnside magnetosphere. Magnetospheric electron densities and temperatures are in the range of 10–30 cm−3 and above a few 100s eV in the pre-midnight-sector, and in the range of 1–100 cm−3 and well below 100 eV in the post-midnight sector, respectively. Conclusions. The MEA electron observations of different solar wind properties encountered during the first three Mercury flybys reveal the highly dynamic response and variability of the solar wind-magnetosphere interactions at Mercury. A good match is found between the electron plasma parameters derived by MEA in the various regions of the Hermean environment and similar ones derived in a few cases from other instruments on board BepiColombo.
  • Hiroyasu Kondo, Fuminori Tsuchiya, Masato Kagitani, Shinnosuke Satoh, Hiroaki Misawa, Yuki Nakamura, Go Murakami, Tomoki Kimura, Atsushi Yamazaki, Ichiro Yoshikawa, Hajime Kita, Chihiro Tao
    2024年5月28日  
  • L. Z. Hadid, D. Delcourt, Y. Saito, M. Fränz, S. Yokota, B. Fiethe, C. Verdeil, B. Katra, F. Leblanc, H. Fischer, M. Persson, S. Aizawa, N. André, Y. Harada, A. Fedorov, D. Fontaine, N. Krupp, H. Michalik, J-J. Berthelier, H. Krüger, G. Murakami, S. Matsuda, D. Heyner, H.-U. Auster, I. Richter, J. Z. D. Mieth, D. Schmid, D. Fischer
    Nature Astronomy 2024年4月12日  査読有り
    Abstract On 10 August 2021, the Mercury-bound BepiColombo spacecraft performed its second fly-by of Venus and provided a short-lived observation of its induced magnetosphere. Here we report results recorded by the Mass Spectrum Analyzer on board Mio, which reveal the presence of cold O+ and C+ with an average total flux of ~4 ± 1 × 104 cm−2 s−1 at a distance of about six planetary radii in a region that has never been explored before. The ratio of escaping C+ to O+ is at most 0.31 ± 0.2, implying that, in addition to atomic O+ ions, CO group ions or water group ions may be a source of the observed O+. Simultaneous magnetometer observations suggest that these planetary ions were in the magnetosheath flank in the vicinity of the magnetic pileup boundary downstream. These results have important implications regarding the evolution of Venus’s atmosphere and, in particular, the evolution of water on the surface of the planet.

MISC

 118

共同研究・競争的資金等の研究課題

 11