研究者業績

村上 豪

ムラカミ ゴウ  (Go Murakami)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 助教

J-GLOBAL ID
201901001752900088
researchmap会員ID
B000359749

論文

 138
  • L. Z. Hadid, D. Delcourt, Y. Saito, M. Fränz, S. Yokota, B. Fiethe, C. Verdeil, B. Katra, F. Leblanc, H. Fischer, M. Persson, S. Aizawa, N. André, Y. Harada, A. Fedorov, D. Fontaine, N. Krupp, H. Michalik, J-J. Berthelier, H. Krüger, G. Murakami, S. Matsuda, D. Heyner, H.-U. Auster, I. Richter, J. Z. D. Mieth, D. Schmid, D. Fischer
    Nature Astronomy 2024年4月12日  査読有り
    Abstract On 10 August 2021, the Mercury-bound BepiColombo spacecraft performed its second fly-by of Venus and provided a short-lived observation of its induced magnetosphere. Here we report results recorded by the Mass Spectrum Analyzer on board Mio, which reveal the presence of cold O+ and C+ with an average total flux of ~4 ± 1 × 104 cm−2 s−1 at a distance of about six planetary radii in a region that has never been explored before. The ratio of escaping C+ to O+ is at most 0.31 ± 0.2, implying that, in addition to atomic O+ ions, CO group ions or water group ions may be a source of the observed O+. Simultaneous magnetometer observations suggest that these planetary ions were in the magnetosheath flank in the vicinity of the magnetic pileup boundary downstream. These results have important implications regarding the evolution of Venus’s atmosphere and, in particular, the evolution of water on the surface of the planet.
  • M. Rojo, M. Persson, J.-A. Sauvaud, S. Aizawa, G. Nicolaou, E. Penou, A. Barthe, N. André, C. Mazelle, A. Fedorov, S. Yokota, Y. Saito, D. Heyner, I. Richter, U. Auster, D. Schmid, D. Fischer, T. Horbury, C.J. Owen, M. Maksimovic, Y. Khotyaintsev, P. Louarn, G. Murakami
    Astronomy & Astrophysics 2024年3月11日  査読有り最終著者
    We derive electron density and temperature from observations obtained by the Mercury Electron Analyzer on board Mio during the cruise phase of BepiColombo while the spacecraft is in a stacked configuration. In order to remove the secondary electron emission contribution, we first fit the core electron population of the solar wind with a Maxwellian distribution. We then subtract the resulting distribution from the complete electron spectrum, and suppress the residual count rates observed at low energies. Hence, our corrected count rates consist of the sum of the fitted Maxwellian core electron population with a contribution at higher energies. We finally estimate the electron density and temperature from the corrected count rates using a classical integration method. We illustrate the results of our derivation for two case studies, including the second Venus flyby of BepiColombo when the Solar Orbiter spacecraft was located nearby, and for a statistical study using observations obtained to date for distances to the Sun ranging from 0.3 to 0.9 A.U. When compared either to measurements of Solar Orbiter or to measurements obtained by HELIOS and Parker Solar Probe, our method leads to a good estimation of the electron density and temperature. Hence, despite the strong limitations arising from the stacked configuration of BepiColombo during its cruise phase, we illustrate how we can retrieve reasonable estimates for the electron density and temperature for timescales from days down to several seconds.
  • Harald Krüger, Michelle S. Thompson, Masanori Kobayashi, Valeria Mangano, Martina Moroni, Anna Milillo, Lindsay P. Keller, Sho Sasaki, Joe Zender, Deborah Domingue, Johannes Benkhoff, André Galli, François LeBlanc, Go Murakami, Menelaos Sarantos, Daniel W. Savin
    The Planetary Science Journal 5(2) 36-36 2024年2月1日  査読有り
    Abstract We provide an overview of our understanding of the dust environment at Mercury and the role that dust plays in shaping the planet's surface and exosphere. Our understanding of the role that dust impacts play in the generation of Mercury's atmosphere has evolved considerably with continued analysis of results from the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission. Recent models have provided evidence for the probable release of refractory species into Mercury's exosphere via impacts. However, there remain significant questions regarding the relative contributions of atoms released via impacts versus other mechanisms (e.g., photon-stimulated desorption) to the overall exospheric budget. We also discuss the state of observational and modeling efforts to constrain the dust environment at Mercury, including sources from the zodiacal cloud, cometary trails, and interstellar dust. We describe the advancements that will be made in our characterization of dust at Mercury with BepiColombo, providing observational constraints on the dust clouds themselves and the role that impacts play in exospheric generation. On Mercury's surface, there remain outstanding questions regarding the role that dust impacts play in the regolith cycling and development. We review how improved modeling efforts to understand grain lifetimes as a function of impactor flux will further our understanding of Mercury's regolith. Finally, there are few constraints on the role of dust impacts on the space weathering of Mercury's surface, particularly the expected chemical, physical, and spectral alterations to the regolith. Here we discuss the importance of laboratory experiments to simulate these processes for the interpretation of data from MESSENGER and BepiColombo.
  • Geraint H. Jones, Colin Snodgrass, Cecilia Tubiana, Michael Küppers, Hideyo Kawakita, Luisa M. Lara, Jessica Agarwal, Nicolas André, Nicholas Attree, Uli Auster, Stefano Bagnulo, Michele Bannister, Arnaud Beth, Neil Bowles, Andrew Coates, Luigi Colangeli, Carlos Corral van Damme, Vania Da Deppo, Johan De Keyser, Vincenzo Della Corte, Niklas Edberg, Mohamed Ramy El-Maarry, Sara Faggi, Marco Fulle, Ryu Funase, Marina Galand, Charlotte Goetz, Olivier Groussin, Aurélie Guilbert-Lepoutre, Pierre Henri, Satoshi Kasahara, Akos Kereszturi, Mark Kidger, Matthew Knight, Rosita Kokotanekova, Ivana Kolmasova, Konrad Kossacki, Ekkehard Kührt, Yuna Kwon, Fiorangela La Forgia, Anny-Chantal Levasseur-Regourd, Manuela Lippi, Andrea Longobardo, Raphael Marschall, Marek Morawski, Olga Muñoz, Antti Näsilä, Hans Nilsson, Cyrielle Opitom, Mihkel Pajusalu, Antoine Pommerol, Lubomir Prech, Nicola Rando, Francesco Ratti, Hanna Rothkaehl, Alessandra Rotundi, Martin Rubin, Naoya Sakatani, Joan Pau Sánchez, Cyril Simon Wedlund, Anamarija Stankov, Nicolas Thomas, Imre Toth, Geronimo Villanueva, Jean-Baptiste Vincent, Martin Volwerk, Peter Wurz, Arno Wielders, Kazuo Yoshioka, Konrad Aleksiejuk, Fernando Alvarez, Carine Amoros, Shahid Aslam, Barbara Atamaniuk, Jędrzej Baran, Tomasz Barciński, Thomas Beck, Thomas Behnke, Martin Berglund, Ivano Bertini, Marcin Bieda, Piotr Binczyk, Martin-Diego Busch, Andrei Cacovean, Maria Teresa Capria, Chris Carr, José María Castro Marín, Matteo Ceriotti, Paolo Chioetto, Agata Chuchra-Konrad, Lorenzo Cocola, Fabrice Colin, Chiaki Crews, Victoria Cripps, Emanuele Cupido, Alberto Dassatti, Björn J. R. Davidsson, Thierry De Roche, Jan Deca, Simone Del Togno, Frederik Dhooghe, Kerri Donaldson Hanna, Anders Eriksson, Andrey Fedorov, Estela Fernández-Valenzuela, Stefano Ferretti, Johan Floriot, Fabio Frassetto, Jesper Fredriksson, Philippe Garnier, Dorota Gaweł, Vincent Génot, Thomas Gerber, Karl-Heinz Glassmeier, Mikael Granvik, Benjamin Grison, Herbert Gunell, Tedjani Hachemi, Christian Hagen, Rajkumar Hajra, Yuki Harada, Johann Hasiba, Nico Haslebacher, Miguel Luis Herranz De La Revilla, Daniel Hestroffer, Tilak Hewagama, Carrie Holt, Stubbe Hviid, Iaroslav Iakubivskyi, Laura Inno, Patrick Irwin, Stavro Ivanovski, Jiri Jansky, Irmgard Jernej, Harald Jeszenszky, Jaime Jimenéz, Laurent Jorda, Mihkel Kama, Shingo Kameda, Michael S. P. Kelley, Kamil Klepacki, Tomáš Kohout, Hirotsugu Kojima, Tomasz Kowalski, Masaki Kuwabara, Michal Ladno, Gunter Laky, Helmut Lammer, Radek Lan, Benoit Lavraud, Monica Lazzarin, Olivier Le Duff, Qiu-Mei Lee, Cezary Lesniak, Zoe Lewis, Zhong-Yi Lin, Tim Lister, Stephen Lowry, Werner Magnes, Johannes Markkanen, Ignacio Martinez Navajas, Zita Martins, Ayako Matsuoka, Barbara Matyjasiak, Christian Mazelle, Elena Mazzotta Epifani, Mirko Meier, Harald Michaelis, Marco Micheli, Alessandra Migliorini, Aude-Lyse Millet, Fernando Moreno, Stefano Mottola, Bruno Moutounaick, Karri Muinonen, Daniel R. Müller, Go Murakami, Naofumi Murata, Kamil Myszka, Shintaro Nakajima, Zoltan Nemeth, Artiom Nikolajev, Simone Nordera, Dan Ohlsson, Aire Olesk, Harald Ottacher, Naoya Ozaki, Christophe Oziol, Manish Patel, Aditya Savio Paul, Antti Penttilä, Claudio Pernechele, Joakim Peterson, Enrico Petraglio, Alice Maria Piccirillo, Ferdinand Plaschke, Szymon Polak, Frank Postberg, Herman Proosa, Silvia Protopapa, Walter Puccio, Sylvain Ranvier, Sean Raymond, Ingo Richter, Martin Rieder, Roberto Rigamonti, Irene Ruiz Rodriguez, Ondrej Santolik, Takahiro Sasaki, Rolf Schrödter, Katherine Shirley, Andris Slavinskis, Balint Sodor, Jan Soucek, Peter Stephenson, Linus Stöckli, Paweł Szewczyk, Gabor Troznai, Ludek Uhlir, Naoto Usami, Aris Valavanoglou, Jakub Vaverka, Wei Wang, Xiao-Dong Wang, Gaëtan Wattieaux, Martin Wieser, Sebastian Wolf, Hajime Yano, Ichiro Yoshikawa, Vladimir Zakharov, Tomasz Zawistowski, Paola Zuppella, Giovanna Rinaldi, Hantao Ji
    Space Science Reviews 220(1) 2024年1月24日  査読有り
    Abstract Here we describe the novel, multi-point Comet Interceptor mission. It is dedicated to the exploration of a little-processed long-period comet, possibly entering the inner Solar System for the first time, or to encounter an interstellar object originating at another star. The objectives of the mission are to address the following questions: What are the surface composition, shape, morphology, and structure of the target object? What is the composition of the gas and dust in the coma, its connection to the nucleus, and the nature of its interaction with the solar wind? The mission was proposed to the European Space Agency in 2018, and formally adopted by the agency in June 2022, for launch in 2029 together with the Ariel mission. Comet Interceptor will take advantage of the opportunity presented by ESA’s F-Class call for fast, flexible, low-cost missions to which it was proposed. The call required a launch to a halo orbit around the Sun-Earth L2 point. The mission can take advantage of this placement to wait for the discovery of a suitable comet reachable with its minimum $\varDelta $V capability of $600\text{ ms}^{-1}$. Comet Interceptor will be unique in encountering and studying, at a nominal closest approach distance of 1000 km, a comet that represents a near-pristine sample of material from the formation of the Solar System. It will also add a capability that no previous cometary mission has had, which is to deploy two sub-probes – B1, provided by the Japanese space agency, JAXA, and B2 – that will follow different trajectories through the coma. While the main probe passes at a nominal 1000 km distance, probes B1 and B2 will follow different chords through the coma at distances of 850 km and 400 km, respectively. The result will be unique, simultaneous, spatially resolved information of the 3-dimensional properties of the target comet and its interaction with the space environment. We present the mission’s science background leading to these objectives, as well as an overview of the scientific instruments, mission design, and schedule.
  • M. Fränz, M. Rojo, T. Cornet, L. Z. Hadid, Y. Saito, N. André, A. Varsani, D. Schmid, H. Krüger, N. Krupp, D. Delcourt, B. Katra, Y. Harada, S. Yokota, C. Verdeil, S. Aizawa, A. Millilo, S. Orsini, V. Mangano, B. Fiethe, J. Benkhoff, G. Murakami
    Journal of Geophysical Research: Space Physics 129(1) 2024年1月9日  査読有り最終著者
    Abstract During the first flyby of the BepiColombo composite spacecraft at Mercury in October 2021 ion spectrometers observed two intense spectral lines with energies between 10 and 70 eV. The spectral lines persisted also at larger distances from Mercury and were observed again at lower intensity during cruise phase in March 2022 and at the second and third Mercury flyby as a single band. The ion composition indicates that water is the dominant gas source. The outgassing causes the composite spacecraft to charge up to a negative potential of up to −50 V. The distribution and intensity of the lower energy signal depends on the intensity of low energy electron fluxes around the spacecraft which again depend on the magnetic field orientation. We interpret the observation as being caused by water outgassing from different source locations on the spacecraft being ionized in two different regions of the surrounding potential. The interpretation is confirmed by two dimensional particle‐in‐cell simulations.
  • Shin’ya Nakano, Yuta Hozumi, Akinori Saito, Ichiro Yoshikawa, Atsushi Yamazaki, Kazuo Yoshioka, Go Murakami
    Earth, Planets and Space 76(1) 2024年1月2日  査読有り最終著者
    Abstract The $$\textrm{O}^+$$ density distribution in the nightside ionosphere has been reconstructed from extreme ultraviolet (EUV) images taken by the EUVI-B imager of the International Space Station Ionosphere, Mesosphere, upper Atmosphere, and Plasmasphere mapping (ISS-IMAP) cameras. The EUVI-B imager covers the wavelength range from about 70 nm to 110 nm and mainly observes the 91.1 nm emission from the recombination of $$\textrm{O}^+$$ ions and electrons. Assuming that the electron density is equal to the $$\textrm{O}^+$$ density in the F-region where the imager observes, the EUV intensity observed by EUVI-B is approximately proportional to the line-of-sight integral of the square of the $$\textrm{O}^+$$ density. This enables us to estimate the $$\textrm{O}^+$$ density distribution in the F-region from a sequence of EUVI-B data in each International Space Station (ISS) orbit with a Bayesian method. We demonstrate the reconstruction of the $$\textrm{O}^+$$ distribution. In particular, the $$\textrm{O}^+$$ density structure of the equatorial ionization anomaly (EIA) in the vicinity of an ISS orbit is obtained. Graphical Abstract
  • Yudai Suzuki, Kazuo Yoshioka, Go Murakami, Ichiro Yoshikawa
    Earth, Planets and Space 75(1) 2023年11月20日  査読有り
    Abstract In celestial bodies with tenuous collisionless atmospheres, such as Mercury, the spatial distribution of the exosphere is expected to reflect the surface composition. In this study, we discuss whether the distributions of Mg, Ca, and Na, the primary exospheric components of Mercury, have a local exosphere–surface correlation by analyzing the observation data of the Mercury Atmospheric and Surface Composition Spectrometer (MASCS) and X-ray spectrometer (XRS) onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft. It was found that Mg has a strong local exosphere–surface correlation and Ca has a weak correlation. The Monte Carlo simulations of trajectories in the exosphere show that the weak correlation of Ca is due to the relatively large solar radiation acceleration. In addition, Na production rate in high-temperature regions is longitudinally dependent. This can be explained by considering that the weakly physisorbed Na layer on the surface is depleted under high temperature and that the distribution of strongly chemisorbed Na atoms is reflected in the exosphere. Based on these results, the conditions for components with a correlation in celestial bodies with thin atmospheres may include low volatility and low solar radiation acceleration. Graphical Abstract
  • Mitsunori Ozaki, Satoshi Yagitani, Yasumasa Kasaba, Yoshiya Kasahara, Shoya Matsuda, Yoshiharu Omura, Mitsuru Hikishima, Fouad Sahraoui, Laurent Mirioni, Gérard Chanteur, Satoshi Kurita, Satoru Nakazawa, Go Murakami
    Nature Astronomy 2023年9月14日  査読有り最終著者
  • Sae Aizawa, Yuki Harada, Nicolas André, Yoshifumi Saito, Stas Barabash, Dominique Delcourt, Jean-André Sauvaud, Alain Barthe, Andréi Fedorov, Emmanuel Penou, Shoichiro Yokota, Wataru Miyake, Moa Persson, Quentin Nénon, Mathias Rojo, Yoshifumi Futaana, Kazushi Asamura, Manabu Shimoyama, Lina Z. Hadid, Dominique Fontaine, Bruno Katra, Markus Fraenz, Norbert Krupp, Shoya Matsuda, Go Murakami
    Nature Communications 14(1) 2023年7月18日  査読有り最終著者
    Abstract Mercury’s magnetosphere is known to involve fundamental processes releasing particles and energy like at Earth due to the solar wind interaction. The resulting cycle is however much faster and involves acceleration, transport, loss, and recycling of plasma. Direct experimental evidence for the roles of electrons during this cycle is however missing. Here we show that in-situ plasma observations obtained during BepiColombo’s first Mercury flyby reveal a compressed magnetosphere hosts of quasi-periodic fluctuations, including the original observation of dynamic phenomena in the post-midnight, southern magnetosphere. The energy-time dispersed electron enhancements support the occurrence of substorm-related, multiple, impulsive injections of electrons that ultimately precipitate onto its surface and induce X-ray fluorescence. These observations reveal that electron injections and subsequent energy-dependent drift now observed throughout Solar System is a universal mechanism that generates aurorae despite the differences in structure and dynamics of the planetary magnetospheres.
  • Yuki Nakamura, Koichiro Terada, Chihiro Tao, Naoki Terada, Yasumasa Kasaba, François Leblanc, Hajime Kita, Aoi Nakamizo, Akimasa Yoshikawa, Shinichi Ohtani, Fuminori Tsuchiya, Masato Kagitani, Takeshi Sakanoi, Go Murakami, Kazuo Yoshioka, Tomoki Kimura, Atsushi Yamazaki, Ichiro Yoshikawa
    Journal of Geophysical Research: Space Physics 128(6) 2023年6月16日  査読有り
  • Eric Quémerais, Dimitra Koutroumpa, Rosine Lallement, Bill R. Sandel, Rozenn Robidel, Jean‐Yves Chaufray, Aurélie Reberac, Francois Leblanc, Ichiro Yoshikawa, Kazuo Yoshioka, Go Murakami, Oleg Korablev, Denis Belyaev, Maria G. Pelizzo, Alain J. Corso
    Journal of Geophysical Research: Planets 128(6) 2023年5月30日  査読有り
    Abstract On 1 October 2021, Bepi‐Colombo performed its first flyby of Mercury. During the maneuver, the short wavelength channel (55–155 nm) of “Probing the Hermean Exosphere by UV Spectroscopy” (PHEBUS) was activated for a total duration of 1 hr. The helium resonance line at 58.4 nm was clearly observed during the whole sequence. At large distance from the planet, the emission was due to helium atoms in the interplanetary medium (interplanetary UV glow). Just after crossing the terminator of the planet and entering the dawn side of the exosphere, PHEBUS observed a clear additional emission due to scattering of solar photons by helium atoms in the exosphere of Mercury. The first detection of the 58.4 nm line in the exosphere of Mercury was reported by Broadfoot et al. (1976, https://doi.org/10.1029/gl003i010p00577) following the Mariner 10 flybys in 1974. The PHEBUS observation of exospheric helium emissions is the first for this element since the UVS measurements. In this paper, we present the results of our analysis of the PHEBUS data at 58.4 nm. Calibration of both instruments are compared with observations of the interplanetary glow, showing that the measurements of both instruments are accurate. However, we find that the exospheric density of helium atoms deduced from the PHEBUS data is 4.5–7.5 times lower than the previous estimate from UVS on Mariner 10. Possible explanations are considered. We show that some of the helium atoms present in the exosphere of Mercury could originate from the local interstellar cloud.
  • Bernard V. Jackson, Munetoshi Tokumaru, Kazumasa Iwai, Matthew T. Bracamontes, Andrew Buffington, Ken’ichi Fujiki, Go Murakami, Daniel Heyner, Beatriz Sanchez-Cano, Mathias Rojo, Sae Aizawa, Nicolas Andre, Alain Barthe, Emmanuel Penou, Andrei Fedorov, Jean-Andre Sauvaud, Shoichiro Yokota, Yoshifumi Saito
    Solar Physics 298(5) 2023年5月30日  査読有り
    Abstract Remotely sensed interplanetary scintillation (IPS) data from the Institute for Space-Earth Environmental Research (ISEE), Japan, allows a determination of solar-wind parameters throughout the inner heliosphere. We show the 3D analysis technique developed for these data sets that forecast plasma velocity, density, and component magnetic fields at Earth, as well at the other inner heliospheric planets and spacecraft. One excellent coronal mass ejection (CME) example that occurred on the 10 March 2022 was viewed not only in the ISEE IPS analyses, but also by the spacecraft near Earth that measured the CME arrival at one AU. Solar Orbiter, that was nearly aligned along the Earth radial at 0.45 AU, also measured the CME in plasma density, velocity, and magnetic field. BepiColombo at 0.42 AU was also aligned with the STEREO A spacecraft, and viewed this CME. The instruments used here from BepiColombo include: 1) the European-Space-Agency Mercury-Planetary-Orbiter magnetic field measurements; 2) the Japan Aerospace Exploration Agency Mio spacecraft Solar Particle Monitor that viewed the CME Forbush decrease, and the Mercury Plasma Experiment/Mercury Electron Analyzer instruments that measured particles and solar-wind density from below the spacecraft protective sunshield covering. This article summarizes the analysis using ISEE, Japan real-time data for these forecasts: it provides a synopsis of the results and confirmation of the CME event morphology after its arrival, and discusses how future IPS analyses can augment these results.
  • Keigo Enya, Masato Kagitani, Fuminori Tsuchiyac, Go Murakami, Atsushi Yamazakia, Kazuo Yoshioka
    SPIE Future Sensing Technologies 2023 2023年5月22日  
  • M. Persson, S. Aizawa, N. André, S. Barabash, Y. Saito, Y. Harada, D. Heyner, S. Orsini, A. Fedorov, C. Mazelle, Y. Futaana, L. Z. Hadid, M. Volwerk, G. Collinson, B. Sanchez-Cano, A. Barthe, E. Penou, S. Yokota, V. Génot, J. A. Sauvaud, D. Delcourt, M. Fraenz, R. Modolo, A. Milillo, H.-U. Auster, I. Richter, J. Z. D. Mieth, P. Louarn, C. J. Owen, T. S. Horbury, K. Asamura, S. Matsuda, H. Nilsson, M. Wieser, T. Alberti, A. Varsani, V. Mangano, A. Mura, H. Lichtenegger, G. Laky, H. Jeszenszky, K. Masunaga, C. Signoles, M. Rojo, G. Murakami
    Nature Communications 13(1) 2022年12月15日  査読有り最終著者
    Abstract The second Venus flyby of the BepiColombo mission offer a unique opportunity to make a complete tour of one of the few gas-dynamics dominated interaction regions between the supersonic solar wind and a Solar System object. The spacecraft pass through the full Venusian magnetosheath following the plasma streamlines, and cross the subsolar stagnation region during very stable solar wind conditions as observed upstream by the neighboring Solar Orbiter mission. These rare multipoint synergistic observations and stable conditions experimentally confirm what was previously predicted for the barely-explored stagnation region close to solar minimum. Here, we show that this region has a large extend, up to an altitude of 1900 km, and the estimated low energy transfer near the subsolar point confirm that the atmosphere of Venus, despite being non-magnetized and less conductive due to lower ultraviolet flux at solar minimum, is capable of withstanding the solar wind under low dynamic pressure.
  • Kei Masunaga, Naoki Terada, Nao Yoshida, Yuki Nakamura, Takeshi Kuroda, Kazuo Yoshioka, Yudai Suzuki, Hiromu Nakagawa, Tomoki Kimura, Fuminori Tsuchiya, Go Murakami, Atsushi Yamazaki, Tomohiro Usui, Ichiro Yoshikawa
    Nature communications 13(1) 6609-6609 2022年11月3日  査読有り
    Dust storms on Mars play a role in transporting water from its lower to upper atmosphere, seasonally enhancing hydrogen escape. However, it remains unclear how water is diurnally transported during a dust storm and how its elements, hydrogen and oxygen, are subsequently influenced in the upper atmosphere. Here, we use multi-spacecraft and space telescope observations obtained during a major dust storm in Mars Year 33 to show that hydrogen abundance in the upper atmosphere gradually increases because of water supply above an altitude of 60 km, while oxygen abundance temporarily decreases via water ice absorption, catalytic loss, or downward transportation. Additionally, atmospheric waves modulate dust and water transportations, causing alternate oscillations of hydrogen and oxygen abundances in the upper atmosphere. If dust- and wave-driven couplings of the Martian lower and upper atmospheres are common in dust storms, with increasing escape of hydrogen, oxygen will less efficiently escape from the upper atmosphere, leading to a more oxidized atmosphere. These findings provide insights regarding Mars' water loss history and its redox state, which are crucial for understanding the Martian habitable environment.
  • Yuki Harada, Sae Aizawa, Yoshifumi Saito, Nicolas André, Moa Persson, Dominique Delcourt, Lina Z. Hadid, Markus Fraenz, Shoichiro Yokota, Andréi Fedorov, Wataru Miyake, Emmanuel Penou, Alain Barthe, Jean André Sauvaud, Bruno Katra, Shoya Matsuda, Go Murakami
    Geophysical Research Letters 49(17) 2022年9月16日  査読有り最終著者
    We present initial results of low-energy ion observations from BepiColombo's first Mercury flyby. Unprecedentedly high time resolution measurements of low energy ions at Mercury by BepiColombo Mio reveal rapid (a few seconds) and large (1–2 orders of magnitude) fluctuations of ion flux around the magnetopause and within the magnetosphere. Around the magnetic equator in the pre-midnight magnetotail, Mio observed plasma sheet ions consistent with previous observations. In the midnight magnetotail near the closest approach, Mio observed the co-existence of high-energy (∼keV/q) and low-energy (<∼300 eV/q) ion components. The low-energy component is inferred to be cold with a temperature well below 100 eV and have a major contribution to the total density as opposed to previously reported cold tenuous ions. Future observations by Mio will provide insights into the sources, transport, and acceleration of the newly identified ion components.
  • Yeon Joo Lee, Antonio García Muñoz, Atsushi Yamazaki, Eric Quémerais, Stefano Mottola, Stephan Hellmich, Thomas Granzer, Gilles Bergond, Martin Roth, Eulalia Gallego-Cano, Jean-Yves Chaufray, Rozenn Robidel, Go Murakami, Kei Masunaga, Murat Kaplan, Orhan Erece, Ricardo Hueso, Petr Kabáth, Magdaléna Špoková, Agustín Sánchez-Lavega, Myung-Jin Kim, Valeria Mangano, Kandis-Lea Jessup, Thomas Widemann, Ko-ichiro Sugiyama, Shigeto Watanabe, Manabu Yamada, Takehiko Satoh, Masato Nakamura, Masataka Imai, Juan Cabrera
    The Planetary Science Journal 3(9) 209-209 2022年9月1日  査読有り
    Abstract We performed a unique Venus observation campaign to measure the disk brightness of Venus over a broad range of wavelengths in 2020 August and September. The primary goal of the campaign was to investigate the absorption properties of the unknown absorber in the clouds. The secondary goal was to extract a disk mean SO2 gas abundance, whose absorption spectral feature is entangled with that of the unknown absorber at ultraviolet wavelengths. A total of three spacecraft and six ground-based telescopes participated in this campaign, covering the 52–1700 nm wavelength range. After careful evaluation of the observational data, we focused on the data sets acquired by four facilities. We accomplished our primary goal by analyzing the reflectivity spectrum of the Venus disk over the 283–800 nm wavelengths. Considerable absorption is present in the 350–450 nm range, for which we retrieved the corresponding optical depth of the unknown absorber. The result shows the consistent wavelength dependence of the relative optical depth with that at low latitudes, during the Venus flyby by MESSENGER in 2007, which was expected because the overall disk reflectivity is dominated by low latitudes. Last, we summarize the experience that we obtained during this first campaign, which should enable us to accomplish our second goal in future campaigns.
  • S. Aizawa, M. Persson, T. Menez, N. André, R. Modolo, V. Génot, B. Sanchez-Cano, M. Volwerk, J.-Y. Chaufray, C. Baskevitch, D. Heyner, Y. Saito, Y. Harada, F. Leblanc, A. Barthe, E. Penou, A. Fedorov, J.-A. Sauvaud, S. Yokota, U. Auster, I. Richter, J. Mieth, T.S. Horbury, P. Louarn, C.J. Owen, G. Murakami
    Planetary and Space Science 218 105499-105499 2022年9月  査読有り最終著者
  • Sae Aizawa, Nicolas André, Moa Persson, Ronan Modolo, Jim M. Raines, Francois Leblanc, Jean-Yves Chaufray, Quentin Nenon, Go Murakami
    2022年7月5日  
  • Yuki Nakamura, Koichiro Terada, Chihiro Tao, Naoki Terada, Yasumasa Kasaba, François Leblanc, Hajime Kita, Aoi Nakamizo, Akimasa Yoshikawa, Shinichi Ohtani, Fuminori Tsuchiya, Masato Kagitani, Takeshi Sakanoi, Go Murakami, Kazuo Yoshioka, Tomoki Kimura, Atsushi Yamazaki, Ichiro Yoshikawa
    Journal of Geophysical Research: Space Physics 127(3) 2022年3月  査読有り
    Ionospheric Pedersen and Hall conductances play significant roles in electromagnetic coupling between the planetary ionosphere and magnetosphere. Several observations and models have suggested the existence of meteoric ions with interplanetary origins in the lower part of Jupiter’s ionosphere; however, no models have considered the contributions of meteoric ions to ionospheric conductance. This study is designed to evaluate the contribution of meteoric ions to ionospheric conductance by developing an ionospheric model combining a meteoroid ablation model and a photochemical model. We find that the largest contribution to Pedersen and Hall conductivities occurs in the meteoric ion layer at altitudes of 350–600 km due to the large concentration of meteoric ions resulting from their long lifetimes of more than 100 Jovian days. Pedersen and Hall conductances are enhanced by factors of 3 and 10, respectively, in the middle- and low-latitude and auroral regions when meteoric ions are included. The distribution of Pedersen and Hall conductances becomes axisymmetric in the middle- and low-latitude regions. Enhanced axisymmetric ionospheric conductance should impact magnetospheric plasma convection. The contribution of meteoric ions to the ionospheric conductance is expected to be important only on Jupiter in our solar system because of Jupiter’s intense magnetic and gravitational fields.
  • Ian J. Cohen, Chloe Beddingfield, Robert Chancia, Gina DiBraccio, Matthew Hedman, Shannon MacKenzie, Barry Mauk, Kunio M. Sayanagi, Krista M. Soderlund, Elizabeth Turtle, Caitlin Ahrens, Christopher S. Arridge, Shawn M. Brooks, Emma Bunce, Sebastien Charnoz, Athena Coustenis, Robert A. Dillman, Soumyo Dutta, Leigh N. Fletcher, Rebecca Harbison, Ravit Helled, Richard Holme, Lauren Jozwiak, Yasumasa Kasaba, Peter Kollmann, Statia Luszcz-Cook, Kathleen Mandt, Olivier Mousis, Alessandro Mura, Go Murakami, Marzia Parisi, Abigail Rymer, Sabine Stanley, Katrin Stephan, Ronald J. Vervack, Jr., Michael H. Wong, Peter Wurz
    The Planetary Science Journal 3(3) 58-58 2022年3月1日  査読有り
    Abstract Current knowledge of the Uranian system is limited to observations from the flyby of Voyager 2 and limited remote observations. However, Uranus remains a highly compelling scientific target due to the unique properties of many aspects of the planet itself and its system. Future exploration of Uranus must focus on cross-disciplinary science that spans the range of research areas from the planet’s interior, atmosphere, and magnetosphere to the its rings and satellites, as well as the interactions between them. Detailed study of Uranus by an orbiter is crucial not only for valuable insights into the formation and evolution of our solar system but also for providing ground truths for the understanding of exoplanets. As such, exploration of Uranus will not only enhance our understanding of the ice giant planets themselves but also extend to planetary dynamics throughout our solar system and beyond. The timeliness of exploring Uranus is great, as the community hopes to return in time to image unseen portions of the satellites and magnetospheric configurations. This urgency motivates evaluation of what science can be achieved with a lower-cost, potentially faster-turnaround mission, such as a New Frontiers–class orbiter mission. This paper outlines the scientific case for and the technological and design considerations that must be addressed by future studies to enable a New Frontiers–class Uranus orbiter with balanced cross-disciplinary science objectives. In particular, studies that trade scientific scope and instrumentation and operational capabilities against simpler and cheaper options must be fundamental to the mission formulation.
  • Ali H. Sulaiman, Nicholas Achilleos, Cesar Bertucci, Andrew Coates, Michele Dougherty, Lina Hadid, Mika Holmberg, Hsiang-Wen Hsu, Tomoki Kimura, William Kurth, Alice Le Gall, James McKevitt, Michiko Morooka, Go Murakami, Leonardo Regoli, Elias Roussos, Joachim Saur, Oleg Shebanits, Anezina Solomonidou, Jan-Erik Wahlund, J. Hunter Waite
    Experimental Astronomy 2021年12月1日  査読有り
    Abstract Some of the major discoveries of the recent Cassini-Huygens mission have put Titan and Enceladus firmly on the Solar System map. The mission has revolutionised our view of Solar System satellites, arguably matching their scientific importance with that of their host planet. While Cassini-Huygens has made big surprises in revealing Titan’s organically rich environment and Enceladus’ cryovolcanism, the mission’s success naturally leads us to further probe these findings. We advocate the acknowledgement of Titan and Enceladus science as highly relevant to ESA’s long-term roadmap, as logical follow-on to Cassini-Huygens. In this White Paper, we will outline important science questions regarding these satellites and identify the science themes we recommend ESA cover during the Voyage 2050 planning cycle. Addressing these science themes would make major advancements to the present knowledge we have about the Solar System, its formation, evolution, and likelihood that other habitable environments exist outside the Earth’s biosphere.
  • J. Benkhoff, G. Murakami, W. Baumjohann, S. Besse, E. Bunce, M. Casale, G. Cremosese, K.-H. Glassmeier, H. Hayakawa, D. Heyner, H. Hiesinger, J. Huovelin, H. Hussmann, V. Iafolla, L. Iess, Y. Kasaba, M. Kobayashi, A. Milillo, I. G. Mitrofanov, E. Montagnon, M. Novara, S. Orsini, E. Quemerais, U. Reininghaus, Y. Saito, F. Santoli, D. Stramaccioni, O. Sutherland, N. Thomas, I. Yoshikawa, J. Zender
    Space Science Reviews 217(8) 2021年12月  査読有り
    Abstract BepiColombo is a joint mission between the European Space Agency, ESA, and the Japanese Aerospace Exploration Agency, JAXA, to perform a comprehensive exploration of Mercury. Launched on $20^{\mathrm{th } }$ October 2018 from the European spaceport in Kourou, French Guiana, the spacecraft is now en route to Mercury. Two orbiters have been sent to Mercury and will be put into dedicated, polar orbits around the planet to study the planet and its environment. One orbiter, Mio, is provided by JAXA, and one orbiter, MPO, is provided by ESA. The scientific payload of both spacecraft will provide detailed information necessary to understand the origin and evolution of the planet itself and its surrounding environment. Mercury is the planet closest to the Sun, the only terrestrial planet besides Earth with a self-sustained magnetic field, and the smallest planet in our Solar System. It is a key planet for understanding the evolutionary history of our Solar System and therefore also for the question of how the Earth and our Planetary System were formed. The scientific objectives focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere, and magnetosphere. In addition, instrumentation onboard BepiColombo will be used to test Einstein’s theory of general relativity. Major effort was put into optimizing the scientific return of the mission by defining a payload such that individual measurements can be interrelated and complement each other.
  • Elias Roussos, Oliver Allanson, Nicolas André, Bruna Bertucci, Graziella Branduardi-Raymont, George Clark, Konstantinos Dialynas, Iannis Dandouras, Ravindra T. Desai, Yoshifumi Futaana, Matina Gkioulidou, Geraint H. Jones, Peter Kollmann, Anna Kotova, Elena A. Kronberg, Norbert Krupp, Go Murakami, Quentin Nénon, Tom Nordheim, Benjamin Palmaerts, Christina Plainaki, Jonathan Rae, Daniel Santos-Costa, Theodore Sarris, Yuri Shprits, Ali Sulaiman, Emma Woodfield, Xin Wu, Zonghua Yao
    Experimental Astronomy 2021年10月30日  査読有り
    <title>Abstract</title>Jupiter has the most complex and energetic radiation belts in our Solar System and one of the most challenging space environments to measure and characterize in-depth. Their hazardous environment is also a reason why so many spacecraft avoid flying directly through their most intense regions, thus explaining how Jupiter’s radiation belts have kept many of their secrets so well hidden, despite having been studied for decades. In this paper we argue why these secrets are worth unveiling. Jupiter’s radiation belts and the vast magnetosphere that encloses them constitute an unprecedented physical laboratory, suitable for interdisciplinary and novel scientific investigations: from studying fundamental high energy plasma physics processes which operate throughout the Universe, such as adiabatic charged particle acceleration and nonlinear wave-particle interactions, to exploiting the astrobiological consequences of energetic particle radiation. The in-situ exploration of the uninviting environment of Jupiter’s radiation belts presents us with many challenges in mission design, science planning, instrumentation, and technology. We address these challenges by reviewing the different options that exist for direct and indirect observations of this unique system. We stress the need for new instruments, the value of synergistic Earth and Jupiter-based remote sensing and in-situ investigations, and the vital importance of multi-spacecraft in-situ measurements. While simultaneous, multi-point in-situ observations have long become the standard for exploring electromagnetic interactions in the inner Solar System, they have never taken place at Jupiter or any strongly magnetized planet besides Earth. We conclude that a dedicated multi-spacecraft mission to Jupiter is an essential and obvious way forward for exploring the planet’s radiation belts. Besides guaranteeing numerous discoveries and huge leaps in our understanding of radiation belt systems, such a mission would also enable us to view Jupiter, its extended magnetosphere, moons, and rings under new light, with great benefits for space, planetary, and astrophysical sciences. For all these reasons, in-situ investigations of Jupiter’s radiation belts deserve to be given a high priority in the future exploration of our Solar System. This article is based on a White Paper submitted in response to the European Space Agency’s call for science themes for its Voyage 2050 programme.
  • L. Z. Hadid, V. Génot, S. Aizawa, A. Milillo, J. Zender, G. Murakami, J. Benkhoff, I. Zouganelis, T. Alberti, N. André, Z. Bebesi, F. Califano, A. P. Dimmock, M. Dosa, C. P. Escoubet, L. Griton, G. C. Ho, T. S. Horbury, K. Iwai, M. Janvier, E. Kilpua, B. Lavraud, A. Madar, Y. Miyoshi, D. Müller, R. F. Pinto, A. P. Rouillard, J. M. Raines, N. Raouafi, F. Sahraoui, B. Sánchez-Cano, D. Shiota, R. Vainio, A. Walsh
    Frontiers in Astronomy and Space Sciences 8 2021年9月14日  査読有り
    The investigation of multi-spacecraft coordinated observations during the cruise phase of BepiColombo (ESA/JAXA) are reported, with a particular emphasis on the recently launched missions, Solar Orbiter (ESA/NASA) and Parker Solar Probe (NASA). Despite some payload constraints, many instruments onboard BepiColombo are operating during its cruise phase simultaneously covering a wide range of heliocentric distances (0.28 AU–0.5 AU). Hence, the various spacecraft configurations and the combined <italic>in-situ</italic> and remote sensing measurements from the different spacecraft, offer unique opportunities for BepiColombo to be part of these unprecedented multipoint synergistic observations and for potential scientific studies in the inner heliosphere, even before its orbit insertion around Mercury in December 2025. The main goal of this report is to present the coordinated observation opportunities during the cruise phase of BepiColombo (excluding the planetary flybys). We summarize the identified science topics, the operational instruments, the method we have used to identify the windows of opportunity and discuss the planning of joint observations in the future.
  • Shin'ya Nakano, Yuta Hozumi, Akinori Saito, Ichiro Yoshikawa, Atsushi Yamazaki, Kazuo Yoshioka, Go Murakami
    EARTH PLANETS AND SPACE 73(1) 2021年7月  査読有り
    The extreme ultraviolet (EUV) imager, EUVI-B, on board the International Space Station (ISS) under the International Space Station-ionosphere-mesosphere-atmosphere plasmasphere cameras (ISS-IMAP) mission was originally intended to observe EUV emissions at 83.4 nm scattered by O+ ions. During the mission, EUVI-B occasionally detected evident EUV signals in the umbra of the Earth. However, the source of the signals has not been verified. To evaluate the effect of the 83.4 nm EUV, we conduct a Monte Carlo simulation which considers multiple scattering of the 83.4 nm EUV by O+ ions. In addition, we modeled the contribution of the 91.1 nm emission, which is due to recombination of O+ ions and electrons, because the 91.1 nm EUV might affect the measurement from EUVI-B due to the wavelength range covered. The results suggest that the effect of the 83.4 nm EUV is likely to be negligible while the 91.1 nm EUV explains the observations from EUVI-B morphologically and quantitatively. We therefore conclude that the EUV signals observed by EUVI-B in the umbra of the Earth can largely be attributed to 91.1 nm emission due to recombination. This conclusion would facilitate the use of the EUVI-B data for reconstructing the O+ density.
  • S. Aizawa, L.S. Griton, S. Fatemi, W. Exner, J. Deca, F. Pantellini, M. Yagi, D. Heyner, V. Génot, N. André, J. Amaya, G. Murakami, L. Beigbeder, M. Gangloff, M. Bouchemit, E. Budnik, H. Usui
    Planetary and Space Science 198 105176-105176 2021年4月  査読有り
  • E. Montagnon, F. Budnik, M. Casale, S. de la Fuente, S. Martinez, G. Murakami, M. Ogawa, T. Seki, C. Steiger, M. Yamashita
    Space Science Reviews 217(2) 2021年3月  査読有り
  • Chihiro Tao, Tomoki Kimura, Elena A. Kronberg, Fuminori Tsuchiya, Go Murakami, Atsushi Yamazaki, Marissa F. Vogt, Bertrand Bonfond, Kazuo Yoshioka, Ichiro Yoshikawa, Yasumasa Kasaba, Hajime Kita, Shogo Okamoto
    Journal of Geophysical Research: Space Physics 126(2) 2021年2月  査読有り
    Quasi-periodic variations of a few to several days are observed in the energetic plasma and magnetic dipolarization in Jupiter's magnetosphere. Variation in the plasma mass flux related to Io's volcanic activity is proposed as a candidate for the variety of the period. Using a long-term monitoring of Jupiter's northern aurora by the Earth-orbiting planetary space telescope Hisaki, we analyzed the quasi-periodic variation seen in the auroral power integrated over the northern pole for 2014–2016, which included monitoring Io's volcanically active period in 2015 and the solar wind near Jupiter during Juno's approach phase in 2016. Quasi-periodic variation with periods of 0.8–8 days was detected. The difference between the periodicities during volcanically active and quiet periods is not significant. Our data set suggests that the difference of period between volcanically active and quiet conditions is below 1.25 days. This is consistent with the expected difference estimated from a proposed relationship based on a theoretical model applied to the plasma variation of this volcanic event. The periodicity does not show a clear correlation with the auroral power, central meridional longitude, nor Io phase angle. The periodic variation is continuously observed in addition to the auroral modulation due to solar wind variation. Furthermore, Hisaki auroral data sometimes shows particularly intense auroral bursts of emissions lasting <10 h. We find that these bursts coincide with peaks of the periodic variations. Moreover, the occurrence of these bursts increases during the volcanically active period. This auroral observation links parts of previous observations to give a global view of Jupiter's magnetospheric dynamics.
  • Valeria Mangano, Melinda Dósa, Markus Fränz, Anna Milillo, Joana S. Oliveira, Yeon Joo Lee, Susan McKenna-Lawlor, Davide Grassi, Daniel Heyner, Alexander S. Kozyrev, Roberto Peron, Jörn Helbert, Sebastien Besse, Sara de la Fuente, Elsa Montagnon, Joe Zender, Martin Volwerk, Jean-Yves Chaufray, James A. Slavin, Harald Krüger, Alessandro Maturilli, Thomas Cornet, Kazumasa Iwai, Yoshizumi Miyoshi, Marco Lucente, Stefano Massetti, Carl A. Schmidt, Chuanfei Dong, Francesco Quarati, Takayuki Hirai, Ali Varsani, Denis Belyaev, Jun Zhong, Emilia K. J. Kilpua, Bernard V. Jackson, Dusan Odstrcil, Ferdinand Plaschke, Rami Vainio, Riku Jarvinen, Stavro Lambrov Ivanovski, Ákos Madár, Géza Erdős, Christina Plainaki, Tommaso Alberti, Sae Aizawa, Johannes Benkhoff, Go Murakami, Eric Quemerais, Harald Hiesinger, Igor G. Mitrofanov, Luciano Iess, Francesco Santoli, Stefano Orsini, Herbert Lichtenegger, Gunther Laky, Stas Barabash, Richard Moissl, Juhani Huovelin, Yasumasa Kasaba, Yoshifumi Saito, Masanori Kobayashi, Wolfgang Baumjohann
    Space Science Reviews 217(1) 2021年2月  査読有り
    <title>Abstract</title>The dual spacecraft mission BepiColombo is the first joint mission between the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA) to explore the planet Mercury. BepiColombo was launched from Kourou (French Guiana) on October 20th, 2018, in its packed configuration including two spacecraft, a transfer module, and a sunshield. BepiColombo cruise trajectory is a long journey into the inner heliosphere, and it includes one flyby of the Earth (in April 2020), two of Venus (in October 2020 and August 2021), and six of Mercury (starting from 2021), before orbit insertion in December 2025. A big part of the mission instruments will be fully operational during the mission cruise phase, allowing unprecedented investigation of the different environments that will encounter during the 7-years long cruise. The present paper reviews all the planetary flybys and some interesting cruise configurations. Additional scientific research that will emerge in the coming years is also discussed, including the instruments that can contribute.
  • Shingo Kameda, Go Murakami, Alexander Tavrov, Keigo Enya, Mikhail Sachkov, Masahiro Ikoma, Norio Narita, Oleg Korablev
    SPACE TELESCOPES AND INSTRUMENTATION 2020: ULTRAVIOLET TO GAMMA RAY 11444 2021年  
    Many Earth-sized planets have been discovered and some of them are potentially in the habitable zone. In addition, several Earth-sized planets have been detected around low temperature stars near our solar system. However, it is difficult to characterize them as Earth-like or Venus-like, even though they are relatively very close to our solar system. We performed a conceptual design of an Ultraviolet Spectrograph for Exoplanet (UVSPEX) for World Space Observatory Ultraviolet (WSO-UV), which is 1.7-m UV space telescope being prepared by Russia. The spectral range is to exceed wavelengths from 115 nm to 135 nm to detect at least H Lyman alpha 121.6nm to O I 130 nm. The throughput is >4%. UVSPEX is planned to be a part of a Field Camera Unit (FCU). This additional instrument would enable us to observe similar to 20 Earth-like exoplanets and detect an oxygen exosphere if some of them have an Earth-like atmosphere.
  • K. Yoshioka, Y. Miyoshi, S. Kurita, M. Teramoto, F. Tsuchiya, A. Yamazaki, G. Murakami, T. Kimura, H. Kita, I. Yoshikawa, Y. Kasaba
    Space Weather 19(1) 2021年1月  査読有り
    The energetic particles in the Earth's radiation belt are known to fluctuate over various timescales. Although observations using satellites have been made for more than 50 years, there are few examples of continuous and long-term observations at low altitude (<2,000 km) and in low L-value (L < 2) regions, which are at the bottom of the inner radiation belt. This is because the orbits of satellites that are designed to cover large areas of the magnetosphere are not suitable for long-term continuous observations at low altitudes. In this study, we focused on data from a space telescope that usually follows a low-altitude circular orbit. The Hisaki space telescope, launched in 2013, continuously observes the planets from an altitude of ∼1,000 km (L-value 1–2). By using the noise component counted on the photodetector of Hisaki as a radiation monitor, the flux variation of the high-energy protons (energy > 30 MeV) in this orbit can be observed. The results show a clear dependence on solar activity. At around L = 2, it is found that the variation in the radiation belt proton flux is controlled by both the flux of the galactic cosmic rays and the neutral density of the thermosphere. The former one is the source process of high-energy charged particles in the inner radiation belt, and the latter is the loss process due to the Coulomb collision. It is also found that the influence of galactic cosmic ray fluctuations becomes smaller as the L-value moves closer to 1.
  • Yi-Xin Hao, Yi-Xin Sun, Elias Roussos, Ying Liu, Peter Kollmann, Chong-Jing Yuan, Norbert Krupp, Chris Paranicas, Xu-Zhi Zhou, Go Murakami, Hajime Kita, Qiu-Gang Zong
    The Astrophysical Journal 905(1) L10-L10 2020年12月10日  査読有り
  • K. Masunaga, K. Yoshioka, M. S. Chaffin, J. Deighan, S. K. Jain, N. M. Schneider, T. Kimura, F. Tsuchiya, G. Murakami, A. Yamazaki, N. Terada, I. Yoshikawa
    Journal of Geophysical Research: Planets 125(12) 2020年12月  査読有り
    We present variations of oxygen 130.4 nm and hydrogen Ly-β airglow of the Martian upper atmosphere observed by the Hisaki spacecraft in the Earth orbit. In 5-year intermittent observations covering various Mars seasons, the 130.4 nm brightness varied from ∼700 to ∼1,200 Rayleigh, correlated with the solar 130.4 nm flux. The Ly-β brightness, on the other hand, varied from ∼50 to ∼260 Rayleigh, correlated with the column dust optical depth rather than the solar Ly-β flux. This suggests that the global oxygen column density in the upper atmosphere was relatively stable over the observations while the hydrogen column density was highly variable, controlled by dust storms. Although the observations were made in different Mars Years, we suggest that the hydrogen column density increased by at least 2–5 times from non-dusty to dusty seasons. The source of the hydrogen atoms is likely water vapor transported from the lower atmosphere which subsequently photodissociate into hydrogen atoms. The amount of oxygen atoms dissociated from water vapor is small compared with those dissociated from the main CO atmosphere. Large brightness of both emissions was detected during the comet siding spring (CSS) approach. We suggest that a large solar 130.4 nm flux caused the large 130.4 nm brightness and an effect of the CSS approach was small. For Ly-β, a regional dust storm during the CSS approach likely caused the large brightness. Although it is possible that the hydrogen atoms are transported from the comet, we leave the effect of CSS on the Ly-β brightness uncertain. 2
  • Go Murakami, Hajime Hayakawa, Hiroyuki Ogawa, Shoya Matsuda, Taeko Seki, Yasumasa Kasaba, Yoshifumi Saito, Ichiro Yoshikawa, Masanori Kobayashi, Wolfgang Baumjohann, Ayako Matsuoka, Hirotsugu Kojima, Satoshi Yagitani, Michel Moncuquet, Jan-Erik Wahlund, Dominique Delcourt, Masafumi Hirahara, Stas Barabash, Oleg Korablev, Masaki Fujimoto
    SPACE SCIENCE REVIEWS 216(7) 2020年10月  査読有り筆頭著者
    Mercury has a unique and complex space environment with its weak global magnetic field, intense solar wind, tenuous exosphere, and magnetospheric plasma particles. This complex system makes Mercury an excellent science target to understand effects of the solar wind to planetary environments. In addition, investigating Mercury's dynamic magnetosphere also plays a key role to understand extreme exoplanetary environment and its habitability conditions against strong stellar winds. BepiColombo, a joint mission to Mercury by the European Space Agency and Japan Aerospace Exploration Agency, will address remaining open questions using two spacecraft, Mio and the Mercury Planetary Orbiter. Mio is a spin-stabilized spacecraft designed to investigate Mercury's space environment, with a powerful suite of plasma instruments, a spectral imager for the exosphere, and a dust monitor. Because of strong constraints on operations during its orbiting phase around Mercury, sophisticated observation and downlink plans are required in order to maximize science outputs. This paper gives an overview of the Mio spacecraft and its mission, operations plan, and data handling and archiving.
  • Y. Suzuki, K. Yoshioka, G. Murakami, I. Yoshikawa
    Journal of Geophysical Research: Planets 125(9) 2020年9月  査読有り
    © 2020. American Geophysical Union. All Rights Reserved. Mercury is valuable to us because we can see the interactions between the planet and its space environment. This research aims to clarify how Mercury's neutral Na exosphere was produced. Data from MErcury Surface, Space ENvironment, GEochemistry, and Ranging/Mercury Atmospheric and Surface Composition Spectrometer (MESSENGER/MASCS) and model calculations that examine possible generation, transportation, and dissipation processes were compared. First, the seasonal variability in the amount of Na exosphere was analyzed for each local time (LT) using MASCS data. Previous research has shown that the amount of Na above LT12 reaches its maximum at the aphelion and that this maximum is recorded only at LT12. Following this result, we constructed a 3-D Na exosphere model to understand the key seasonal variability processes occurring around LT12. The numerical calculation produced results that were consistent with the MASCS observations regarding the vertical profile and the seasonal variability at LT06 and LT18. However, the peak that occurs around the aphelion at LT12 could not be reproduced. However, the model produced results suggesting that less than 108 kg of comet stream dust particles per Mercury year could be the local and short-term source of Na.
  • A. Milillo, M. Fujimoto, G. Murakami, J. Benkhoff, J. Zender, S. Aizawa, M. Dósa, L. Griton, D. Heyner, G. Ho, S. M. Imber, X. Jia, T. Karlsson, R. M. Killen, M. Laurenza, S. T. Lindsay, S. McKenna-Lawlor, A. Mura, J. M. Raines, D. A. Rothery, N. André, W. Baumjohann, A. Berezhnoy, P. A. Bourdin, E. J. Bunce, F. Califano, J. Deca, S. de la Fuente, C. Dong, C. Grava, S. Fatemi, P. Henri, S. L. Ivanovski, B. V. Jackson, M. James, E. Kallio, Y. Kasaba, E. Kilpua, M. Kobayashi, B. Langlais, F. Leblanc, C. Lhotka, V. Mangano, A. Martindale, S. Massetti, A. Masters, M. Morooka, Y. Narita, J. S. Oliveira, D. Odstrcil, S. Orsini, M. G. Pelizzo, C. Plainaki, F. Plaschke, F. Sahraoui, K. Seki, J. A. Slavin, R. Vainio, P. Wurz, S. Barabash, C. M. Carr, D. Delcourt, K. H. Glassmeier, M. Grande, M. Hirahara, J. Huovelin, O. Korablev, H. Kojima, H. Lichtenegger, S. Livi, A. Matsuoka, R. Moissl, M. Moncuquet, K. Muinonen, E. Quèmerais, Y. Saito, S. Yagitani, I. Yoshikawa, J. E. Wahlund
    Space Science Reviews 216(5) 2020年8月1日  査読有り
    © 2020, The Author(s). The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury’s environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors.
  • Eric Quémerais, Jean-Yves Chaufray, Dimitra Koutroumpa, Francois Leblanc, Aurélie Reberac, Benjamin Lustrement, Christophe Montaron, Jean-Francois Mariscal, Nicolas Rouanet, Ichiro Yoshikawa, Go Murakami, Kazuo Yoshioka, Oleg Korablev, Denis Belyaev, Maria G. Pelizzo, Alain Corso, Paola Zuppella
    Space Science Reviews 216(4) 2020年6月  査読有り
  • Kasaba, Y., T. Takashima, S. Matsuda, S. Eguchi, M. Endo, T. Miyabara, M. Taeda, Y. Kuroda, Y. Kasahara, T. Imachi, H. Kojima, S. Yagitani, M. Moncuquet, J.-E. Wahlund, A. Kumamoto, A. Matsuoka, W. Baumjohann, S. Yokota, K. Asamura, Y. Saito, D. Delcourt, M. Hirahara, S. Barabash, N. Andre, M. Kobayashi, I. Yoshikawa, G. Murakami, H. Hayakawa
    Space Sci. Rev. 216(34) 2020年3月  査読有り
  • Hikida, R, K. Yoshioka, F. Tsuchiya, M. Kagitani, T. Kimura, F. Bagenal, N. Schneider, G. Murakami, A. Yamazaki, H. Kita, I. Yoshikawa
    Journal of Geophysical Research in press(3) 2020年1月1日  査読有り
  • Kita, H, T. Kimura, C. Tao, F. Tsuchiya, G. Murakami, A. Yamazaki, K, Yoshioka, R. W. Ebert, R. J. Wilson, F. Allegrini, G. Clark, J.E.P. Connerney, R. Gladstone, I. Yoshikawa, M. Fujimoto
    Journal of Geophysical Research Eary View(12) 10209-10218 2019年12月11日  査読有り
  • Koga, Ryoichi, Fuminori Tsuchiya, Masato Kagitani, Takeshi Sakanoi, Kazuo Yoshioka, Ichiro Yoshikawa, Tomoki Kimura, Go Murakami, Atsushi Yamazaki, H. Todd Smith, Fran Bagenal
    Journal of Geophysical Research Eary View(12) 10318-10331 2019年12月9日  査読有り
  • Yuanyuan Su, Tomoki Kimura, Ralph Kraft, Paul Nulsen, Megan Gralla, William Forman, Go Murakami, Atsushi Yamazaki, Ichiro Yoshikawa
    The Astrophysical Journal 881(2) 98-1-98-7 2019年8月  査読有り
    Molecular cold gas and star formation have been observed at centers of<br /> cool-core clusters, albeit at a level much smaller than expected from the<br /> classic cooling model. Feedback from the supermassive black hole is likely to<br /> have prevented hot gas from cooling. However, the exact cooling and heating<br /> processes are poorly understood. The missing key piece is the link between the<br /> hot gas ($10^7$\,K) and cold gas ($10^3$\,K). Using the extreme ultraviolet<br /> spectrometer onboard {\sl Hisaki}, we explore a distant galaxy cluster, RCS2<br /> J232727.6-020437, one of the most massive cool-core clusters with a cooling<br /> rate of $400$\,M$_{\odot}$\,yr$^{-1}$. We aim to detect gas at intermediate<br /> temperatures ($3\times10^4$\,K) emitting He I$\alpha$ and He I$\beta$ at rest<br /> wavelengths of 58.4 nm and 53.7 nm, respectively. Our target resides at<br /> $z=0.6986$, for which these He I lines shift away from the absorption of the<br /> Galaxy. Our findings show that the amount of $10^{4-5}$\,K gas at the center of<br /> this cluster is smaller than expected if cooling there was uninhibited, which<br /> demonstrates that feedback both operates and is efficient for massive clusters<br /> at these epochs.
  • F. Tsuchiya, R. Arakawa, H. Misawa, M. Kagitani, R. Koga, F. Suzuki, R. Hikida, K. Yoshioka, A. Steffl, F. Bagenal, P. Delamere, T. Kimura, Y. Kasaba, G. Murakami, I. Yoshikawa, A. Yamazaki, M. Yoneda
    Journal of Geophysical Research: Space Physics 124(5) 3236-3254 2019年5月  査読有り
    ©2019. American Geophysical Union. All Rights Reserved. In the Jovian magnetosphere, sulfur and oxygen ions supplied by the satellite Io are distributed in the so-called Io plasma torus. The plasma torus is located in the inner area of the magnetosphere and the plasma in the torus corotates with the planet. The density and the temperature of the plasma in the torus have significant azimuthal variations. In this study, data from three-year observations obtained by the Hisaki satellite, from December 2013 to August 2016, were used to investigate statistically the azimuthal variations and to find out whether the variations were influenced by the increase in neutral particles from Io. The azimuthal variation was obtained from a time series of sulfur ion line ratios, which were sensitive to the electron temperature and the sulfur ion mixing ratio S3+/S+. The major characteristics of the azimuthal variation in the plasma parameters were consistent with the dual hot electron model, proposed to explain previous observations. On the other hand, the Hisaki data showed that the peak System III longitude in the S3+/S+ ratio was located not only around 0°–90°, as in previous observations, but also around 180°–270°. The rotation period, the System IV periodicity, was sometimes close to the Jovian rotation period. Persistent input of energy to electrons in a limited longitude range of the torus is associated with the shortening of the System IV period.
  • Kimura Tomoki, Yamazaki Atsushi, Yoshioka Kazuo, Murakami Go, Tsuchiya Fuminori, Kita Hajime, Tao Chihiro, Yoshikawa Ichiro, Kumamoto Atsushi, Yamauchi Chisato
    JOURNAL OF SPACE WEATHER AND SPACE CLIMATE 9 2019年2月19日  査読有り
  • Keigo Enya, Shingo Kameda, Go Murakami, Masahiro Ikoma, Norio Narita, Takanori Kodama, Hiroyuki Sasai, Yoshitaka Makino, Naotaka Murata
    ASTRONOMICAL OPTICS: DESIGN, MANUFACTURE, AND TEST OF SPACE AND GROUND SYSTEMS II 11116 2019年  
    We present herein the development of high-efficiency reflective grating by holographic processing with the primary objective to perform exoplanet science studies in the ultraviolet (UV) wavelength region using space-borne telescopes. While the final development goal is aspheric grating, in this study, we manufactured planar grating samples with laminar and blazed grooves for our first step to establish the processing conditions and evaluate the characteristics of each grating. The geometry of the manufactured gratings is 30 x 30 x 10 mm, and their groove density is 2400/mm. An atomic force microscope (AFM) evaluation confirmed that laminar and blazed grooves were constructed on the surface of each grating. The measured absolute diffraction efficiency achieved by the brazed grating was 40.2 % and 44.1 % at wavelengths of 122 nm and 131 nm, respectively. These values are higher than those of the laminar grating by a factor of similar to 1.5.
  • Tsuchiya, F, K. Yoshioka, T. Kimura, G. Murakami, A. Yamazaki, M. Kagitani, C. Tao, H. Kita, R. Koga, F. Suzuki, R. Hikida, Y. Kasaba, H. Misawa, T. Sakanoi, I. Yoshikawa
    Proceedings of Symposium on Planetary Science 2019 2019年  
  • H. Kita, H. Misawa, A. Bhardwaj, F. Tsuchiya, G. Murakami, C. Tao, T. Kimura, K. Yoshioka, A. Yamazaki, Y. Kasaba, I. Yoshikawa, M. Fujimoto
    Astrophysical Journal Letters 872(2) 2019年1月  査読有り
    © 2019. The American Astronomical Society. All rights reserved. In order to reveal variations of days to weeks in the brightness distribution of Jovian Synchrotron Radiation (JSR), we made simultaneous radio and ultraviolet observations using the Giant Metrewave Radio Telescope (GMRT) and the Hisaki EXtreme ultraviolet spectrosCope for ExosphEric Dynamics (EXCEED). It is known from visible and ultraviolet observations that Io plasma torus (IPT) has dawn-dusk asymmetry, and that this asymmetry is believed to be due to the dawn-dusk electric field. Continuous ultraviolet observation by Hisaki reveals that dawn-dusk asymmetry of IPT changes in days to weeks, therefore, if this global electric field around Io&#039;s orbit (5.9 Jovian radii) could penetrate the radiation belt region (&lt;2 Jovian radii), the variations in brightness distribution of JSR and IPT are expected to be correlated. The GMRT observations were made from 2013 December 31 to 2014 January 16 at 610 MHz and 2016 March 14-June 23 at 1390 MHz, while Hisaki continuously monitored IPT. The statistical analysis indicates that JSR and IPT do not have a significant correlation. Although these results do not support our hypothesis, we cannot rule out the possibility that the dawn-dusk electric field was masked by some other process, including the conductivity variation and/or the time-variable longitudinal asymmetry of JSR.
  • F. Suzuki, K. Yoshioka, R. Hikida, G. Murakami, F. Tsuchiya, T. Kimura, I. Yoshikawa
    Journal of Geophysical Research: Space Physics 123(11) 9420-9429 2018年11月  査読有り
    ©2018. American Geophysical Union. All Rights Reserved. Electron energy distribution in the Io plasma torus (IPT) is non-Maxwellian. The “hot” components induce extreme ultraviolet radiation, although their energy source remains unknown. One potential mechanism that may preserve the energy of hot electrons is inwardly directed plasma motion in the Jovian magnetosphere. Therefore, understanding the high-energy component of the electron energy distribution is important. The extreme ultraviolet spectrometer onboard the HISAKI satellite has started the observation of the IPT. We show that bright transient features in one ansa of the IPT correlate with those in the other ansa after 5 hr. Because it takes 5 hr (one half of the rotation cycle of Jupiter) for a batch of plasma to move from one ansa to the other, the correlation indicates that the transient features are identical and that they survive for greater than 5 hr. Since the time scale of the radiative cooling process is ~3 hr, this fact suggests that injected hot electrons survive against cooling via Coulomb collision with ambient electrons for greater than 2 hr. Assuming the relationship with the cooling time, we can deduce the hot electron temperature from the brightening duration. Here we report the occasional hot electron injections, presumed to exceed 150 up to 650 eV, into the IPT (approximately 15% out of all events). For the most of events, the temperature of injected electron is lower than 150 eV.
  • Han, S., Murakami, G., Kita, H., Tsuchiya, F., Tao, C., Misawa, H., Yamazaki, A., Nakamura, M.
    Journal of Geophysical Research: Space Physics 123(11) 9508-9516 2018年11月  査読有り
    ©2018. American Geophysical Union. All Rights Reserved. Since the first discovery of Jovian Synchrotron Radiation (JSR) from Jovian radiation belt in late 1950s, origin of its time variations has been one of the main subjects of the Jovian radiation belt study. JSR is reported to be strongly correlated with solar wind ram pressure with a possible time lag, which remains an unsolved issue. In our study, the influence of dawn-to-dusk electric field modulated with solar wind ram pressure on JSR variations is investigated. Alongside the original diffusion coefficient (DLL(UV)), a new diffusion coefficient (DLL(Elec)) which is dependent on solar wind conditions is applied to a one-dimensional lossy radial diffusion model, and we reproduce long-term variations of JSR between 1971 and early 2018. For the specific choice of DLL(UV) = 3.0 × 10−10L3[s−1], the correlation coefficient is found to be 0.6 between the simulated JSR and the ground observation data prior to 2005, and the intermittent observation after 2005 supports our simulation as well. We suggest that while DLL(UV) is the primary mode of diffusion that determines the steady profile of electron population and JSR, DLL(Elec) serves as a secondary mode, which controls long-term variations of JSR.

MISC

 118
  • Fuminori Tsuchiya, Yasumasa Kasaba, Ichiro Yoshikawa, Go Murakami, Atsushi Yamazaki, Kazuo Yoshioka, Tomoki Kimura, Chihiro Tao, Ryoichi Koga, Hajime Kita, Kei Masunaga, Masato Kagitani, Shotaro Sakai, Masaki Kuwabara
    Abstract EGU 2023 2023年5月15日  招待有り
    Hisaki is an earth orbiting extreme ultraviolet spectroscope dedicated for observing solar system planets. Thanks to its monitoring capability, Hisaki has carried out unprecedented continuous observation of Io plasma torus, Jovian aurora, and Mars and Venus upper atmosphere since December 2013. One of notable phenomena observed by Hisaki is significant enhancements of neutral gas (sodium and oxygen) from Io occurred in the spring of 2015. Hisaki revealed that not only the plasma source, but transport, heating, and loss processes of magnetospheric plasma were influenced by the variation in the neutral source input. The presentation will include related topics from recent Hisaki publication. Since the autumn of 2016, the Juno spacecraft was in the orbit around Jupiter. Hisaki monitored activities of Jovian aurora and the plasma torus in the Juno era. These datasets will provide opportunities to compare in-situ observation by Juno with the global view by Hisaki.&amp;#160;JAXA approved the Hisaki mission period by the end of March 2023. As a future remote observation platform, we are going to propose a UV space telescope, LAPYUTA (Life-environmentology, Astronomy, and PlanetarY Ultraviolet Telescope Assembly), a Japanese-leading mission using heritages of UV instruments for planetary science (e.g., Hisaki) and space telescope techniques for astronomy. One of goals of this mission is dynamics of our solar system planets and moons as the most quantifiable archetypes of extraterrestrial habitable environments in the universe. Water plume that gushes from the subsurface ocean of Galilean moons and tenuous atmosphere which is generated by bombardment of energetic charged particles to the surface are primary targets of LAPYUTA. As the plume activity and the atmosphere are not stable, continuous monitoring with high spatial resolution is essential. The icy moon's plume and ambient space will be deeply explored with the spacecraft by NASA's and ESA's icy moon missions in 2020s-2030s. The complementary remote sensing by LAPYUTA will visualize their global structure and temporal dynamics.
  • Yudai Suzuki, Kazuo Yoshioka, Kei Masunaga, Hideyo Kawakita, Yoshiharu Shinnaka, Go Murakami, Tomoki Kimura, Fuminori Tsuchiya, Atsushi Yamazaki, Ichiro Yoshikawa
    2023年2月26日  
  • Kei Masunaga, Naoki Terada, Nao Yoshida, Yuki Nakamura, Takeshi Kuroda, Kazuo Yoshioka, Yudai Suzuki, Hiromu Nakagawa, Tomoki Kimura, Fuminori Tsuchiya, Go Murakami, Atsushi Yamazaki, Tomohiro Usui, Ichiro Yoshikawa
    2023年2月22日  
  • 今村 剛, 村上 豪, 岩井 一正, 三好 由純, 塩田 大幸
    日本惑星科学会誌遊星人 30(3) 105-106 2021年9月25日  
    2021年3月から4月にかけて,あかつきと水星探査機BepiColomboが地球から見て太陽のほぼ反対側を同時に通過する貴重な機会があり,これを活かして2 機が協調して太陽コロナの電波掩蔽観測を実施した.太陽観測衛星ひのでによる太陽表面の観測も同時に行い,コロナ研究のためのユニークなデータセットが得られた.
  • Kasaba Yasumasa, Takashima Takeshi, Matsuda Shoya, Eguchi Sadatoshi, Endo Manabu, Miyabara Takeshi, Taeda Masahiro, Kuroda Yoshikatsu, Kasahara Yoshiya, Imachi Tomohiko, Kojima Hirotsugu, Yagitani Satoshi, Moncuquet Michel, Wahlund Jan-Erik, Kumamoto Atsushi, Matsuoka Ayako, Baumjohann Wolfgang, Yokota Shoichiro, Asamura Kazushi, Saito Yoshifumi, Delcourt Dominique, Hirahara Masafumi, Barabash Stas, Andre Nicolas, Kobayashi Masanori, Yoshikawa Ichiro, Murakami Go, Hayakawa Hajime
    Space Science Reviews 216(3) 2020年  

共同研究・競争的資金等の研究課題

 11