研究者業績

阿部 琢美

アベ タクミ  (Takumi ABE)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 太陽系科学研究系 准教授
総合研究大学院大学(総研大) 物理科学研究科 宇宙科学専攻 准教授

J-GLOBAL ID
200901006137313045
researchmap会員ID
1000253786

外部リンク

論文

 81
  • Masatoshi Yamauchi, Johan De Keyser, George Parks, Shin ichiro Oyama, Peter Wurz, Takumi Abe, Arnaud Beth, Ioannis A. Daglis, Iannis Dandouras, Malcolm Dunlop, Pierre Henri, Nickolay Ivchenko, Esa Kallio, Harald Kucharek, Yong C.M. Liu, Ingrid Mann, Octav Marghitu, Georgios Nicolaou, Zhaojin Rong, Takeshi Sakanoi, Joachim Saur, Manabu Shimoyama, Satoshi Taguchi, Feng Tian, Takuo Tsuda, Bruce Tsurutani, Drew Turner, Thomas Ulich, Andrew Yau, Ichiro Yoshikawa
    Experimental Astronomy 54(2-3) 521-559 2022年12月  査読有り
    In the White Paper, submitted in response to the European Space Agency (ESA) Voyage 2050 Call, we present the importance of advancing our knowledge of plasma-neutral gas interactions, and of deepening our understanding of the partially ionized environments that are ubiquitous in the upper atmospheres of planets and moons, and elsewhere in space. In future space missions, the above task requires addressing the following fundamental questions: (A) How and by how much do plasma-neutral gas interactions influence the re-distribution of externally provided energy to the composing species? (B) How and by how much do plasma-neutral gas interactions contribute toward the growth of heavy complex molecules and biomolecules? Answering these questions is an absolute prerequisite for addressing the long-standing questions of atmospheric escape, the origin of biomolecules, and their role in the evolution of planets, moons, or comets, under the influence of energy sources in the form of electromagnetic and corpuscular radiation, because low-energy ion-neutral cross-sections in space cannot be reproduced quantitatively in laboratories for conditions of satisfying, particularly, (1) low-temperatures, (2) tenuous or strong gradients or layered media, and (3) in low-gravity plasma. Measurements with a minimum core instrument package (< 15 kg) can be used to perform such investigations in many different conditions and should be included in all deep-space missions. These investigations, if specific ranges of background parameters are considered, can also be pursued for Earth, Mars, and Venus.
  • Andrew W. Yau, Takumi Abe, Mats André, Andrew D. Howarth, William K. Peterson
    Magnetospheres in the Solar System 207-217 2021年1月1日  査読有り
    The acceleration and transport of high-latitude ionospheric ion outflows, both bulk ion flows and suprathermal ion outflows, play a fundamental role in magnetosphere-ionosphere coupling. Bulk ion flows consist mainly of the polar wind and auroral bulk upflows (with flow energies up to a few eV) in the topside polar ionosphere, which are the primary sources of low-energy H+ and O+ ions, respectively, for various ion acceleration processes at higher altitudes. These processes include perpendicular and parallel acceleration in the mid (~1000-5000 km) or high-altitude auroral zone, which produce suprathermal (~10 eV to ~10 keV) ion outflows such as transversely accelerated ions, ion conics, and ion beams; and centrifugal acceleration in regions of curved or changing magnetic field at high altitudes (above ~3-4 RE). A significant fraction of ion outflows remains cold in the magnetosphere, where their transport is strongly influenced by the interplanetary magnetic field (IMF) and the prevailing convection electric field. This results in a preferential feeding of the dusk plasma sheet under duskward IMF, and a stronger transport to the plasma sheet compared to the magnetotail at times of strong convection.
  • R. Pfaff, M. Larsen, T. Abe, H. Habu, J. Clemmons, H. Freudenreich, D. Rowland, T. Bullett, M. Y. Yamamoto, S. Watanabe, Y. Kakinami, T. Yokoyama, J. Mabie, J. Klenzing, R. Bishop, R. Walterscheid, M. Yamamoto, Y. Yamazaki, N. Murphy, V. Angelopoulos
    Geophysical Research Letters 47(15) 2020年8月16日  
    We investigate the forces and atmosphere-ionosphere coupling that create atmospheric dynamo currents using two rockets launched nearly simultaneously on 4 July 2013 from Wallops Island (USA), during daytime Sq conditions with ΔH of −30 nT. One rocket released a vapor trail observed from an airplane which showed peak velocities of >160 m/s near 108 km and turbulence coincident with strong unstable shear. Electric and magnetic fields and plasma density were measured on a second rocket. The current density peaked near 110 km exhibiting a spiral pattern with altitude that mirrored that of the winds, suggesting the dynamo is driven by tidal forcing. Such stratified currents are obscured in integrated ground measurements. Large electric fields produced a current opposite to that driven by the wind, believed created to minimize the current divergence. Using the observations, we solve the dynamo equation versus altitude, providing a new perspective on the complex nature of the atmospheric dynamo.
  • M. Shiotani, S. Oyama, A. Saito, T. Sakazaki, S. Ochiai, P. Baron, T. Nishibori, M. Suzuki, T. Abe, H. Maezawa
    International Geoscience and Remote Sensing Symposium (IGARSS) 8788-8791 2019年7月  
    The Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on the International Space Station demonstrated a 4 K mechanical cooler for high-sensitivity submillimeter limb-emission sounding of atmospheric observations. Based on the SMILES heritage, we propose a satellite mission "SMILES-2" to observe temperature and wind fields, and distributions of atmospheric trace gases from the middle atmosphere to the upper atmosphere. We will be able to grasp the 4-D dynamical structure of diurnal variations which are one of the most essential characteristics in the earth's atmosphere. In the upper atmosphere, a transition layer between the atmosphere and the outer space, we will be able to clarify a role of magnetospheric energy inputs from the temperature and wind observations. These outcomes including the atmospheric trace gas data will greatly contribute to improve the reliability of chemistry climate models for future projection and the accuracy of prediction models for space weather.
  • K. Ishisaka, R. Nakamura, T. Mori, T. Abe, A. Kumamoto, M. Tanaka
    2019 URSI Asia-Pacific Radio Science Conference, AP-RASC 2019 2019年3月  
    © 2019 URSI. All rights reserved. The Sq current system occurs in the lower ionosphere in the winter daytime. The Sq current system is appeared the specific plasma phenomenon such as electron heating, strong electron density disturbance. Therefore it is important to measure directly the DC electric field and the plasma waves in the ionosphere.

MISC

 326
  • 阿部琢美
    スペース・プラズマ研究会・講演集(Web) 2010 2011年  
  • IMAMURA Takeshi, TODA Tomoaki, TOMIKI Atsushi, HIRAHARA Daichi, HAYASHIYAMA Tomoko, MOCHIZUKI Nanako, YAMAMOTO Zen-ichi, ABE Takumi, IWATA Takahiro, NODA Hirotomo, FUTAANA Yoshifumi, ANDO Hiroki, HAEUSLER Bernd, PAETZOLD Martin, NABATOV Alexander
    Earth, Planets and Space 63(6) 2011年  
  • 山本真行, 渡部重十, 阿部琢美, 山本衛, LARSEN Miguel, 羽生宏人
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 130th ROMBUNNO.B005-20 2011年  
  • 山本衛, 阿部琢美, 渡部重十, 齊藤昭則, 大塚雄一, 横山竜宏, 山本真行, BERNHARDT. Paul A, LARSEN Miguel, PFAFF Robert F
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 130th ROMBUNNO.B005-P020 2011年  
  • 安藤紘基, 今村剛, 岩田隆浩, 戸田知朗, 冨木淳史, 望月奈々子, 山本善一, 林山朋子, 阿部琢美, 野田寛大, 二穴喜文, HAEUSLER Bernd, PAETZOLD Martin, NABATOV Alexander
    日本気象学会大会講演予稿集 98(98) 148-148 2010年9月30日  
  • 牛尾,知雄, 森本,健志, 佐藤,光輝, 鈴木,睦, 山崎,敦, 芳原,容英, 菊地,雅行, 高橋,幸弘, 石田,良平, 坂本,祐二, 吉田,和哉, 阿部,琢美, 河崎,善一郎
    大会講演予講集 97 52-52 2010年4月30日  
  • 住野 諒, 田中 孝治, 山極 芳樹, 佐々木 進, 下山 学, 阿部 琢美, 神戸 篤, 若槻 賢, 佐原 宏典, 藤井 裕矩
    宇宙航空研究開発機構研究開発報告 9 27-34 2010年2月  
  • 蜂谷宣人, 阿部琢美
    大気圏シンポジウム・講演集(Web) 24th 2010年  
  • 北野谷有吾, 阿部琢美
    大気圏シンポジウム・講演集(Web) 24th 2010年  
  • 中村正人, 石井信明, 今村剛, 上野宗孝, 鈴木睦, 阿部琢美, 山崎敦, 岩上直幹, 佐藤毅彦, 田口真, 渡部重十, 福原哲哉, 大月祥子
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 128th 2010年  
  • 松岡彩子, 阿部琢美, 石坂圭吾, 熊本篤志, 栗原純一, 関華奈子, 田口真, 寺田直樹, 二穴喜文, 八木谷聡, 山崎敦, 横田勝一郎, 松岡彩子
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD−ROM) 128th ROMBUNNO.B009-10 2010年  
  • KITAMURA Naritoshi, TERADA Naoki, OGAWA Yasunobu, ABE Takumi, ONO Takayuki, NISHIMURA Yukitoshi, SHINBORI Atsuki, KUMAMOTO Atsushi
    極域科学・宙空圏・気水圏・生物・地学シンポジウム講演予稿集(CD-ROM) 2010 ROMBUNNO.UO030 2010年  
  • KITAMURA Naritoshi, TERADA Naoki, OGAWA Yasunobu, ABE Takumi, ONO Takayuki, NISHIMURA Yukitoshi, SHINBORI Atsuki, KUMAMOTO Atsushi
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 128th ROMBUNNO.B005-42 2010年  
  • 森永隆稔, 山本真行, 栗原純一, LARSEN Miguel, 久保田賢, 大山伸一郎, 野澤悟徳, 小川泰信, 阿部琢美, 渡部重十
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 128th ROMBUNNO.B005-41 2010年  
  • Tomonori Suzuki, Takayuki Ono, Jyunpei Uemoto, Makoto Wakabayashi, Takumi Abe, Atsushi Kumamoto, Masahide Iizima
    Earth, Planets and Space 62(7) 579-587 2010年  
    Ion sheath which is formed around an electrode significantly affects the impedance of the probe immersed in a plasma. The sheath capacitances obtained from impedance probe measurements were examined for application to plasma diagnoses. We compared analytical calculations of the sheath capacitance with measurements from impedance probes onboard ionospheric sounding rockets. The S-520-23 sounding rocket experiment, which was carried out in mid-latitude, demonstrated that the observed sheath capacitances agreed well with those of the calculations. We concluded that the sheath capacitance measurements allow for estimation of the electron temperature and the electron density of a Maxwellian plasma. On the other hand, the sheath capacitances obtained from the S-310-35 rocket experiment in the auroral ionosphere showed lower values than expected. Auroral particles precipitations should modify the probe potential.
  • J. Kurihara, S. Oyama, S. Nozawa, T. T. Tsuda, R. Fujii, Y. Ogawa, H. Miyaoka, N. Iwagami, T. Abe, K. I. Oyama, M. J. Kosch, A. Aruliah, E. Griffin, K. Kauristie
    Journal of Geophysical Research: Space Physics 114(12) A12306 2009年12月  
    A coordinated observation of the atmospheric response to auroral energy input in the polar lower thermosphere was conducted during the Dynamics and Energetics of the Lower Thermosphere in Aurora (DELTA) campaign. N2 rotational temperature was measured with a rocket-borne instrument launched from the Andøya Rocket Range, neutral winds were measured from auroral emissions at 557.7 nm with a Fabry-Perot Interferometer (FPI) at Skibotn and the KEOPS, and ionospheric parameters were measured with the European Incoherent Scatter (EISCAT) UHF radar at Tromsø. Altitude profiles of the passive energy deposition rate and the particle heating rate were estimated using data taken with the EISCAT radar. The local temperature enhancement derived from the difference between the observed N2 rotational temperature and the MSISE-90 model neutral temperature were 70-140 K at 110-140 km altitude. The temperature increase rate derived from the estimated heating rates, however, cannot account for the temperature enhancement below 120 km, even considering the contribution of the neutral density to the estimated heating rate. The observed upward winds up to 40 m s-1 seem to respond nearly instantaneously to changes in the heating rates. Although the wind speeds cannot be explained by the estimated heating rate and the thermal expansion hypothesis, the present study suggests that the generation mechanism of the large vertical winds must be responsible for the fast response of the vertical wind to the heating event. Copyright 2009 by the American Geophysical Union.
  • 佐藤 光輝, 牛尾 知雄, 森本 健志, 高橋 幸弘, 芳原 容英, 菊池 雅行, 鈴木 睦, 山崎 敦, 阿部 琢美, 吉田 和哉, 坂本 祐二, 奥山 圭一, 石田 良平, 河崎 善一郎
    大気電気学会誌 = / Society of Atmospheric Electricity of Japan 3(2) 60-61 2009年10月30日  
  • Yoshiko Koizumi, Minoru Kubota, Yasuhiro Murayama, Makoto Abo, Michihiro Uchiumi, Kiyoshi Igarashi, Naomoto Iwagami, Takumi Abe, Koh Iehiro Oyama
    Journal of Geophysical Research Atmospheres 114(20) D20114 2009年10月  
    In order to investigate the dynamics of the mesopause region, foil chaff experiments were carried out successfully during the WAVE2000 and WAVE2004 campaigns at Kagoshima, Japan. In the WAVE2004 campaign, the height profiles of the horizontal and vertical wind speeds were obtained. The wind shear layers of &gt 40 m/s/km were located around the altitudes of 89 and 95 km, and the profile of the Richardson number reveals the existence of dynamically unstable layers at about the same height region. Ripple observations using the all-sky imagers also support the possibility of dynamical instabilities. In the WAVE2000 campaign, a prominent small-scale feature around an altitude of 90.5 km appeared in both the horizontal and vertical chaff motions. These results demonstrate that the foil chaff technique is a valuable tool for in situ observation of small-scale turbulence features around the mesopause. Copyright 2009 by the American Geophysical Union.
  • 笠羽康正, 石坂圭吾, 熊本篤志, 鈴木朋憲, 阿部琢美, 下山学
    スペース・プラズマ研究会 2008 2009年  
  • 住野諒, 佐原宏典, 田中孝治, 佐々木進, 下山学, 阿部琢美, 山極芳樹, 神戸篤, 若槻賢, 藤井裕矩
    スペース・プラズマ研究会 2008 2009年  
  • 森本健志, 牛尾知雄, 佐藤光輝, 高橋幸弘, INAN Umran, 芳原容英, 菊池雅行, 鈴木睦, 山崎敦, 阿部琢美, 吉田和哉, 坂本祐二, 奥山圭一, 石田良平, 河崎善一郎
    大気圏シンポジウム・講演集(Web) 23rd 2009年  
  • 北野谷有吾, 阿部琢美
    大気圏シンポジウム・講演集(Web) 23rd 2009年  
  • 高橋幸弘, 嘉瀬浩美, 牛尾知雄, 森本健志, 佐藤光輝, INAN Umran, 芳原容英, 菊池雅行, 鈴木睦, 山崎敦, 阿部琢美, 吉田和哉, 坂本祐二, 奥山圭一, 石田良平, 河崎善一郎
    大気圏シンポジウム・講演集(Web) 23rd 2009年  
  • 牛尾知雄, 鈴木睦, 佐藤光輝, 森本健志, 高橋幸弘, 芳原容英, 菊池雅行, INAN Umran, 山崎敦, 阿部琢美, 河崎善一郎
    大気圏シンポジウム・講演集(Web) 23rd 2009年  
  • 鈴木睦, 山崎敦, 阿部琢美, 織田裕久
    大気圏シンポジウム・講演集(Web) 23rd 2009年  
  • 佐藤光輝, 牛尾知雄, 森本健志, 高橋幸弘, INAN Umran, 芳原容英, 菊池雅行, 石田良平, 吉田和哉, 坂本祐二, 奥山圭一, 河崎善一郎, 鈴木睦, 山崎敦, 阿部琢美
    大気圏シンポジウム・講演集(Web) 23rd 2009年  
  • 藤井裕矩, 藤井裕矩, 渡部武夫, 佐原宏典, 間沢朋哉, 竹原昭一郎, 山極芳樹, 大津広敬, 田中孝治, 阿部琢美, 下山学, 佐々木進, 小山孝一郎
    アストロダイナミクスシンポジウム講演後刷り集(Web) 18th 2009年  
  • 栗原純一, 栗原宜子, 岩上直幹, 鈴木朋憲, 熊本篤志, 小野高幸, 中村真帆, 石井守, 松岡彩子, 石坂圭吾, 阿部琢美, 野澤悟徳
    大気圏シンポジウム・講演集(Web) 23rd WEB ONLY III-5 2009年  
  • 坂野井健, 山崎敦, 大塚雄一, 田口真, 阿部琢美, 武山芸英, 小淵保幸, 齊藤昭則, 江尻省, 中村卓司, 鈴木睦, 久保田実, 吉川一朗, 星野尾一明, 坂野井和代, 藤原均, 山本衛, 石井守, 陣英克, 河野英昭
    大気圏シンポジウム・講演集(Web) 23rd 2009年  査読有り
  • 森永隆稔, 山本真行, 横山雄生, 栗原純一, LARSEN Miguel F, 大山伸一郎, 野澤悟徳, 小川泰信, 吉田健悟, 阿部琢美, 渡部重十, 岩上直幹
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD−ROM) 126th ROMBUNNO.B005-13 2009年  
  • 阿部琢美, 小川泰信, MOEN Joran
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 126th ROMBUNNO.B005-41 2009年  
  • Nakamura Masato, Ishii Nobuaki, Imamura Takeshi, ABE Takumi, SATOH Takehiko, SUZUKI Makoto, YAMAZAKI Atsushi, FUKUHARA Tetsuya, TAKEMAE Toshiaki, MOCHIHARA Yoshitaka, UENO Munetaka
    電子情報通信学会技術研究報告. SANE, 宇宙・航行エレクトロニクス 108(318) 19-21 2008年11月17日  
    The Venus Climate Orbiter mission (PLANET-C), one of the future planetary missions of Japan, aims at understanding the atmospheric circulation of Venus. Meteorological information will be obtained by globally mapping clouds and minor constituents successively with 4 cameras at ultraviolet and infrared wavelengths, detecting lightning with a high-speed imager, and observing the vertical structure of the atmosphere with radio science technique. The equatorial elongated orbit with westward revolution fits the observation of the movement and temporal variation of the atmosphere which rotates westward. The systematic, continuous imaging observations will provide us with an unprecedented large dataset of the Venusian atmospheric dynamics. Planet-C will be launched in 2010 and will reach Venus in 5 months. Nominal operation period is 2 earth years.
  • K. I. Oyama, K. Hibino, T. Abe, R. Pfaff, T. Yokoyama, J. Y. Liu
    Annales Geophysicae 26(9) 2929-2936 2008年9月1日  
    The electron temperature (T(e)), electron density (N(e)), and two components of the electric field were measured from the height of 90 km to 150 km by one of the sounding rockets launched during the SEEK-2 campaign. The rocket went through sporadic E layer (E(s)) at the height of 102 km-109 km during ascent and 99 km-108 km during decent, respectively. The energy density of thermal electrons calculated from N(e) and T(e) shows the broad maximum in the height range of 100-110 km, and it decreases towards the lower and higher altitudes, which implies that a heat source exists in the height region of 100 km-110 km. A 3-D picture of E(s), that was drawn by using T(e), N(e), and the electric field data, corresponded to the computer simulation; the main structure of E(s) is projected to a higher altitude along the magnetic line of force, thus producing irregular structures of T(e), N(e) and electric field in higher altitude.
  • K. I. Oyama, T. Abe, H. Mori, J. Y. Liu
    Annales Geophysicae 26(3) 533-541 2008年3月26日  
    Electron temperature in the sporadic E layer was measured with a glass-sealed Langmuir probe at a midlatitude station in Japan in the framework of the SEEK (Sporadic E Experiment over Kyushu)-2 campaign which was conducted in August 2002. Important findings are two fold: (I) electron temperature and electron density vary in the opposite sense in the height range of 100-108 km, and electron temperature in the E, layer is lower than that of ambient plasma, (2) electron temperature in these height ranges is higher than the possible range of neutral temperature. These findings strongly suggest that the heat source that elevates electron temperature much higher than possible neutral temperature exists at around 100km, and/or that the physical parameter values, which are used in the present theory to calculate electron temperature, are not proper.
  • 藤井, 裕矩, 渡部, 武夫, 草谷, 大郎, 小島, 広久, 小山, 孝一郎, 佐々木, 進, 田中, 孝治, 阿部, 琢美, 下山, 学, 山極, 芳樹, Fujii, Hironori A., Watanabe, Takeo, Kusagaya, Tairo, Kojima, Hirohisa, Oyama, Koichiro, Sasaki, Susumu, Tanaka, Koji, Abe, Takumi, Shimoyama, Manabu, Yamagiwa, Yoshiki
    宇宙利用シンポジウム 第24回 平成19年度 = Space Utilization Research: Proceedings of the Twenty-fourth Space Utilization Symposium 113-114 2008年3月  
    Two projects are introduced in this paper to verify the performance of space tether technology. A sounding rocket will be launched in the summer of 2009 to deploy a bare electro-dynamic tape tether having a length of 300 m. The other project to verify the space tether technology is a small satellite to deploy a bare 25 km electro-dynamic tape tether, and the launch is expected in 2013 with employing a new solid motor rocket. These verifications of tether technology will lead to a large numbers of applications of space tether technology and some future projects are also introduced. 資料番号: AA0063706026
  • 栗原純一, 栗原宜子, 岩上直幹, 鈴木朋憲, 熊本篤志, 小野高幸, 中村真帆, 石井守, 松岡彩子, 石坂圭吾, 阿部琢美, 野澤悟徳
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 124th 2008年  
  • 横山雄生, 山本真行, 渡部重十, 阿部琢美, 羽生宏人, 小野高幸, 大塚雄一, 齊藤昭則
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 124th 2008年  
  • 齊藤昭則, 阿部琢美, 坂野井健, 大塚雄一, 田口真, 吉川一朗, 山崎敦, 鈴木睦, 中村卓司, 山本衛, 河野英昭, 石井守, 星野尾一明, 坂野井和代, 藤原均, 久保田実, 江尻省
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 124th ROMBUNNO.B005-43 2008年  
  • KURIHARA Junichi, OYAMA Shin‐ichiro, NOZAWA Satonori, FUJII Ryoichi, OGAWA Yasunobu, IWAGAMI Naomoto, ABE Takumi
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 124th ROMBUNNO.B005-P019 2008年  
  • 小川泰信, 宮岡宏, 藤井良一, 野澤悟徳, 大山伸一郎, 平原聖文, 坂野井健, 阿部琢美, 小野高幸, 細川敬祐, 門倉昭, 行松彰
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 124th ROMBUNNO.S001-04 2008年  
  • 南部慎吾, 渡部重十, 阿部琢美, 羽生宏人, 中村正人, 小野高幸, 大塚雄一, 山本衛, 齊藤昭則, 山本真行
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 124th ROMBUNNO.B005-P017 2008年  
  • 山本真行, 横山雄生, 渡部重十, 阿部琢美, 羽生宏人, 大塚雄一, 齊藤昭則, 山本衛, 小野高幸
    大気圏シンポジウム 22nd(CD-ROM) ROMBUNNO.VI-1 2008年  
  • Andrew W. Yau, Takumi Abe, W. K. Peterson
    Journal of Atmospheric and Solar-Terrestrial Physics 69(16) 1936-1983 2007年11月  
    The polar wind is an ambipolar outflow of thermal plasma from the high-latitude ionosphere to the magnetosphere, and it primarily consists of H+, He+ and O+ ions and electrons. Statistical and episodic studies based primarily on ion composition observations on the ISIS-2, DE-1, Akebono and Polar satellites over the past four decades have confirmed the existence of the polar wind. These observations spanned the altitude range from 1000 to similar to 50,500 km, and revealed several important features in the polar wind that are unexpected from '' classical '' polar wind theories. These include the day-night asymmetry in polar wind velocity, which is 1.5-2.0 times larger on the dayside; appreciable O+ flow at high altitudes, where the velocity at 5000-10,000km is of 1-4km/s; and significant electron temperature anisotropy in the sunlit polar wind, in which the upward-to-downward electron temperature ratio is 1.5-2. These features are attributable to a number of '' non-classical '' polar wind ion acceleration mechanisms resulting from strong ionospheric convection, enhanced electron and ion temperatures, and escaping atmospheric photoelectrons. The observed polar wind has an averaged ion temperature of similar to 0.2-0.3eV, and a rate of ion velocity increase with altitude that correlates strongly with electron temperature and is greatest at low altitudes (&lt; 4000 km for H+). The rate of velocity increase below 4000 km is larger at solar minimum than at solar maximum. Above 4000 km, the reverse is the case. This suggests that the dominant polar wind ion acceleration process may be different at low and high altitudes, respectively. At a given altitude, the polar wind velocity is highly variable, and is on average largest for H+ and smallest for O+. Near solar maximum, H+, He+, and O+ ions typically reach a velocity of 1 km/s near 2000, 3000, and 6000 km, respectively, and velocities of 12, 7, and 4 km/s, respectively, at 10,000km altitude. Near solar minimum, the velocity of all three species is smaller at high altitudes. Observationally it is not always possible to unambiguously separate an energized '' non-polar-wind '' ion such as a low-energy '' cleft ion fountain '' ion that has convected into a polar wind flux tube from an energized '' polar-wind '' ion that is accelerated locally by '' non-classical '' polar-wind ion acceleration mechanisms. Significant questions remain on the relative contribution between the cleft ion fountain, auroral bulk upflow, and the topside polar-cap ionosphere to the O+ polar wind population at high altitudes, the effect of positive spacecraft charging on the lowest-energy component of the H+ polar wind population, and the relative importance of the various classical and non-classical ion acceleration mechanisms. These questions pose several challenges in future polar wind observations: These include measurement of the lowest-energy component in the presence of positive spacecraft potential, definitive determination and if possible active control of the spacecraft potential, definitive discrimination between polar wind and other inter-mixed thermal ion populations, measurement of the three-dimensional ion drift velocity vector and the parallel and perpendicular ion temperatures or the detailed three-dimensional velocity distribution function, and resolution of He+ and other minor ion species in the polar wind populatin. (C) 2007 Elsevier Ltd. All rights reserved.
  • Masato Nakamura, Takeshi Imamura, Munetaka Ueno, Naomoto Iwagami, Takehiko Satoh, Shigeto Watanabe, Makoto Taguchi, Yukihiro Takahashi, Makoto Suzuki, Takumi Abe, George L. Hashimoto, Takeshi Sakanoi, Shoichi Okano, Yasumasa Kasaba, Jun Yoshida, Manabu Yamada, Nobuaki Ishii, Takahiro Yamada, Kazunori Uemizu, Tetsuya Fukuhara, Koh ichiro Oyama
    Planetary and Space Science 55(12) 1831-1842 2007年10月  
    The Venus Climate Orbiter mission (PLANET-C), one of the future planetary missions of Japan, aims at understanding the atmospheric circulation of Venus. Meteorological information will be obtained by globally mapping clouds and minor constituents successively with four cameras at ultraviolet and infrared wavelengths, detecting lightning with a high-speed imager, and observing the vertical structure of the atmosphere with radio science technique. The equatorial elongated orbit with westward revolution fits the observation of the movement and temporal variation of the atmosphere which as a whole rotates westward. The systematic, continuous imaging observations will provide us with an unprecedented large data set of the Venusian atmospheric dynamics. Additional targets of the mission are the exploration of the ground surface and the observation of zodiacal light. The mission will complement the ESA's Venus Express, which also explores the Venusian environment with different approaches. (C) 2007 Elsevier Ltd. All rights reserved.
  • 門畑顕博, 阿部琢美, 小山孝一郎, 岩上直幹, 栗原純一, 若林誠, 野澤悟徳, 藤井良一, 小川泰信
    大気圏シンポジウム 21st 123-126 2007年6月  
  • 今村剛, 中村正人, 上野宗孝, 佐藤毅彦, 渡部重人, 田口真, 高橋幸弘, 鈴木睦, 岩上直幹, 石井信明, 阿部琢美, 山崎敦, 福原哲哉, 上水一典, 坂野井健, 山田学, 橋本成司
    宇宙科学技術連合講演会講演集(CD-ROM) 51st 2007年  
  • 高橋幸弘, 坂野井健, 上野宗孝, 笠羽康正, 吉田和哉, 田口真, 山崎敦, 岩上直幹, 今村剛, 鈴木睦, 阿部琢美, 寺田直樹, 寺田直樹, 土屋史紀, 堀之内武, 中島健介, 高橋幸弘, 高橋幸弘
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 122nd 2007年  
  • 阿部琢美, 下山学, 岡田敏美, 石坂圭吾, 遠山文雄, 高橋隆男, 田中真, 湯元清文, 公田浩子, 岩満一寛, 村上尚美, 小山孝一郎
    大気圏シンポジウム 21st 2007年  
  • 坂野井健, 高橋幸弘, 上野宗孝, 笠羽康正, 吉田和哉, 山崎敦, 今村剛, 阿部琢美, 田口真, 澤井秀次郎, 高橋幸弘
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 122nd 2007年  
  • 横山雄生, 山本真行, 羽生宏人, 阿部琢美, 渡部重十, 池田優二
    地球電磁気・地球惑星圏学会総会及び講演会予稿集(CD-ROM) 122nd 2007年  

書籍等出版物

 2

講演・口頭発表等

 111

担当経験のある科目(授業)

 1

共同研究・競争的資金等の研究課題

 14

● 指導学生等の数

 2
  • 年度
    2021年度(FY2021)
    修士課程学生数
    4
    受託指導学生数
    4
    技術習得生の数
    1
  • 年度
    2020年度(FY2020)
    修士課程学生数
    3
    受託指導学生数
    3
    技術習得生の数
    2

● 専任大学名

 1
  • 専任大学名
    総合研究大学院大学(SOKENDAI)

● 所属する所内委員会

 3
  • 所内委員会名
    理学委員会
  • 所内委員会名
    観測ロケット専門委員会
  • 所内委員会名
    スペースチェンバー専門委員会