研究者業績
基本情報
- 所属
- 国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙物理学研究系 教授総合研究大学院大学 先端学術院 宇宙科学コース 教授東京科学大学 理学院 物理学系 特定教授北海道大学 大学院理学院 宇宙理学専攻 客員教授
- 学位
- 博士(理学)(東京大学)修士(東京大学)
- 研究者番号
- 20280555
- ORCID ID
https://orcid.org/0000-0002-2374-7073
- J-GLOBAL ID
- 200901095989600566
- researchmap会員ID
- 1000363020
X線マイクロカロリメータを用いた極低温精密X線分光装置の開発に取り組み,2023年9月打ち上げのXRISM衛星に搭載されたResolve観測装置として実現しました.
研究指導のテーマとしては,(1) XRISM衛星による精密X線分光観測データを解析し,銀河団ガスの運動を調べて,宇宙の大規模構造形成過程の理解を深める,(2) 宇宙マイクロ波背景放射の偏光観測を目指すLiteBIRD衛星を見据えた実験的研究を行なう等.特定の自然現象について理解を深めると同時に,複雑な自然現象の背景にある物理法則に至る過程を,実験・解析手法とともにしっかりと身につけてもらいたいと考えています.
経歴
5-
2023年6月 - 現在
-
2008年4月 - 2023年5月
-
2006年12月 - 2008年3月
-
2003年10月 - 2006年11月
-
1995年4月 - 2003年9月
学歴
2-
1991年4月 - 1995年3月
-
1987年4月 - 1991年3月
委員歴
1-
2009年4月 - 2011年3月
受賞
1-
2010年
論文
176-
Publications of the Astronomical Society of Japan 2025年4月11日Abstract The X-Ray Imaging and Spectroscopy Mission (XRISM) is a joint mission between the Japan Aerospace Exploration Agency (JAXA) and the National Aeronautics and Space Administration (NASA) in collaboration with the European Space Agency (ESA). In addition to the three space agencies, universities and research institutes from Japan, North America, and Europe have joined to contribute to developing satellite and onboard instruments, data-processing software, and the scientific observation program. XRISM is the successor to the ASTRO-H (Hitomi) mission, which ended prematurely in 2016. Its primary science goal is to examine astrophysical problems with precise, high-resolution X-ray spectroscopy. XRISM promises to discover new horizons in X-ray astronomy. It carries a 6 × 6 pixelized X-ray microcalorimeter on the focal plane of an X-ray mirror assembly (Resolve) and a co-aligned X-ray CCD camera (Xtend) that covers the same energy band over a large field of view. XRISM utilizes the Hitomi heritage, but all designs were reviewed. The attitude and orbit control system was improved in hardware and software. The spacecraft was launched from the JAXA Tanegashima Space Center on 2023 September 6 (UTC). During the in-orbit commissioning phase, the onboard components were activated. Although the gate valve protecting the Resolve sensor with a thin beryllium X-ray entrance window was not yet opened, scientific observation started in 2024 February with the planned performance verification observation program. The nominal observation program commenced with the following guest observation program beginning in 2024 September.
-
The Astrophysical Journal Letters 982(1) L5-L5 2025年3月12日Abstract We present XRISM Resolve observations of the core of the hot, relaxed galaxy cluster Abell 2029 (A2029). We find that the line-of-sight bulk velocity of the intracluster medium (ICM) within the central 180 kpc is at rest with respect to the brightest cluster galaxy, with a 3σ upper limit of ∣v bulk∣ < 100 km s−1. We robustly measure the field-integrated ICM velocity dispersion to be σ v = 169 ± 10 km s−1, obtaining similar results for both single-temperature and two-temperature plasma models to account for the cluster cool core. This result, if ascribed to isotropic turbulence, implies a subsonic ICM with Mach number and a nonthermal pressure fraction of 2.6 ± 0.3%. The turbulent velocity is similar to what was measured in the core of the Perseus cluster by Hitomi, but here in a more massive cluster with an ICM temperature of 7 keV, the limit on the nonthermal pressure fraction is even more stringent. Our result is consistent with expectations from simulations of relaxed clusters, but it is on the low end of the predicted distribution, indicating that A2029 is an exceptionally relaxed cluster with no significant impacts from either a recent minor merger or active galactic nucleus activity.
-
Nature 638(8050) 365-369 2025年2月12日
-
Publications of the Astronomical Society of Japan 2024年12月26日Abstract Sagittarius A East is a supernova remnant with a unique surrounding environment, as it is located in the immediate vicinity of the supermassive black hole at the Galactic center, Sagittarius A$^{*}$. The X-ray emission of the remnant is suspected to show features of overionized plasma, which would require peculiar evolutionary paths. We report on the first observation of Sagittarius A East with the X-Ray Imaging and Spectroscopy Mission (XRISM). Equipped with a combination of a high-resolution microcalorimeter spectrometer and a large field-of-view CCD imager, we for the first time resolved the Fe xxv K-shell lines into fine structure lines and measured the forbidden-to-resonance intensity ratio to be $1.39 \pm 0.12$, which strongly suggests the presence of overionized plasma. We obtained a reliable constraint on the ionization temperature just before the transition into the overionization state, of $\gt\! 4\:$keV. The recombination timescale was constrained to be $\lt\! 8 \times 10^{11} \:$cm$^{-3}\:$s. The small velocity dispersion of $109 \pm 6\:$km$\:$s$^{-1}$ indicates a low Fe ion temperature $\lt\! 8\:$keV and a small expansion velocity $\lt\! 200\:$km$\:$s$^{-1}$. The high initial ionization temperature and small recombination timescale suggest that either rapid cooling of the plasma via adiabatic expansion from dense circumstellar material or intense photoionization by Sagittarius A$^{*}$ in the past may have triggered the overionization.
-
The Astrophysical Journal Letters 977(2) L34-L34 2024年12月11日Abstract The X-ray binary system Cygnus X-3 (4U 2030+40, V1521 Cyg) is luminous but enigmatic owing to the high intervening absorption. High-resolution X-ray spectroscopy uniquely probes the dynamics of the photoionized gas in the system. In this Letter, we report on an observation of Cyg X-3 with the XRISM/Resolve spectrometer, which provides unprecedented spectral resolution and sensitivity in the 2–10 keV band. We detect multiple kinematic and ionization components in absorption and emission whose superposition leads to complex line profiles, including strong P Cygni profiles on resonance lines. The prominent Fe xxv Heα and Fe xxvi Lyα emission complexes are clearly resolved into their characteristic fine-structure transitions. Self-consistent photoionization modeling allows us to disentangle the absorption and emission components and measure the Doppler velocity of these components as a function of binary orbital phase. We find a significantly higher velocity amplitude for the emission lines than for the absorption lines. The absorption lines generally appear blueshifted by ∼−500–600 km s−1. We show that the wind decomposes naturally into a relatively smooth and large-scale component, perhaps associated with the background wind itself, plus a turbulent, denser structure located close to the compact object in its orbit.
MISC
132-
Publications of the Astronomical Society of Japan 70(2) 2018年We report a Hitomi observation of IGR J16318-4848, a high-mass X-ray binary<br /> system with an extremely strong absorption of N_H~10^{24} cm^{-2}. Previous<br /> X-ray studies revealed that its spectrum is dominated by strong fluorescence<br /> lines of Fe as well as continuum emission. For physical and geometrical insight<br /> into the nature of the reprocessing material, we utilize the high spectroscopic<br /> resolving power of the X-ray microcalorimeter (the soft X-ray spectrometer;<br /> SXS) and the wide-band sensitivity by the soft and hard X-ray imager (SXI and<br /> HXI) aboard Hitomi. Even though photon counts are limited due to unintended<br /> off-axis pointing, the SXS spectrum resolves Fe K{\alpha_1} and K{\alpha_2}<br /> lines and puts strong constraints on the line centroid and width. The line<br /> width corresponds to the velocity of 160^{+300}_{-70} km s^{-1}. This<br /> represents the most accurate, and smallest, width measurement of this line made<br /> so far from any X-ray binary, much less than the Doppler broadening and shift<br /> expected from speeds which are characteristic of similar systems. Combined with<br /> the K-shell edge energy measured by the SXI and HXI spectra, the ionization<br /> state of Fe is estimated to be in the range of Fe I--IV. Considering the<br /> estimated ionization parameter and the distance between the X-ray source and<br /> the absorber, the density and thickness of the materials are estimated. The<br /> extraordinarily strong absorption and the absence of a Compton shoulder<br /> component is confirmed. These characteristics suggest reprocessing materials<br /> which are distributed in a narrow solid angle or scattering primarily with warm<br /> free electrons or neutral hydrogen.
-
Publications of the Astronomical Society of Japan 70(6) 2018年We present the results from the Hitomi Soft Gamma-ray Detector (SGD)<br /> observation of the Crab nebula. The main part of SGD is a Compton camera, which<br /> in addition to being a spectrometer, is capable of measuring polarization of<br /> gamma-ray photons. The Crab nebula is one of the brightest X-ray / gamma-ray<br /> sources on the sky, and, the only source from which polarized X-ray photons<br /> have been detected. SGD observed the Crab nebula during the initial test<br /> observation phase of Hitomi. We performed the data analysis of the SGD<br /> observation, the SGD background estimation and the SGD Monte Carlo simulations,<br /> and, successfully detected polarized gamma-ray emission from the Crab nebula<br /> with only about 5 ks exposure time. The obtained polarization fraction of the<br /> phase-integrated Crab emission (sum of pulsar and nebula emissions) is (22.1<br /> $\pm$ 10.6)% and, the polarization angle is 110.7$^o$ + 13.2 / $-$13.0$^o$ in<br /> the energy range of 60--160 keV (The errors correspond to the 1 sigma<br /> deviation). The confidence level of the polarization detection was 99.3%. The<br /> polarization angle measured by SGD is about one sigma deviation with the<br /> projected spin axis of the pulsar, 124.0$^o$ $\pm$0.1$^o$.
-
Publications of the Astronomical Society of Japan 70(2) 2018年The present paper investigates the temperature structure of the X-ray<br /> emitting plasma in the core of the Perseus cluster using the 1.8--20.0 keV data<br /> obtained with the Soft X-ray Spectrometer (SXS) onboard the Hitomi Observatory.<br /> A series of four observations were carried out, with a total effective exposure<br /> time of 338 ks and covering a central region $\sim7'$ in diameter. The SXS was<br /> operated with an energy resolution of $\sim$5 eV (full width at half maximum)<br /> at 5.9 keV. Not only fine structures of K-shell lines in He-like ions but also<br /> transitions from higher principal quantum numbers are clearly resolved from Si<br /> through Fe. This enables us to perform temperature diagnostics using the line<br /> ratios of Si, S, Ar, Ca, and Fe, and to provide the first direct measurement of<br /> the excitation temperature and ionization temperature in the Perseus cluster.<br /> The observed spectrum is roughly reproduced by a single temperature thermal<br /> plasma model in collisional ionization equilibrium, but detailed line ratio<br /> diagnostics reveal slight deviations from this approximation. In particular,<br /> the data exhibit an apparent trend of increasing ionization temperature with<br /> increasing atomic mass, as well as small differences between the ionization and<br /> excitation temperatures for Fe, the only element for which both temperatures<br /> can be measured. The best-fit two-temperature models suggest a combination of 3<br /> and 5 keV gas, which is consistent with the idea that the observed small<br /> deviations from a single temperature approximation are due to the effects of<br /> projection of the known radial temperature gradient in the cluster core along<br /> the line of sight. Comparison with the Chandra/ACIS and the XMM-Newton/RGS<br /> results on the other hand suggests that additional lower-temperature components<br /> are present in the ICM but not detectable by Hitomi SXS given its 1.8--20 keV<br /> energy band.
共同研究・競争的資金等の研究課題
20-
日本学術振興会 科学研究費助成事業 基盤研究(C) 2023年4月 - 2026年3月
-
日本学術振興会 科学研究費助成事業 新学術領域研究(研究領域提案型) 2019年4月 - 2021年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(A) 2013年4月 - 2017年3月
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2011年4月 - 2014年3月
-
科研費 挑戦的萌芽研究 2008年4月 - 2011年3月
-
日本学術振興会 科学研究費助成事業 挑戦的萌芽研究 2008年 - 2010年
-
日本学術振興会 科学研究費助成事業 特定領域研究 2007年 - 2010年
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2004年 - 2006年
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2003年 - 2006年
-
日本学術振興会 科学研究費助成事業 特定領域研究 2002年 - 2006年
-
日本学術振興会 科学研究費助成事業 基盤研究(A) 2002年 - 2004年
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 2001年 - 2003年
-
日本学術振興会 科学研究費助成事業 基盤研究(A) 2000年 - 2003年
-
日本学術振興会 科学研究費助成事業 基盤研究(B) 1997年 - 2000年
-
日本学術振興会 科学研究費助成事業 奨励研究(A) 1998年 - 1999年
-
日本学術振興会 科学研究費助成事業 1996年 - 1998年
-
日本学術振興会 科学研究費助成事業 重点領域研究 1996年 - 1996年