研究者業績

藤本 龍一

フジモト リュウイチ  (Ryuichi Fujimoto)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙物理学研究系 教授
総合研究大学院大学 先端学術院 宇宙科学コース 教授
東京工業大学 理学院 特定教授
学位
博士(理学)(東京大学)
修士(東京大学)

研究者番号
20280555
ORCID ID
 https://orcid.org/0000-0002-2374-7073
J-GLOBAL ID
200901095989600566
researchmap会員ID
1000363020

X線マイクロカロリメータを用いた極低温精密X線分光装置の開発に取り組み,2023年9月打ち上げのXRISM衛星に搭載されたResolve観測装置として実現しました.

研究指導のテーマとしては,(1) XRISM衛星による精密X線分光観測データを解析し,銀河団ガスの運動を調べて,宇宙の大規模構造形成過程の理解を深める,(2) 宇宙マイクロ波背景放射の偏光観測を目指すLiteBIRD衛星を見据えた実験的研究を行なう等.特定の自然現象について理解を深めると同時に,複雑な自然現象の背景にある物理法則に至る過程を,実験・解析手法とともにしっかりと身につけてもらいたいと考えています.


学歴

 4

委員歴

 2

論文

 164
  • Marc Audard, Hisamitsu Awaki, Ralf Ballhausen, Aya Bamba, Ehud Behar, Rozenn Boissay-Malaquin, Laura Brenneman, Gregory V Brown, Lia Corrales, Elisa Costantini, Renata Cumbee, Maria Diaz-Trigo, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan Eckart, Dominique Eckert, Teruaki Enoto, Satoshi Eguchi, Yuichiro Ezoe, Adam Foster, Ryuichi Fujimoto, Yutaka Fujita, Yasushi Fukazawa, Kotaro Fukushima, Akihiro Furuzawa, Luigi Gallo, Javier A García, Liyi Gu, Matteo Guainazzi, Kouichi Hagino, Kenji Hamaguchi, Isamu Hatsukade, Katsuhiro Hayashi, Takayuki Hayashi, Natalie Hell, Edmund Hodges-Kluck, Ann Hornschemeier, Yuto Ichinohe, Manabu Ishida, Kumi Ishikawa, Yoshitaka Ishisaki, Jelle Kaastra, Timothy Kallman, Erin Kara, Satoru Katsuda, Yoshiaki Kanemaru, Richard Kelley, Caroline Kilbourne, Shunji Kitamoto, Shogo Kobayashi, Takayoshi Kohmura, Aya Kubota, Maurice Leutenegger, Michael Loewenstein, Yoshitomo Maeda, Maxim Markevitch, Hironori Matsumoto, Kyoko Matsushita, Dan McCammon, Brian McNamara, François Mernier, Eric D Miller, Jon M Miller, Ikuyuki Mitsuishi, Misaki Mizumoto, Tsunefumi Mizuno, Koji Mori, Koji Mukai, Hiroshi Murakami, Richard Mushotzky, Hiroshi Nakajima, Kazuhiro Nakazawa, Jan-Uwe Ness, Kumiko Nobukawa, Masayoshi Nobukawa, Hirofumi Noda, Hirokazu Odaka, Shoji Ogawa, Anna Ogorzalek, Takashi Okajima, Naomi Ota, Stephane Paltani, Robert Petre, Paul Plucinsky, Frederick Scott Porter, Katja Pottschmidt, Kosuke Sato, Toshiki Sato, Makoto Sawada, Hiromi Seta, Megumi Shidatsu, Aurora Simionescu, Randall Smith, Hiromasa Suzuki, Andrew Szymkowiak, Hiromitsu Takahashi, Mai Takeo, Toru Tamagawa, Keisuke Tamura, Takaaki Tanaka, Atsushi Tanimoto, Makoto Tashiro, Yukikatsu Terada, Yuichi Terashima, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi G Tsuru, Hiroyuki Uchida, Nagomi Uchida, Yuusuke Uchida, Hideki Uchiyama, Yoshihiro Ueda, Shinichiro Uno, Jacco Vink, Shin Watanabe, Brian J Williams, Satoshi Yamada, Shinya Yamada, Hiroya Yamaguchi, Kazutaka Yamaoka, Noriko Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Tahir Yaqoob, Tomokage Yoneyama, Tessei Yoshida, Mihoko Yukita, Irina Zhuravleva, Manan Agarwal, Yuken Ohshiro
    Publications of the Astronomical Society of Japan 2024年10月10日  
    Abstract We present an initial analysis of the X-Ray Imaging and Spectroscopy Mission (XRISM) first-light observation of the supernova remnant (SNR) N 132D in the Large Magellanic Cloud. The Resolve microcalorimeter has obtained the first high-resolution spectrum in the 1.6–10 keV band, which contains K-shell emission lines of Si, S, Ar, Ca, and Fe. We find that the Si and S lines are relatively narrow, with a broadening represented by a Gaussian-like velocity dispersion of $\sigma _v \sim 450$ km s$^{-1}$. However, the Fe He$\alpha$ lines are substantially broadened with $\sigma _v \sim 1670$ km s$^{-1}$. This broadening can be explained by a combination of the thermal Doppler effect due to the high ion temperature and the kinematic Doppler effect due to the SNR expansion. Assuming that the Fe He$\alpha$ emission originates predominantly from the supernova ejecta, we estimate the reverse shock velocity at the time when the bulk of the Fe ejecta were shock heated to be $-1000 \lesssim V_{\rm rs}$ (km s$^{-1}$) $\lesssim 3300$ (in the observer frame). We also find that Fe Ly$\alpha$ emission is redshifted with a bulk velocity of $\sim 890$ km s$^{-1}$, substantially larger than the radial velocity of the local interstellar medium surrounding N 132D. These results demonstrate that high-resolution X-ray spectroscopy is capable of providing constraints on the evolutionary stage, geometry, and velocity distribution of SNRs.
  • Marc Audard, Hisamitsu Awaki, Ralf Ballhausen, Aya Bamba, Ehud Behar, Rozenn Boissay-Malaquin, Laura Brenneman, Gregory V. Brown, Lia Corrales, Elisa Costantini, Renata Cumbee, Maria Diaz Trigo, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan E. Eckart, Dominique Eckert, Teruaki Enoto, Satoshi Eguchi, Yuichiro Ezoe, Adam Foster, Ryuichi Fujimoto, Yutaka Fujita, Yasushi Fukazawa, Kotaro Fukushima, Akihiro Furuzawa, Luigi Gallo, Javier A. García, Liyi Gu, Matteo Guainazzi, Kouichi Hagino, Kenji Hamaguchi, Isamu Hatsukade, Katsuhiro Hayashi, Takayuki Hayashi, Natalie Hell, Edmund Hodges-Kluck, Ann Hornschemeier, Yuto Ichinohe, Manabu Ishida, Kumi Ishikawa, Yoshitaka Ishisaki, Jelle Kaastra, Timothy Kallman, Erin Kara, Satoru Katsuda, Yoshiaki Kanemaru, Richard Kelley, Caroline Kilbourne, Shunji Kitamoto, Shogo Kobayashi, Takayoshi Kohmura, Aya Kubota, Maurice Leutenegger, Michael Loewenstein, Yoshitomo Maeda, Maxim Markevitch, Hironori Matsumoto, Kyoko Matsushita, Dan McCammon, Brian McNamara, François Mernier, Eric D. Miller, Jon M. Miller, Ikuyuki Mitsuishi, Misaki Mizumoto, Tsunefumi Mizuno, Koji Mori, Koji Mukai, Hiroshi Murakami, Richard Mushotzky, Hiroshi Nakajima, Kazuhiro Nakazawa, Jan-Uwe Ness, Kumiko Nobukawa, Masayoshi Nobukawa, Hirofumi Noda, Hirokazu Odaka, Shoji Ogawa, Anna Ogorzalek, Takashi Okajima, Naomi Ota, Stephane Paltani, Robert Petre, Paul Plucinsky, Frederick S. Porter, Katja Pottschmidt, Kosuke Sato, Toshiki Sato, Makoto Sawada, Hiromi Seta, Megumi Shidatsu, Aurora Simionescu, Randall Smith, Hiromasa Suzuki, Andrew Szymkowiak, Hiromitsu Takahashi, Mai Takeo, Toru Tamagawa, Keisuke Tamura, Takaaki Tanaka, Atsushi Tanimoto, Makoto Tashiro, Yukikatsu Terada, Yuichi Terashima, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Tsuru, Hiroyuki Uchida, Nagomi Uchida, Yuusuke Uchida, Hideki Uchiyama, Yoshihiro Ueda, Shinichiro Uno, Jacco Vink, Shin Watanabe, Brian J. Williams, Satoshi Yamada, Shinya Yamada, Hiroya Yamaguchi, Kazutaka Yamaoka, Noriko Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Tahir Yaqoob, Tomokage Yoneyama, Tessei Yoshida, Mihoko Yukita, Irina Zhuravleva, Xin Xiang, Takeo Minezaki, Margaret Buhariwalla, Dimitra Gerolymatou, Scott Hagen
    The Astrophysical Journal Letters 973(1) L25-L25 2024年9月1日  
    Abstract We present an analysis of the first two XRISM/Resolve spectra of the well-known Seyfert-1.5 active galactic nucleus (AGN) in NGC 4151, obtained in 2023 December. Our work focuses on the nature of the narrow Fe K α emission line at 6.4 keV, the strongest and most common X-ray line observed in AGN. The total line is found to consist of three components. Even the narrowest component of the line is resolved with evident Fe K α,1 (6.404 keV) and K α,2 (6.391 keV) contributions in a 2:1 flux ratio, fully consistent with neutral gas with negligible bulk velocity. Subject to the limitations of our models, the narrowest and intermediate-width components are consistent with emission from optically thin gas, suggesting that they arise in a disk atmosphere and/or wind. Modeling the three line components in terms of Keplerian broadening, they are readily associated with (1) the inner wall of the “torus,” (2) the innermost optical “broad-line region” (or “X-ray BLR”), and (3) a region with a radius of r ≃ 100 GM/c 2 that may signal a warp in the accretion disk. Viable alternative explanations of the broadest component include a fast-wind component and/or scattering; however, we find evidence of variability in the narrow Fe K α line complex on timescales consistent with small radii. The best-fit models are statistically superior to simple Voigt functions, but when fit with Voigt profiles the time-averaged lines are consistent with a projected velocity broadening of FWHM . Overall, the resolution and sensitivity of XRISM show that the narrow Fe K line in AGN is an effective probe of all key parts of the accretion flow, as it is currently understood. We discuss the implications of these findings for our understanding of AGN accretion, future studies with XRISM, and X-ray-based black hole mass measurements.
  • Yoshitomo Maeda, Ryuichi Fujimoto, Hisamitsu Awaki, Jesus C. Balleza, Kim R. Barnstable, Thomas G. Bialas, Rozenn Boissay-Malaquin, Gregory V. Brown, Edgar R. Canavan, Timothy M. Carnahan, Meng P. Chiao, Brian J. Comber, Elisa Costantini, Renata S. Cumbee, Jan-Willem A. den Herder, Johannes Dercksen, Cor P. de Vries, Michael J. DiPirro, Megan E. Eckart, Yuichiro Ezoe, Carlo Ferrigno, Nathalie Q. S. Gorter, Steven M. Graham, Martin Grim, Leslie S. Hartz, Ryota Hayakawa, Takayuki Hayashi, Natalie Hell, Akio Hoshino, Yuto Ichinohe, Daiki Ishi, Manabu Ishida, Kumi Ishikawa, Yoshitaka Ishisaki, Bryan L. James, Yoshiaki Kanemaru, Richard L. Kelley, Steven J. Kenyon, Caroline A. Kilbourne, Mark O. Kimball, Shunji Kitamoto, Maurice A. Leutenegger, Dan McCammon, Brian J. McLaughlin, Joseph J. Miko, Erik van der Meer, Misaki Mizumoto, Takashi Okajima, Atsushi Okamoto, Stéphane Paltani, Frederick S. Porter, Lillian S. Reichenthal, Kosuke Sato, Toshiki Sato, Yohichi Sato, Makoto Sawada, Keisuke Shinozaki, Russell F. Shipman, Peter J. Shirron, Gary A. Sneiderman, Soong Yang, Richard Szymkiewicz, Andrew E. Szymkowiak, Yoh Takei, Mai Takeo, Tsubasa Tamba, Keisuke Tamura, Masahiro Tsujimoto, Yuusuke Uchida, Stephen Wasserzug, Michael C. Witthoeft, Rob Wolfs, Shinya Yamada, Susumu Yasuda
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 53-53 2024年8月22日  
  • Richard L. Kelley, Hisamitsu Awaki, Jesus C. Balleza, Kim R. Barnstable, Thomas G. Bialas, Rozenn Boissay-Malaquin, Gregory V. Brown, Edgar R. Canavan, Timothy M. Carnahan, Meng P. Chiao, Brian J. Comber, Elisa Costantini, Renata S. Cumbee, Jan-Willem A. den Herder, Johannes Dercksen, Cor de Vries, Michael J. DiPirro, Megan E. Eckart, Yuichiro Ezoe, Carlo Ferrigno, Ryuichi Fujimoto, Nathalie Q. S. Gorter, Steven M. Graham, Martin Grim, Leslie S. Hartz, Ryota Hayakawa, Takayuki Hayashi, Natalie Hell, Akio Hoshino, Yuto Ichinohe, Daiki Ishi, Manabu Ishida, Kumi Ishikawa, Yoshitaka Ishisaki, Bryan L. James, Yoshiaki Kanemaru, Steven J. Kenyon, Caroline A. Kilbourne, Mark O. Kimball, Shunji Kitamoto, Maurice A. Leutenegger, Yoshitomo Maeda, Dan McCammon, Brian J. McLaughlin, Joseph J. Miko, Erik van der Meer, Misaki Mizumoto, Takashi Okajima, Atsushi Okamoto, Stéphane Paltani, Frederick S. Porter, Lillian S. Reichenthal, Kosuke Sato, Toshiki Sato, Yohichi Sato, Makoto Sawada, Keisuke Shinozaki, Russell F. Shipman, Peter J. Shirron, Gary A. Sneiderman, Soong Yang, Richard Szymkiewicz, Andrew E. Szymkowiak, Yoh Takei, Mai Takeo, Tsubasa Tamba, Keisuke Tamura, Masahiro Tsujimoto, Yuusuke Uchida, Stephen Wasserzug, Michael C. Witthoeft, Rob Wolfs, Shinya Yamada, Susumu Yasuda
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 55-55 2024年8月22日  
  • Makoto S. Tashiro, Shin Watanabe, Hironori Maejima, Kenichi Toda, Kyoko Matsushita, Hiroya Yamaguchi, Richard L. Kelley, Lillian S. Reichenthal, Leslie S. Hartz, Robert Petre, Brian J. Williams, Matteo Guainazzi, Andrea Santovincenzo, Elisa Costantini, Yoh Takei, Yoshitaka Ishisaki, Ryuichi Fujimoto, Joy Henegar-Leon, Gary Sneiderman, Hiroshi Tomida, Koji Mori, Hiroshi Nakajima, Yukikatsu Terada, Matt Holland, Micheal Loewenstein, Tomothey Kallman, Jelle Kaastra, Eric Miller, Makoto Sawada, Chris Done, Teruaki Enoto, Aya Bamba, Paul Plucinsky, Yoshitaka Ueda, Erin Kara, Irina Zhuravleva, Yutaka Fujita, Jose Antonio Quero, Yoshitaka Arai, Marc Audard, Hisamitsu Awaki, Chris Baluta, Nobutaka Bando, Ehud Behar, Thomas Bialas, Rozenn Boissay-Malaquin, Laura Brenneman, Gregory V. Brown, Meng Chiao, Lia Corrales, Renata Cumbee, Cor de Vries, Jan-Willem den Herder, Maria Diaz-Trigo, Michael DiPirro, Tadayasu Dotani, Jacobo Ebrero Carrero, Ken Ebisawa, Megan Eckart, Dominique Eckart, Satoshi Eguchi, Yuichiro Ezoe, Carlo Ferrgno, Adam Foster, Yasushi Fukazawa, Kotaro Fukushima, Akihiro Furuzawa, Luigi Gallo, Nathalie Gorter, Martin Grim, Liyi Gu, Koichi Hagino, Kenji Hamaguchi, Isamu Hatsukade, Katsuhiro Hayashi, Takayuki Hayashi, Natalie Hell, Edmund Hodges-Kluck, Takafumi Horiuchi, Ann Hornschemeier, Akio Hoshino, Yuto Ichinohe, Chisato Ikuta, Ryo Iizuka, Daiki Ishi, Manabu Ishida, Naoki Ishihama, Kumi Ishikawa, Kosei Ishimura, Tess Jaffe, Satoru Katsuda, Yoshiaki Kanemaru, Steven Kenyon, Caroline Kilbourne, Mark Kimball, Shunji Kitamoto, Shogo Kobayashi, Akihide Kobayashi, Takayoshi Kohmura, Aya Kubota, Maurice Leutenegger, Muzi Li, Yoshitomo Maeda, Maxim Markevitch, Hironori Matsumoto, Keiichi Matsuzaki, Dan McCammon, Brian McLaughlin, Brian McNamara, Josegh Miko, Jon Miller, Kenji Minesugi, Shinji Mitani, Ikuyuki Mitsuishi, Misaki Mizumoto, Tsunefumi Mizuno, Koji Mukai, Hiroshi Murakami, Richard Mushotzky, Kazuhiro Nakazawa, Chikara Natsukari, Jan-Uwe Ness, Kenichiro Nigo, Mari Nishiyama, Kumiko Nobukawa, Masayoshi Nobukawa, Hirofumi Noda, Hirokazu Odaka, Mina Ogawa, Shoji Ogawa, Takashi Okajima, Atsushi Okamoto, Naomi Ota, Masanobu Ozaki, Stephane Paltani, F. Scott Porter, Katja Pottschmidt, Takahiro Sasaki, Kosuke Sato, Rie Sato, Toshiki Sato, Yoichi Sato, Hiromi Seta, Maki Shida, Megumi Shidatsu, Shuhei Shigeto, Russel Shipman, Keisuke Shinozaki, Peter Shirron, Aurora Simionescu, Randall Smith, Young Soong, Hiromasa Suzuki, Andy Szymkowiak, Hiromitsu Takahashi, Mai Takeo, Toru Tamagawa, Keisuke Tamura, Takaaki Tanaka, Atsushi Tanimoto, Yoichi Terashima, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Tsuru, Hiroyuki Uchida, Nagomi Ucghida, Yuusuke Uchida, Hideki Uchiyama, Shinichiro Uno, Erik Van der Meer, Jacco Vink, Michael Wittheof, Rob Wolf, Satoshi Yamada, Shinya Yamada, Kazutaka Yamaoka, Noriko Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Keiichi Yamagase, Tahir Yaqoob, Susumu Yasuda, Tomokage Yoneyama, Tessei Yoshida
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 52-52 2024年8月21日  
  • Kosuke Sato, Yoshitaka Ishisaki, Richard L. Kelley, Hisamitsu Awaki, Jesus C. Balleza, Kim R. Barnstable, Thomas G. Bialas, Rozenn Boissay-Malaquin, Gregory V. Brown, Edgar R. Canavan, Renata S. Cumbee, Timothy M. Carnahan, Meng P. Chiao, Brian J. Comber, Elisa Costantini, Jan-Willem A. den Herder, Johannes Dercksen, Cor de Vries, Michael J. DiPirro, Megan E. Eckart, Yuichiro Ezoe, Carlo Ferrigno, Ryuichi Fujimoto, Nathalie Q. S. Gorter, Steven M. Graham, Martin Grim, Leslie S. Hartz, Ryota Hayakawa, Takayuki Hayashi, Natalie Hell, Akio Hoshino, Yuto Ichinohe, Daiki Ishi, Manabu Ishida, Kumi Ishikawa, Bryan L. James, Yoshiaki Kanemaru, Steven J. Kenyon, Caroline A. Kilbourne, Mark O. Kimball, Shunji Kitamoto, Maurice A. Leutenegger, Yoshitomo Maeda, Dan McCammon, Brian J. McLaughlin, Joseph J. Miko, Erik van der Meer, Misaki Mizumoto, Takashi Okajima, Atsushi Okamoto, Stéphane Paltani, Frederick S. Porter, Lillian S. Reichenthal, Toshiki Sato, Yohichi Sato, Makoto Sawada, Keisuke Shinozaki, Russell F. Shipman, Peter J. Shirron, Gary A. Sneiderman, Soong Yang, Richard Szymkiewicz, Andrew E. Szymkowiak, Yoh Takei, Mai Takeo, Tsubasa Tamba, Keisuke Tamura, Masahiro Tsujimoto, Yuusuke Uchida, Stephen Wasserzug, Michael C. Witthoeft, Rob Wolfs, Shinya Yamada, Susumu Yasuda, Seiji Yoshida
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 232-232 2024年8月21日  
  • Seiji Yoshida, Masahito Isshiki, Ken'ichi Kanao, Shoji Tsunematsu, Kiyomi Otsuka, Syou Mizunuma, Yoh Takei, Akio Hoshino, Ryuichi Fujimoto, Yuichiro Ezoe, Kosuke Sato, Michael DiPirro, Peter Shirron
    Cryogenics 139 103831-103831 2024年4月  査読有り
  • Hasebe, T., Imamura, R., Tsujimoto, M., Awaki, H., Chiao, M.P., Fujimoto, R., Hartz, L.S., Kilbourne, C.A., Sneiderman, G.A., Takei, Y., Yasuda, S.
    Journal of Astronomical Telescopes, Instruments, and Systems 9(1) 14003-14003 2023年  
  • K. Sato, N. Y. Yamasaki, M. Ishida, Y. Maeda, K. Mitsuda, Y. Ishisaki, Y. Fujita, Y. Ezoe, I. Mitsuishi, Y. Tawara, K. Osato, N. Kawai, K. Matsushita, D. Nagai, K. Yoshikawa, R. Fujimoto, T. G. Tsuru, N. Ota, S. Yamada, Y. Ichinohe, Y. Uchida, Y. Nakashima
    Journal of Low Temperature Physics 209(5-6) 971-979 2022年12月  
  • Kosuke Sato, Noriko Y. Yamasaki, Shinya Yamada, Ikuyuki Mitsuishi, Yuto Ichinohe, Hajime Omamiuda, Yuusuke Uchida, Kazuhisa Mitsuda, Daisuke Nagai, Kohji Yoshikawa, Ken Osato, Kyoko Matsushita, Yutaka Fujita, Yoshitaka Ishisaki, Yuichiro Ezoe, Manabu Ishida, Yoshitomo Maeda, Nobuyuki Kawai, Ryuichi Fujimoto, Takeshi G. Tsuru, Naomi Ota, Yuki Nakashima
    Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray 12181 2022年8月31日  
  • Takashi Hasebe, Ryuta Imamura, Masahiro Tsujimoto, Hisamitsu Awaki, Meng P. Chiao, Ryuichi Fujimoto, Leslie S. Hartz, Gary A. Sneiderman, Yoh Takei, Susumu Yasuda
    Proceedings of SPIE - The International Society for Optical Engineering 12181 2022年  
    Resolve is a payload hosting an x-ray microcalorimeter detector operated at 50 mK in the X-Ray Imaging and Spectroscopy Mission (XRISM), which is currently under development by an international collaboration and is planned to be launched in 2023. One of the technical concerns is the micro-vibration interference to the sensitive microcalorimeter detector by the spacecraft bus components. We verified this in a series of the ground tests in 2021–2022, the results of which are reported here. We defined the micro-vibration interface between the spacecraft and the Resolve instrument. In the instrument-level test, we tested the flight-model hardware against the interface level by injecting micro-vibration using vibrators and evaluated the instrument response using the 50 mK stage temperature stability, the ADR magnet current consumption rate, and the detector noise spectra. We found the strong responses when injecting micro-vibration at ∼200, 380, and 610 Hz. In the former two cases, the beat among the injected frequency and the cryocooler frequency harmonics are also observed in the detector noise spectra. In the spacecraft-level test, we measured the acceleration and the instrument responses with and without suspending the entire spacecraft. The reaction wheels and the inertial reference units, two major sources of micro-vibration among the bus components, were operated. We found that the observed Resolve responses are within acceptable levels.
  • Ryuta Imamura, Masahiro Tsujimoto, Hisamitsu Awaki, Meng P. Chiao, Ryuichi Fujimoto, Yoshitaka Ishisaki, Richard L. Kelley, Caroline A. Kilbourne, Frederick S. Porter, Makoto Sawada, Gary A. Sneiderman, Yoh Takei, Shinya Yamada
    X-RAY, OPTICAL, AND INFRARED DETECTORS FOR ASTRONOMY X 12191 2022年  
    The Resolve instrument onboard the XRISM satellite is equipped with 6 x 6 x-ray microcalorimeter detectors aiming at an energy resolution of 7 eV (FWHM) at 5.9 keV. It is currently under development by an international collaboration and will be launched in 2023. The detectors are operated at 50 mK, which is achieved by a combination of four Stirling coolers (STC), one Joule-Thomson cooler (JTC), three-stage adiabatic demagnetization refrigerators, and superfluid helium inside the dewar. The cryocoolers (STC and JTC) are significant sources of microphonic noise against the detector performance. To understand and characterize the microphonic propagation, we monitored the level of vibration throughout the ground instrument-level tests in 2019-2022, yielding a rich and unique data set of the accelerometers and the detector at 50 mK amounting to 1720 hours (6.2 Ms). In this article, we report the result of classifying thermal and non-thermal microcalorimeter noise, distinguishing the origin of the noise, and the method for optimizing the cooler drive frequency that minimizes the effect of the noise originating from the cooler.
  • Makoto Sawada, Renata Cumbee, Cor de Vries, Megan E. Eckart, Ryuichi Fujimoto, Yoshitaka Ishisaki, Caroline A. Kilbourne, Shunji Kitamoto, Maurice A. Leutenegger, Frederick S. Porter, Yoh Takei, Masahiro Tsujimoto
    SPACE TELESCOPES AND INSTRUMENTATION 2022: ULTRAVIOLET TO GAMMA RAY 12181 2022年  
    Resolve is an X-ray microcalorimeter spectrometer on the X-Ray Imaging and Spectroscopy Mission (XRISM) to be launched in Japanese fiscal year 2022. Resolve is required to achieve an energy resolution of 7 eV at FWHM at 6 keV. To satisfy this requirement, it is necessary to correct the in-orbit gain drift. For this purpose, Resolve is equipped with multiple gain tracking calibration sources, including the modulated X-ray sources (MXS). The MXS will be operated in a pulsed mode, in which calibration X-rays illuminating the detector array are emitted at a duty cycle of similar to 1%. The low duty cycle allows us to monitor the gain drift with a small loss of the observing efficiency. However, the use of the MXS has drawbacks such as increase in the instrumental background due to exponentially decaying afterglow emission following each MXS pulse and the loss of throughput due to changes in the event-grade branching ratio. To minimize these effects, an optimization of the MXS operating parameters is needed. Based on the results of the MXS component-level tests, we established an analytical model that describes the MXS pulse and afterglow count rates. We obtained the optimal pulse parameters for various gain tracking intervals and estimated the effects of using the MXS on observation data. We further studied the trade-off between these effects and resolution degradation using the actual in-orbit drift observed with the Soft X-ray Spectrometer on the Hitomi satellite. Our study forms the basis of strategies for the in-orbit gain drift correction of Resolve.
  • Tanaka, K., Fujimoto, R., Okabe, N., Mitsuishi, I., Akamatsu, H., Ota, N., Oguri, M., Nishizawa, A.J.
    Publications of the Astronomical Society of Japan 73(3) 584-595 2021年6月  査読有り
    We represent a joint X-ray, weak-lensing, and optical analysis of the optically-selected merging cluster, HSC J085024+001536, from the Subaru HSC-SSP survey. Both the member galaxy density and the weak-lensing mass map show that the cluster is composed of southeast and northwest components. The two-dimensional weak-lensing analysis shows that the southeast component is the main cluster, and the sub- and main-cluster mass ratio is $0.32^{+0.75}_{-0.23}$. The northwest subcluster is offset by $\sim700$ kpc from the main cluster center, and their relative line-of-sight velocity is $\sim1300\,{\rm km s^{-1 } }$ from spectroscopic redshifts of member galaxies. The X-ray emission is concentrated around the main cluster, while the gas mass fraction within a sphere of $1'$ radius of the subcluster is only $f_{\mathrm{gas } }=4.0^{+2.3}_{-3.3}\%$, indicating that the subcluster gas was stripped by ram pressure. X-ray residual image shows three arc-like excess patterns, of which two are symmetrically located at $\sim550$ kpc from the X-ray morphological center, and the other is close to the X-ray core. The excess close to the subcluster has a cold-front feature where dense-cold gas and thin-hot gas contact. The two outer excesses are tangentially elongated about $\sim 450-650$ kpc, suggesting that the cluster is merged with a non-zero impact parameter. Overall features revealed by the multi-wavelength datasets indicate that the cluster is at the second impact or later. Since the optically-defined merger catalog is unbiased for merger boost of the intracluster medium, X-ray follow-up observations will pave the way to understand merger physics at various phases.
  • Makoto S. Tashiro, Hironori Maejima, Kenichi Toda, Richard L. Kelley, Lillian Reichenthal, Leslie Hartz, Robert Petre, Brian J. Williams, Matteo Guainazzi, Elisa Costantini, Ryuichi Fujimoto, Kiyoshi Hayashida, Joy Henegar-Leon, Matt Holland, Yoshitaka Ishisaki, Caroline Kilbourne, Mike Loewenstein, Kyoko Matsushita, Koji Mori, Takashi Okajima, F. Scott Porter, Gary Sneiderman, Yoh Takei, Yukikatsu Terada, Hiroshi Tomida, Hiroya Yamaguchi, Shin Watanabe, Hiroki Akamatsu, Yoshitaka Arai, Marc Audard, Hisamitsu Awaki, Iurii Babyk, Aya Bamba, Nobutaka Bando, Ehud Behar, Thomas Bialas, Rozenn Boissay-Malaquin, Laura Brenneman, Greg Brown, Edgar Canavan, Meng Chiao, Brian Comber, Lia Corrales, Renata Cumbee, Cor de Vries, Jan-Willem den Herder, Johannes Dercksen, Maria Diaz-Trigo, Michael DiPirro, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan Eckart, Dominique Eckert, Satoshi Eguchi, Teruaki Enoto, Yuichiro Ezoe, Carlo Ferrigno, Yutaka Fujita, Yasushi Fukazawa, Akihiro Furuzawa, Luigi Gallo, Nathalie Gorter, Martin Grim, Liyi Gu, Kouichi Hagino, Kenji Hamaguchi, Isamu Hatsukade, David Hawthorn, Katsuhiro Hayashi, Natalie Hell, Junko Hiraga, Edmund Hodges-Kluck, Takafumi Horiuchi, Ann Hornschemeier, Akio Hoshino, Yuto Ichinohe, Sayuri Iga, Ryo Iizuka, Manabu Ishida, Naoki Ishihama, Kumi Ishikawa, Kosei Ishimura, Tess Jaffe, Jelle Kaastra, Timothy Kallman, Erin Kara, Satoru Katsuda, Steven Kenyon, Mark Kimball, Takao Kitaguti, Shunji Kitamoto, Shogo Kobayashi, Akihide Kobayashi, Takayoshi Kohmura, Aya Kubota, Maurice Leutenegger, Muzi Li, Tom Lockard, Yoshitomo Maeda, Maxim Markevitch, Connor Martz, Hironori Matsumoto, Keiichi Matsuzaki, Dan McCammon, Brian McLaughlin, Brian McNamara, Joseph Miko, Eric Miller, Jon Miller, Kenji Minesugi, Shinji Mitani, Ikuyuki Mitsuishi, Misaki Mizumoto, Tsunefumi Mizuno, Koji Mukai, Hiroshi Murakami, Richard Mushotzky, Hiroshi Nakajima, Hideto Nakamura, Kazuhiro Nakazawa, Chikara Natsukari, Kenichiro Nigo, Yusuke Nishioka, Kumiko Nobukawa, Masayoshi Nobukawa, Hirofumi Noda, Hirokazu Odaka, Mina Ogawa, Takaya Ohashi, Masahiro Ohno, Masayuki Ohta, Atsushi Okamoto, Naomi Ota, Masanobu Ozaki, Stephane Paltani, Paul Plucinsky, Katja Pottschmidt, Michael Sampson, Takahiro Sasaki, Kosuke Sato, Rie Sato, Toshiki Sato, Makoto Sawada, Hiromi Seta, Yasuko Shibano, Maki Shida, Megumi Shidatsu, Shuhei Shigeto, Keisuke Shinozaki, Peter Shirron, Aurora Simionescu, Randall Smith, Kazunori Someya, Yang Soong, Keisuke Sugawara, Yasuharu Sugawara, Andy Szymkowiak, Hiromitsu Takahashi, Toshiaki Takeshima, Toru Tamagawa, Keisuke Tamura, Takaaki Tanaka, Atsushi Tanimoto, Yuichi Terashima, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Tsuru, Hiroyuki Uchida, Yuusuke Uchida, Hideki Uchiyama, Yoshihiro Ueda, Shinichiro Uno, Jacco Vink, Tomomi Watanabe, Michael Wittheof, Rob Wolfs, Shinya Yamada, Kazutaka Yamaoka, Noriko Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Keiichi Yanagase, Tahir Yaqoob, Susumu Yasuda, Tessei Yoshida, Nasa Yoshioka, Irina Zhuravleva
    Space Telescopes and Instrumentation 2020: Ultraviolet to Gamma Ray 2020年12月13日  
  • Kosuke Sato, Takaya Ohashi, Yoshitaka Ishisaki, Yuichiro Ezoe, Shinya Yamada, Noriko Y. Yamasaki, Kazuhisa Mitsuda, Manabu Ishida, Yoshitomo Maeda, Yuki Nakashima, Ikuyuki Mitsuishi, Yuzuru Tawara, Ryuichi Fujimoto, Takeshi G. Tsuru, Naomi Ota, Ken Osato, Shinya Nakashima, Yutaka Fujita, Daisuke Nagai, Kohji Yoshikawa, Nobuyuki Kawai, Kyoko Matsushita, Yuto Ichinohe, Yuusuke Uchida
    Proceedings of SPIE - The International Society for Optical Engineering 11444 2020年  
    We are studying an improved DIOS (Diffuse Intergalactic Oxygen Surveyor) program, Super DIOS, which is accepted for establishing the Research Group in ISAS/JAXA, for a launch year after 2030. The aim of Super DIOS is an X-ray quantitative exploration of”dark baryon” over several scales from circumgalactic medium, cluster outskirt to warm-hot intergalactic medium along the Cosmic web with mapping redshifted emission lines from mainly oxygen and other ions. These observations play key roles for investigating the physical condition, such as the energy flow and metal circulation, of most baryons in the Universe. This mission will perform wide field X-ray spectroscopy with a field of view of about 0.5-1 degree and energy resolution of a few eV with TES microcalorimeter, but with much improved angular resolution of about 10-15 arcseconds. We will also consider including a small gamma-ray burst monitor and a fast repointing system. We will have an international collaboration with US and Europe for all the onboard instruments.
  • Tanaka, K., Tsuji, A., Akamatsu, H., Chan, J.H.H., Coupon, J., Egami, E., Finet, F., Fujimoto, R., Ichinohe, Y., Jaelani, A.T., Lee, C.-H., Mitsuishi, I., More, A., More, S., Oguri, M., Okabe, N., Ota, N., Rusu, C.E., Sonnenfeld, A., Tanaka, M., Ueda, S., Wong, K.C.
    Monthly Notices of the Royal Astronomical Society 491(3) 3411-3418 2020年  査読有り
    A double source plane (DSP) system is a precious probe for the density profile of distant galaxies and cosmological parameters. However, these measurements could be affected by the surrounding environment of the lens galaxy. Thus, it is important to evaluate the cluster-scale mass for detailed mass modelling. We observed the Eye of Horus, a DSP system discovered by the Hyper Suprime-Cam Subaru Strategic Survey (HSC-SSP), with XMM-Newton. We detected two X-ray extended emissions, originating from two clusters, one centred at the Eye of Horus, and the other located similar to 100 arcsec north-east to the Eye of Horus. We determined the dynamical mass assuming hydrostatic equilibrium, and evaluated their contributions to the lens mass interior of the Einstein radius. The contribution of the former cluster is 1.1(-0.5)(+1.2) x 10(12) M-circle dot, which is 21-76 per cent of the total mass within the Einstein radius. The discrepancy is likely due to the complex gravitational structure along the line of sight. On the other hand, the contribution of the latter cluster is only similar to 2 per cent on the Eye of Horus. Therefore, the influence associated with this cluster can be ignored.
  • Ota, N., Mitsuishi, I., Babazaki, Y., Akamatsu, H., Ichinohe, Y., Ueda, S., Okabe, N., Oguri, M., Fujimoto, R., Hamana, T., Miyaoka, K., Miyazaki, S., Otani, H., Tanaka, K., Tsuji, A., Yoshida, A.
    Publications of the Astronomical Society of Japan 72(1) 2020年  査読有り
    We present the first results of a pilot X-ray study of 37 rich galaxy clusters at 0.1 < z < 1.1 in the Hyper Suprime-Cam Subaru Strategic Program field. Diffuse X-ray emissions from these clusters were serendipitously detected in the XMM-Newton fields of view. We systematically analyze X-ray images of 37 clusters and emission spectra of a subsample of 17 clusters with high photon statistics by using the XMM-Newton archive data. The frequency distribution of the offset between the X-ray centroid or peak and the position of the brightest cluster galaxy was derived for the optical cluster sample. The fraction of relaxed clusters estimated from the X-ray peak offsets in 17 clusters is 29 +/- 11(+/- 13)%, which is smaller than that of the X-ray cluster samples such as HIFLUGCS. Since the optical cluster search is immune to the physical state of X-ray-emitting gas, it is likely to cover a larger range of the cluster morphology. We also derive the luminosity-temperature relation and found that the slope is marginally shallower than those of X-ray-selected samples and consistent with the self-similar model prediction of 2. Accordingly, our results show that the X-ray properties of the optical clusters are marginally different from those observed in the X-ray samples. The implication of the results and future prospects are briefly discussed.
  • Ezoe, Y., Ishisaki, Y., Fujimoto, R., Takei, Y., Horiuchi, T., Tsujimoto, M., Ishikawa, K., Yasuda, S., Yanagase, K., Shibano, Y., Sato, K., Kitamoto, S., Yoshida, S., Kanao, K., Tsunematsu, S., Otsuka, K., Mizunuma, S., Isshiki, M., Kelley, R.L., Kilbourne, C.A., Porter, F.S., DiPirro, M.J., Shirron, P.
    Cryogenics 108 103016-103016 2020年  査読有り
  • Makoto Tashiro, Hironori Maejima, Kenichi Toda, Richard Kelley, Lillian Reichenthal, James Lobell, Robert Petre, Matteo Guainazzi, Elisa Costantini, Mark Edison, Ryuichi Fujimoto, Martin Grim, Kiyoshi Hayashida, Jan Willem Den Herder, Yoshitaka Ishisaki, Stéphane Paltani, Kyoko Matsushita, Koji Mori, Gary Sneiderman, Yoh Takei, Yukikatsu Terada, Hiroshi Tomida, Hiroki Akamatsu, Lorella Angelini, Yoshitaka Arai, Hisamitsu Awaki, Lurli Babyk, Aya Bamba, Peter Barfknecht, Kim Barnstable, Thomas Bialas, Branimir Blagojevic, Joseph Bonafede, Clifford Brambora, Laura Brenneman, Greg Brown, Kimberly Brown, Laura Burns, Edgar Canavan, Tim Carnahan, Meng Chiao, Brian Comber, Lia Corrales, Cor De Vries, Johannes Dercksen, Maria DIaz-Trigo, Tyrone DIllard, Michael DIpirro, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan Eckart, Teruaki Enoto, Yuichiro Ezoe, Carlo Ferrigno, Yutaka Fujita, Yasushi Fukazawa, Akihiro Furuzawa, Luigi Gallo, Steve Graham, Liyi Gu, Kohichi Hagino, Kenji Hamaguchi, Isamu Hatsukade, Dean Hawes, Takayuki Hayashi, Cailey Hegarty, Natalie Hell, Junko Hiraga, Edmund Hodges-Kluck, Matt Holland, Ann Hornschemeier, Akio Hoshino, Yuto Ichinohe, Ryo Iizuka, Kazunori Ishibashi, Manabu Ishida, Kumi Ishikawa, Kosei Ishimura, Bryan James, Timothy Kallman, Erin Kara, Satoru Katsuda, Steven Kenyon, Caroline Kilbourne, Mark Kimball, Takao Kitaguchi, Shunji Kitamoto, Shogo Kobayashi, Takayoshi Kohmura, Shu Koyama, Aya Kubota, Maurice Leutenegger, Tom Lockard, Mike Loewenstein, Yoshitomo Maeda, Lynette Marbley, Maxim Markevitch, Connor Martz, Hironori Matsumoto
    Proceedings of SPIE - The International Society for Optical Engineering 10699 2018年  
    © 2018 SPIE. The ASTRO-H mission was designed and developed through an international collaboration of JAXA, NASA, ESA, and the CSA. It was successfully launched on February 17, 2016, and then named Hitomi. During the in-orbit verification phase, the on-board observational instruments functioned as expected. The intricate coolant and refrigeration systems for soft X-ray spectrometer (SXS, a quantum micro-calorimeter) and soft X-ray imager (SXI, an X-ray CCD) also functioned as expected. However, on March 26, 2016, operations were prematurely terminated by a series of abnormal events and mishaps triggered by the attitude control system. These errors led to a fatal event: the loss of the solar panels on the Hitomi mission. The X-ray Astronomy Recovery Mission (or, XARM) is proposed to regain the key scientific advances anticipated by the international collaboration behind Hitomi. XARM will recover this science in the shortest time possible by focusing on one of the main science goals of Hitomi,"Resolving astrophysical problems by precise high-resolution X-ray spectroscopy".1 This decision was reached after evaluating the performance of the instruments aboard Hitomi and the mission's initial scientific results, and considering the landscape of planned international X-ray astrophysics missions in 2020's and 2030's. Hitomi opened the door to high-resolution spectroscopy in the X-ray universe. It revealed a number of discrepancies between new observational results and prior theoretical predictions. Yet, the resolution pioneered by Hitomi is also the key to answering these and other fundamental questions. The high spectral resolution realized by XARM will not offer mere refinements; rather, it will enable qualitative leaps in astrophysics and plasma physics. XARM has therefore been given a broad scientific charge: "Revealing material circulation and energy transfer in cosmic plasmas and elucidating evolution of cosmic structures and objects". To fulfill this charge, four categories of science objectives that were defined for Hitomi will also be pursued by XARM; these include (1) Structure formation of the Universe and evolution of clusters of galaxies; (2) Circulation history of baryonic matters in the Universe; (3) Transport and circulation of energy in the Universe; (4) New science with unprecedented high resolution X-ray spectroscopy. In order to achieve these scientific objectives, XARM will carry a 6 × 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and a wider field of view. This paper introduces the science objectives, mission concept, and observing plan of XARM.
  • Takei, Y., Yasuda, S., Ishimura, K., Iwata, N., Okamoto, A., Sato, Y., Ogawa, M., Sawada, M., Kawano, T., Obara, S., Natsukari, C., Wada, A., Yamada, S., Fujimoto, R., Kokubun, M., Yamasaki, N.Y., Sugita, H., Minesugi, K., Nakamura, Y., Mitsuda, K., Takahashi, T., Yoshida, S., Tsunematsu, S., Kanao, K., Narasaki, K., Otsuka, K., Scott Porter, F., Kilbourne, C.A., Chiao, M.P., Eckart, M.E., Sneiderman, G.A., Pontius, J.T., McCammon, D., Wilke, P., Basile, J.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(1) 2018年  査読有り
    The soft x-ray spectrometer (SXS) onboard ASTRO-H (named Hitomi after launch) is a microcalorimeter-type spectrometer, installed in a dewar to be cooled at 50 mK. The energy resolution of the SXS engineering model suffered from microvibration from cryocoolers mounted on the dewar. This is mitigated for the flight model (FM) by introducing vibration isolation systems between the cryocoolers and the dewar. The detector performance of the FM was verified before launch of the spacecraft in both ambient condition and thermal-vacuum condition, showing no detectable degradation in energy resolution. The in-orbit detector spectral performance and cryocooler cooling performance were also consistent with that on ground, indicating that the cryocoolers were not damaged by launch environment. The design and performance of the vibration isolation system along with the mechanism of how the microvibration could degrade the cryogenic detector is shown. Lessons learned from the development to mitigate unexpected issues are also described. (c) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
  • Moriya, T.J., Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., Mccammon, D., Mcnamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sato, T., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A., Tominaga, N.
    Publications of the Astronomical Society of Japan 70(2) 2018年  査読有り
  • Ishisaki, Y., Ezoe, Y., Yamada, S., Ichinohe, Y., Fujimoto, R., Takei, Y., Yasuda, S., Ishida, M., Yamasaki, N.Y., Maeda, Y., Tsujimoto, M., Iizuka, R., Koyama, S., Noda, H., Tamagawa, T., Sawada, M., Sato, K., Kitamoto, S., Hoshino, A., Brown, G.V., Eckart, M.E., Hayashi, T., Kelley, R.L., Kilbourne, C.A., Leutenegger, M.A., Mori, H., Okajima, T., Porter, F.S., Soong, Y., McCammon, D., Szymkowiak, A.E.
    Journal of Low Temperature Physics 193(5-6) 991-995 2018年  
    The X-ray Astronomy Recovery Mission (XARM) is a recovery mission of ASTRO-H/Hitomi, which is expected to be launched in Japanese Fiscal Year of 2020 at the earliest. The Resolve instrument on XARM consists of an array of 6 × 6 silicon-thermistor microcalorimeters cooled down to 50 mK and a high-throughput X-ray mirror assembly with the focal length of 5.6 m. Hitomi was launched into orbit in February 2016 and observed several celestial objects, although the operation of Hitomi was terminated in April 2016. The soft X-ray spectrometer (SXS) on Hitomi demonstrated high-resolution X-ray spectroscopy of ~ 5 eV FWHM in orbit for most of the pixels. The Resolve instrument is planned to mostly be a copy of the Hitomi SXS and soft X-ray telescope designs, though several changes are planned based on the lessons learned from Hitomi. We report a brief summary of the SXS performance and the status of the Resolve instrument.
  • Ezoe, Y., DiPirro, M., Fujimoto, R., Ishikawa, K., Ishisaki, Y., Kanao, K., Kimball, M., Mitsuda, K., Mitsuishi, I., Murakami, M., Noda, H., Ohashi, T., Okamoto, A., Satoh, Y., Sato, K., Shirron, P., Tsunematsu, S., Yamaguchi, H., Yoshida, S.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(1) 2018年  査読有り
  • Fujimoto, R., Takei, Y., Mitsuda, K., Yamasaki, N.Y., Tsujimoto, M., Koyama, S., Ishikawa, K., Sugita, H., Sato, Y., Shinozaki, K., Okamoto, A., Kitamoto, S., Hoshino, A., Sato, K., Ezoe, Y., Ishisaki, Y., Yamada, S., Seta, H., Ohashi, T., Tamagawa, T., Noda, H., Sawada, M., Tashiro, M., Yatsu, Y., Mitsuishi, I., Kanao, K., Yoshida, S., Miyaoka, M., Tsunematsu, S., Otsuka, K., Narasaki, K., DiPirro, M.J., Shirron, P.J., Sneiderman, G.A., Kilbourne, C.A., Porter, F.S., Chiao, M.P., Eckart, M.E.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(1) 2018年  査読有り
  • Yoshida, S., Miyaoka, M., Kanao, K., Tsunematsu, S., Otsuka, K., Hoshika, S., Narasaki, K., Mitsuda, K., Yamasaki, N., Takei, Y., Fujimoto, R., Ezoe, Y., Sato, Y., Okamoto, A., Noda, H., DiPirro, M., Shirron, P.
    Cryogenics 91 2018年  査読有り
  • Tsujimoto, M., Mitsuda, K., Kelley, R.L., Den Herder, J.-W., Bialas, T.G., Boyce, K.R., Chiao, M.P., De Vries, C.P., Dipirro, M.J., Eckart, M.E., Ezoe, Y., Fujimoto, R., Hoshino, A., Ishikawa, K., Ishisaki, Y., Kilbourne, C.A., Koyama, S., Leutenegger, M.A., Masters, C.M., Mitsuishi, I., Noda, H., Okajima, T., Okamoto, A., Porter, F.S., Sato, K., Sato, Y., Savinell, J.C., Sawada, M., Seta, H., Shirron, P.J., Sneiderman, G.A., Takei, Y., Tamagawa, T., Tashiro, M.S., Watanabe, T., Yamada, S., Yamasaki, N.Y., Yatsu, Y.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(1) 2018年  査読有り
  • Leutenegger, M.A., Audard, M., Boyce, K.R., Brown, G.V., Chiao, M.P., Eckart, M.E., Fujimoto, R., Furuzawa, A., Guainazzi, M., Haas, D., Hayashi, T., Den Herder, J.-W., Iizuka, R., Ishida, M., Ishisaki, Y., Kikuchi, N., Kilbourne, C.A., Koyama, S., Kurashima, S., Maeda, Y., Markevitch, M., Mccammon, D., Mitsuda, K., Mori, H., Nakaniwa, N., Okajima, T., Paltani, S., Petre, R., Porter, F.S., Sato, K., Sato, T., Sawada, M., Serlemitsos, P.J., Seta, H., Sneiderman, G., Soong, Y., Sugita, S., Szymkowiak, A.E., Takei, Y., Tashiro, M., Tawara, Y., Tsujimoto, M., De Vries, C.P., Watanabe, T., Yamada, S., Yamasaki, N.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(2) 2018年  査読有り
    The Soft X-ray Spectrometer onboard the Astro-H (Hitomi) orbiting x-ray observatory featured an array of 36 silicon thermistor x-ray calorimeters optimized to perform high spectral resolution x-ray imaging spectroscopy of astrophysical sources in the 0.3-to 12-keV band. Extensive preflight calibration measurements are the basis for our modeling of the pulse height-energy relation and energy resolution for each pixel and event grade, telescope collecting area, detector efficiency, and pulse arrival time. Because of the early termination of mission operations, we needed to extract the maximum information from observations performed only days into the mission when the onboard calibration sources had not yet been commissioned and the dewar was still coming into thermal equilibrium, so our technique for reconstructing the per-pixel time-dependent pulse height-energy relation had to be modified. The gain scale was reconstructed using a combination of an absolute energy scale calibration at a single time using a fiducial from an onboard radioactive source and calibration of a dominant time-dependent gain drift component using a dedicated calibration pixel, as well as a residual time-dependent variation using spectra from the Perseus cluster of galaxies. The energy resolution was also measured using the onboard radioactive sources. It is consistent with instrument-level measurements accounting for the modest increase in noise due to spacecraft systems interference. We use observations of two pulsar wind nebulae to validate our models of the telescope area and detector efficiency and to derive a more accurate value for the thickness of the gate-valve Be window, which had not been opened by the time mission operations ceased. We use observations of the Crab nebula to refine the pixel-to-pixel timing and validate the absolute timing. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
  • Porter, F.S., Boyce, K.R., Chiao, M.P., Eckart, M.E., Fujimoto, R., Ishisaki, Y., Kilbourne, C.A., Leutenegger, M.A., McCammon, D., Mitsuda, K., Sato, K., Seta, H., Sawada, M., Sneiderman, G.A., Szymkowiak, A.E., Takei, Y., Tashiro, M.S., Tsujimoto, M., Watanabe, T., Yamada, S.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(1) 2018年  査読有り
  • Kilbourne, C.A., Sawada, M., Tsujimoto, M., Angellini, L., Boyce, K.R., Eckart, M.E., Fujimoto, R., Ishisaki, Y., Kelley, R.L., Koyama, S., Leutenegger, M.A., Loewenstein, M., McCammon, D., Mitsuda, K., Nakashima, S., Porter, F.S., Seta, H., Takei, Y., Tashiro, M.S., Terada, Y., Yamada, S., Yamasaki, N.Y.
    Publications of the Astronomical Society of Japan 70(2) 2018年  査読有り
    The X-Ray Spectrometer (XRS) instrument of Suzaku provided the first measurement of the non-X-ray background (NXB) of an X-ray calorimeter spectrometer, but the data set was limited. The Soft X-ray Spectrometer (SXS) instrument of Hitomi was able to provide a more detailed picture of X-ray calorimeter background, with more than 360 ks of data while pointed at the Earth, and a comparable amount of blank-sky data. These data are important not only for analyzing SXS science data, but also for categorizing the contributions to the NXB in X-ray calorimeters as a class. In this paper, we present the contributions to the SXS NXB, the types and effectiveness of the screening, the interaction of the screening with the broad-band redistribution, and the residual background spectrum as a function of magnetic cut-off rigidity. The orbit-averaged SXS NXB in the range 0.3-12 keV was 4 x 10(-2) counts s(-1) cm(-2). This very low background in combination with groundbreaking spectral resolution gave SXS unprecedented sensitivity to weak spectral lines.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, L., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Megan Urry, C., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A., Sato, T., Nakaniwa, N., Murakami, H., Guest, B.
    Publications of the Astronomical Society of Japan 70(3) 2018年  査読有り
  • Takahashi, T., Kokubun, M., Mitsuda, K., Kelley, R.L., Ohashi, T., Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Anabuki, N., Angelini, L., Arnaud, K., Asai, M., Audard, M., Awaki, H., Axelsson, M., Azzarello, P., Baluta, C., Bamba, A., B, o, N., Bautz, M.W., Bialas, T., Bl, ford, R., Boyce, K., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Canavan, E., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., O{'} Dell, S., DiPirro, M., Done, C., Dotani, T., Doty, J., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Funk, S., Furuzawa, A., Galeazzi, M., Gallo, L.C., G, hi, P., Gilmore, K., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haas, D., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, T., Hayashi, K., Hayashida, K., Den Herder, J.-W., Hiraga, J.S., Hirose, K., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishibashi, K., Ishida, M., Ishikawa, K., Ishimura, K., Ishisaki, Y., Itoh, M., Iwai, M., Iwata, N., Iyomoto, N., Jewell, C., Kaastra, J., Kallman, T., Kamae, T., Kara, E., Kataoka, J., Katsuda, S., Katsuta, J., Kawaharada, M., Kawai, N., Kawano, T., Kawasaki, S., Khangulyan, D., Kilbourne, C.A., Kimball, M., King, A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Konami, S., Kosaka, T., Koujelev, A., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Masters, C., Matsumoto, H., Matsushita, K., McCammon, D., Mcguinness, D., McNamara, B.R., Mehdipour, M., Miko, J., Miller, E.D., Miller, J.M., Mineshige, S., Minesugi, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Moroso, F., Moseley, H., Muench, T., Mukai, K., Murakami, H., Murakami, T., Mushotzky, R.F., Nagano, H., Nagino, R., Nakagawa, T., Nakajima, H., Nakamori, T., Nakano, T., Nakashima, S., Nakazawa, K., Namba, Y., Natsukari, C., Nishioka, Y., Nobukawa, K.K., Nobukawa, M., Noda, H., Nomachi, M., Odaka, H., Ogawa, H., Ogawa, M., Ogi, K., Ohno, M., Ohta, M., Okajima, T., Okamoto, A., Okazaki, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Parmar, A., Petre, R., Pinto, C., De Plaa, J., Pohl, M., Pontius, J., Porter, F.S., Pottschmidt, K., Ramsey, B., Reynolds, C., Russell, H., Safi-Harb, S., Saito, S., Sakai, K., Sakai, S.-I., Sameshima, H., Sasaki, T., Sato, G., Sato, K., Sato, R., Sato, Y., Sawada, M., Schartel, N., Serlemitsos, P.J., Seta, H., Shibano, Y., Shida, M., Shidatsu, M., Shimada, T., Shinozaki, K., Shirron, P., Simionescu, A., Simmons, C., Smith, R.K., Sneiderman, G., Soong, Y., Stawarz, ?., Sugawara, Y., Sugita, S., Sugita, H., Szymkowiak, A., Tajima, H., Takahashi, H., Shin{'}ichiro, T., Takei, Y., Tamagawa, T., Tamura, T., Tamura, K., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Ueno, S., Shin{'}ichiro, U., Megan Urry, C., Ursino, E., De Vries, C.P., Wada, A., Watanabe, S., Watanabe, T., Werner, N., Wik, D.R., Wilkins, D.R., Williams, B.J., Yamada, S., Yamada, T., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Yoshida, A., Yuasa, T., Zhuravleva, I., Zoghbi, A.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(2) 2018年  査読有り
  • Eckart, M.E., Adams, J.S., Boyce, K.R., Brown, G.V., Chiao, M.P., Fujimoto, R., Haas, D., Den Herder, J.-W., Hoshino, A., Ishisaki, Y., Kilbourne, C.A., Kitamoto, S., Leutenegger, M.A., McCammon, D., Mitsuda, K., Porter, F.S., Sato, K., Sawada, M., Seta, H., Sneiderman, G.A., Szymkowiak, A.E., Takei, Y., Tashiro, M.S., Tsujimoto, M., De Vries, C.P., Watanabe, T., Yamada, S., Yamasaki, N.Y.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(2) 2018年  査読有り
  • Kilbourne, C.A., Adams, J.S., Arsenovic, P., Ayers, T., Chiao, M.P., Dipirro, M.J., Eckart, M.E., Fujimoto, R., Kazeva, J.D., Kripps, K.L., Lairson, B.M., Leutenegger, M.A., Lopez, H.C., McCammon, D., McGuinness, D.S., Mitsuda, K., Moseley, S.J., Porter, F.S., Schweiss, A.N., Takei, Y., Thorpe, R.S., Watanabe, T., Yamasaki, N.Y., Yoshida, S.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(1) 2018年  査読有り
  • Shirron, P.J., Kimball, M.O., James, B.L., Muench, T., Canavan, E.R., Dipirro, M.J., Bialas, T.A., Sneiderman, G.A., Boyce, K.R., Kilbourne, C.A., Porter, F.S., Fujimoto, R., Takei, Y., Yoshida, S., Mitsuda, K.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(2) 2018年  
  • Sneiderman, G.A., Shirron, P.J., Fujimoto, R., Bialas, T.G., Boyce, K.R., Chiao, M.P., DiPirro, M.J., Eckart, M.E., Hartz, L., Ishisaki, Y., Kilbourne, C.A., Masters, C., McCammon, D., Mitsuda, K., Noda, H., Porter, F.S., Szymkowiak, A.E., Takei, Y., Tsujimoto, M., Yoshida, S.
    Journal of Astronomical Telescopes, Instruments, and Systems 4(2) 2018年  
  • Hishi, U., Fujimoto, R., Kotake, M., Ito, H., Tanaka, K., Kai, Y., Kinoshita, Y.
    Publications of the Astronomical Society of Japan 69(3) 2017年  
  • AHARONIAN Felix, CHERNYAKOVA Maria, AHARONIAN Felix, AHARONIAN Felix, AKAMATSU Hiroki, COSTANTINI Elisa, DE PLAA Jelle, DEN HERDER Jan-Willem, GIUSTINI Margherita, GU Liyi, KAASTRA Jelle, MEHDIPOUR Missagh, DE VRIES Cor P., AKIMOTO Fumie, TAJIMA Hiroyasu, YAMAOKA Kazutaka, ALLEN Steven W., BLANDFORD Roger, MADEJSKI Greg, ODAKA Hirokazu, WILKINS Dan R., ZHURAVLEVA Irina, ALLEN Steven W., BLANDFORD Roger, ANGELINI Lorella, CHIAO Meng P., ECKART Megan E., HAMAGUCHI Kenji, HARRUS Ilana M., HORNSCHEMEIER Ann, KALLMAN Tim, KELLEY Richard L., KILBOURNE Caroline A., LEUTENEGGER Maurice A., LOEWENSTEIN Michael, MARKEVITCH Maxim, MORI Hideyuki, MUKAI Koji, OKAJIMA Takashi, PETRE Robert, PORTER Frederick S., POTTSCHMIDT Katja, SAKAI Kazuhiro, SERLEMITSOS Peter J., SOONG Yang, TOMBESI Francesco, WIK Daniel R., YAMAGUCHI Hiroya, YAQOOB Tahir, AUDARD Marc, FERRIGNO Carlo, PALTANI Stephane, AWAKI Hisamitsu, TERASHIMA Yuichi, AXELSSON Magnus, BAMBA Aya, KAMAE Tsuneyoshi, NAKAZAWA Kazuhiro, BAUTZ Marshall W., BULBUL Esra, MILLER Eric D., BRENNEMAN Laura W., BULBUL Esra, FOSTER Adam R., SMITH Randall K., BROWN Gregory V., CACKETT Edward M., COPPI Paolo S., SZYMKOWIAK Andrew, URRY C. Megan, DONE Chris, DOTANI Tadayasu, EBISAWA Ken, HAYASHI Katsuhiro, IIZUKA Ryo, INOUE Yoshiyuki, ISHIDA Manabu, ISHIKAWA Kumi, IWAI Masachika, KOKUBUN Motohide, KOYAMA Shu, MAEDA Yoshitomo, MITSUDA Kazuhisa, NAKAGAWA Takao, OZAKI Masanobu, SATO Goro, SATO Rie, SIMIONESCU Aurora, SUGAWARA Yasuharu, TAKAHASHI Tadayuki, TAKEI Yoh, TAMURA Takayuki, TANAKA Yasuo, TOMIDA Hiroshi, TSUJIMOTO Masahiro, UEDA Shutaro, WATANABE Shin, YAMASAKI Noriko Y., ENOTO Teruaki, LEE Shiu-Hang, MINESHIGE Shin, UEDA Yoshihiro, EZOE Yuichiro, ICHINOHE Yuto, ISHISAKI Yoshitaka, OHASHI Takaya, SETA Hiromi, YAMADA Shinya, FABIAN Andrew C., PINTO Ciro, FUJIMOTO Ryuichi, YONETOKU Daisuke, FUKAZAWA Yasushi, KITAGUCHI Takao, MIZUNO Tsunefumi, OHNO Masanori, TAKAHASHI Hiromitsu, TANAKA Yasuyuki T., WERNER Norbert, FURUZAWA Akihiro
    Nature (London) 551(7681) 2017年  
  • Kanao, K., Yoshida, S., Miyaoka, M., Tsunematsu, S., Otsuka, K., Hoshika, S., Narasaki, K., Mitsuda, K., Yamasaki, N., Takei, Y., Fujimoto, R., Sato, Y., Okamoto, A., Noda, H., DiPirro, M.J., Shirron, P.J.
    Cryogenics 88 2017年  
  • Peter J. Shirron, Mark O. Kimball, Bryan L. James, Theodore Muench, Edgar R. Canavan, Michael J. DiPirro, Thomas G. Bialas, Gary A. Sneiderman, Kevin R. Boyce, Caroline A. Kilbourne, Frederick S. Porter, Richard L. Kelley, Ryuichi Fujimoto, Yoh Takei, Seiji Yoshida, Kazuhisa Mitsuda
    SPACE TELESCOPES AND INSTRUMENTATION 2016: ULTRAVIOLET TO GAMMA RAY 9905 2016年  査読有り
    The Soft X-ray Spectrometer instrument on the Astro-H observatory contains a 6x6 array of x-ray microcalorimeters, which is cooled to 50 mK by an adiabatic demagnetization refrigerator (ADR). The ADR consists of three stages in order to provide stable detector cooling using either a 1.2 K superfluid helium bath or a 4.5 K Joule-Thomson (JT) cryocooler as its heat sink. When liquid helium is present, two of the ADR's stages are used to single-shot cool the detectors while rejecting heat to the helium. After the helium is depleted, all three stages are used to cool both the helium tank (to about 1.5 K) and the detectors (to 50 mK) using the JT cryocooler as its heat sink. The Astro-H observatory, renamed Hitomi after its successful launch in February 2016, carried approximately 36 liters of helium into orbit. On day 5, the helium had cooled sufficiently (&lt;1.4 K) to allow operation of the ADR. This paper describes the design, operation and on-orbit performance of the ADR.
  • Yoh Takei, Susumu Yasuda, Kosei Ishimura, Naoko Iwata, Atsushi Okamoto, Yoichi Sato, Mina Ogawa, Makoto Sawada, Taro Kawano, Shingo Obara, Chikara Natsukari, Atsushi Wada, Shinya Yamada, Ryuichi Fujimoto, Motohide Kokubun, Noriko Y. Yamasaki, Hiroyuki Sugita, Kenji Minesugi, Yasuo Nakamura, Kazuhisa Mitsuda, Tadayuki Takahashi, Seiji Yoshida, Shoji Tsunematsu, Kenichi Kanao, Katsuhiro Narasaki, Kiyomi Otsuka, Richard L. Kelley, F. Scott Porter, Caroline A. Kilbourne, Meng P. Chiao, Megan E. Eckart, Gary A. Sneiderman, James T. Pontius, Dan McCammon, Paul Wilke, John Basile
    SPACE TELESCOPES AND INSTRUMENTATION 2016: ULTRAVIOLET TO GAMMA RAY 9905 2016年  査読有り
    Soft X-ray Spectrometer (SXS) onboard ASTRO-H (named Hitomi after launch) is a microcalorimeter-type spectrometer, installed in a dewar to be cooled at 50 mK. The energy resolution of the SXS engineering model suffered from micro-vibration from cryocoolers mounted on the dewar. This is mitigated for the flight model by introducing vibration isolation systems between the cryocoolers and the dewar. The detector performance of the flight model was verified before launch of the spacecraft in both ambient condition and thermal-vac condition, showing no detectable degradation in energy resolution. The in-orbit performance was also consistent with that on ground, indicating that the cryocoolers were not damaged by launch environment. The design and performance of the vibration isolation system along with the mechanism of how the micro-vibration could degrade the cryogenic detector is shown.
  • Eckart, M. E., Boyce, K. R., Brown, G. V., Chiao, M. P., Fujimoto, R., Haas, D., den Herder, J. -W., Ishisaki, Y., Kelley, R. L., Kilbourne, C. A., Leutenegger, M. A., McCammon, D., Mitsuda, K., Porter, F. S., Sawada, M., Sneiderman, G. A., Szymkowiak, A. E., Takei, Y., Tashiro, M., Tsujimoto, M., de Vries, C. P., Watanabe, T., Yamada, S., Yamasaki, N. Y.
    Review of Scientific Instruments 87(11) 2016年  査読有り
  • Hirofumi Noda, Kazuhisa Mitsuda, Atsushi Okamoto, Yuichiro Ezoe, Kumi Ishikawa, Ryuichi Fujimoto, Noriko Yamasaki, Yoh Takei, Takaya Ohashi, Yoshitaka Ishisaki, Ikuyuki Mitsuishi, Seiji Yoshida, Michel DiPirro, Peter Shirron
    SPACE TELESCOPES AND INSTRUMENTATION 2016: ULTRAVIOLET TO GAMMA RAY 9905 99053R 2016年  
    The Soft X-ray Spectrometer (SXS) onboard ASTRO-H (Hitomi) achieved a high energy resolution of similar to 4.9 eV at 6 keV with an X-ray microcalorimeter array cooled to 50 mK. The cooling system utilizes liquid helium, confined in zero-g by means of a porous plug phase separator. For the porous plug to function, the helium temperature must be kept lower than the lambda point of 2.17 K in orbit. To determine the maximum allowable helium temperature at launch, taking into account uncertainties in both the final ground operations and initial operation in orbit, we constructed a thermal mathematical model of the SXS dewar and porous plug vent, and carried out time-series thermal simulations. Based on the results, the maximum allowable helium temperature at launch was set at 1.7 K. We also conducted a transient thermal calculation using the actual temperatures at launch as initial conditions to determine flow and cooling rates on orbit. From this, the equilibrium helium mass flow rate was estimated to be similar to 34-42 mu g/s, and the life time of the helium mode was predicted to be similar to 3.9-4.7 years. This paper describes the thermal model, and presents simulation results and comparisons with temperatures measured in the orbit.
  • Ryuichi Fujimoto, Yoh Takei, Kazuhisa Mitsuda, Noriko Y. Yamasaki, Masahiro Tsujimoto, Shu Koyama, Kumi Ishikawa, Hiroyuki Sugita, Yoichi Sato, Keisuke Shinozaki, Atsushi Okamoto, Shunji Kitamoto, Akio Hoshino, Kosuke Sato, Yuichiro Ezoe, Yoshitaka Ishisaki, Shinya Yamada, Hiromi Seta, Takaya Ohashi, Toru Tamagawa, Hirofumi Noda, Makoto Sawada, Makoto Tashiro, Yoichi Yatsu, Ikuyuki Mitsuishi, Kenichi Kanao, Seiji Yoshida, Mikio Miyaoka, Shoji Tsunematsu, Kiyomi Otsuka, Katsuhiro Narasaki, Michael J. DiPirro, Peter J. Shirron, Gary A. Sneiderman, Caroline A. Kilbourne, F. Scott Porter, Meng P. Chiao, Megan E. Eckart, Richard L. Kelley
    SPACE TELESCOPES AND INSTRUMENTATION 2016: ULTRAVIOLET TO GAMMA RAY 9905 2016年  査読有り
    The Soft X-ray Spectrometer (SXS) is a cryogenic high-resolution X-ray spectrometer onboard the ASTRO-H satellite, that achieves energy resolution better than 7 eV at 6 keV, by operating the detector array at 50 mK using an adiabatic demagnetization refrigerator. The cooling chain from room temperature to the ADR heat sink is composed of 2-stage Stirling cryocoolers, a He-4 Joule-Thomson cryocooler, and superfluid liquid He, and is installed in a dewar. It is designed to achieve a helium lifetime of more than 3 years with a minimum of 30 liters. The satellite was launched on 2016 February 17, and the SXS worked perfectly in orbit, until March 26 when the satellite lost its function. It was demonstrated that the heat load on the He tank was about 0.7 mW, which would have satisfied the lifetime requirement. This paper describes the design, results of ground performance tests, prelaunch operations, and initial operation and performance in orbit of the flight dewar and cryocoolers.
  • Yuichiro Ezoe, ASTRO-H SXS team, Kumi Ishikawa, Ikuyuki Mitsuishi, Takaya Ohashi, Kazuhisa Mitsuda, Ryuichi Fujimoto, Masahide Murakami, Kenichi Kanao, Seiji Yoshida, Shoji Tsunematsu, Michael DiPirro, Peter Shirron
    Proceedings of SPIE - The International Society for Optical Engineering 9905 2016年  査読有り
    Suppression of super fluid helium flow is critical for the Soft X-ray Spectrometer onboard ASTRO-H (Hitomi). In nominal operation, a small helium gas flow of ∼30 μg/s must be safely vented and a super fluid film flow must be sufficiently small &lt 2 μg/s. To achieve a life time of the liquid helium, a porous plug phase separator and a film flow suppression system composed of an orifice, a heat exchanger, and knife edge devices are employed. In this paper, design, on-ground testing results and in-orbit performance of the porous plug and the film flow suppression system are described.
  • 田代 信, 満田 和久, 山崎 典子, 竹井 洋, 辻本 匡弘, 小川 美奈, 小山 志勇, 酒井 和広, 杉田 寛之, 佐藤 洋一, 篠崎 慶亮, 岡本 篤, 藤本 龍一, 大橋 隆哉, 石崎 欣尚, 江副 祐一郎, 山田 真也, 瀬田 裕美, 寺田 幸功, 北本 俊二, 星野 晶夫, 玉川 徹, 石川 久美, 野田 博文, 佐藤 浩介, 太田 直美, 澤田 真理, 三石 郁之, 村上 正秀, 村上 弘志, 伊豫本 直子, Kelley R. L., Kilbourne C. A., Porter F. S., Boyce K. R., Eckart M. E., Chiao M. P., Leutenegger M. A., Brown G. V., McCammon D., Szymkowiak A., Herder J. -W. den, Haas D., Vries C. de, Costantini E., Akamatsu H., Paltani S., ASTRO-H SXSチーム
    日本物理学会講演概要集 71 509-509 2016年  
  • 藤本 龍一, 満田 和久, 山崎 典子, 竹井 洋, 辻本 匡弘, 小川 美奈, 小山 志勇, 石川 久美, 杉田 寛之, 佐藤 洋一, 篠崎 慶亮, 岡本 篤, 大橋 隆哉, 石崎 欣尚, 江副 祐一郎, 山田 真也, 瀬田 裕美, 田代 信, 寺田 幸功, 北本 俊二, 星野 晶夫, 玉川 徹, 佐藤 浩介, 澤田 真理, 野田 博文, 三石 郁之, 村上 弘志, 太田 直美, 伊豫本 直子, 村上 正秀, Kelley R. L., Kilbourne C. A., Porter F. S., Boyce K. R., Sneiderman G. A., DiPirro M. J., Shirron P. J., Bialas T., Eckart M. E., Chiao M. P., Leutenegger M. A., Watanabe T., Sakai K., Brown G. V., McCammon D., Szymkowiak A., Herder J. -W. den, Haas D., Vries C. de, Costantini E., Akamatsu H., Paltani S., 他 ASTRO-H SXS チーム
    日本物理学会講演概要集 71 367-367 2016年  
    <p>2016年2月17日に打ち上げられたASTRO-H (ひとみ) 衛星に搭載された精密X線分光装置 SXS (Soft X-ray Spectrometer) は,40日弱の限られた期間ではあったが,軌道上において正常に動作し,天体のデータも取得できた.SXS の軌道上での性能について報告する.</p>
  • Richard L. Kelley, Hiroki Akamatsu, Phillipp Azzarell, Tom Bialas, Kevin R. Boyce, Gregory V. Brown, Edgar Canavan, Meng P. Chiao, Elisa Costantini, Michael J. DiPirro, Megan E. Eckart, Yuichiro Ezoe, Ryuichi Fujimoto, Daniel Haas, Jan-Willem den Herder, Akio Hoshino, Kumi Ishikawa, Yoshitaka Ishisaki, Naoko Iyomoto, Caroline A. Kilbourne, Mark Kimball, Shunji Kitamoto, Saori Konami, Shu Koyama, Maurice A. Leutenegger, Dan McCammon, Joseph Miko, Kazuhisa Mitsuda, Ikuyuki Mitsuishi, Harvey Moseley, Hiroshi Murakami, Masahide Murakami, Hirofumi Noda, Mina Ogawa, Takaya Ohashi, Atsushi Okamoto, Naomi Ota, Stephane Paltani, F. Scott Porter, Kazuhiro Sakai, Kosuke Sato, Yohichi Sato, Makoto Sawada, Hiromi Seta, Keisuke Shinozaki, Peter J. Shirron, Gary A. Sneiderman, Hiroyuki Sugita, Andrew E. Szymkowiak, Yoh Takei, Toni Tamagawa, Makoto Tashiro, Yukikatsu Terada, Masahiro Tsujimoto, Cor P. de Vries, Shinya Yamada, Noriko Y. Yamasaki, Yoichi Yatsu
    SPACE TELESCOPES AND INSTRUMENTATION 2016: ULTRAVIOLET TO GAMMA RAY 9905 2016年  
    We present the overall design and performance of the Astro-H (Hitomi) Soft X-Ray Spectrometer (SXS). The instrument uses a 36-pixel array of x-ray microcalorimeters at the focus of a grazing-incidence x-ray mirror Soft X-Ray Telescope (SXT) for high-resolution spectroscopy of celestial x-ray sources. The instrument was designed to achieve an energy resolution better than 7 eV over the 0.3-12 keV energy range and operate for more than 3 years in orbit. The actual energy resolution of the instrument is 4-5 eV as demonstrated during extensive ground testing prior to launch and in orbit. The measured mass flow rate of the liquid helium cryogen and initial fill level at launch predict a lifetime of more than 4 years assuming steady mechanical cooler performance. Cryogen-free operation was successfully demonstrated prior to launch. The successful operation of the SXS in orbit, including the first observations of the velocity structure of the Perseus cluster of galaxies, demonstrates the viability and power of this technology as a tool for astrophysics.
  • Masahiro Tsujimoto, Kazuhisa Mitsuda, Richard L. Kelley, Jan-Willem A. den Herder, Hiroki Akamatsu, Thomas G. Bialas, Kevin R. Boyce, Gregory V. Brown, Meng P. Chiao, Elisa Costantini, Cor P. de Vries, Michael J. DiPirro, Megan E. Eckart, Yuichiro Ezoe, Ryuichi Fujimoto, Daniel Haas, Akio Hoshino, Kumi Ishikawa, Yoshitaka Ishisaki, Naoko Iyomoto, Caroline A. Kilbourne, Shunji Kitamoto, Shu Koyama, Maurice A. Leutenegger, Dan McCammon, Ikuyuki Mitsuishi, Hiroshi Murakami, Masahide Murakami, Hirofumi Noda, Mina Ogawa, Naomi Ota, Stephane Paltani, Frederick S. Porter, Kosuke Sato, Yoichi Sato, Makoto Sawada, Hiromi Seta, Keisuke Shinozaki, Peter J. Shirron, Gary A. Sneiderman, Hiroyuki Sugita, Andrew E. Szymkowiak, Yoh Takei, Toru Tamagawa, Makoto S. Tashiro, Yukikatsu Terada, Shinya Yamada, Noriko Y. Yamasaki, Yoichi Yatsu
    SPACE TELESCOPES AND INSTRUMENTATION 2016: ULTRAVIOLET TO GAMMA RAY 9905 2016年  
    We summarize all the in-orbit operations of the Soft X-ray Spectrometer (SXS) onboard the ASTRO-H (Hitomi) satellite. The satellite was launched on 2016/02/17 and the communication with the satellite ceased on 2016/03/26. The SXS was still in the commissioning phase, in which the setups were progressively changed. This article is intended to serve as a reference of the events in the orbit to properly interpret the SXS data taken during its short life time, and as a test case for planning the in-orbit operation for future micro-calorimeter missions.
  • Porter, F.S., Chiao, M.P., Eckart, M.E., Fujimoto, R., Ishisaki, Y., Kelley, R.L., Kilbourne, C.A., Leutenegger, M.A., McCammon, D., Mitsuda, K., Sawada, M., Szymkowiak, A.E., Takei, Y., Tashiro, M., Tsujimoto, M., Watanabe, T., Yamada, S.
    Journal of Low Temperature Physics 184(1-2) 2016年  

MISC

 131
  • 佐藤浩介, 大橋隆哉, 石崎欣尚, 江副祐一郎, 山田真也, 山崎典子, 満田和久, 石田学, 前田良知, 田原譲, 三石郁之, 藤本龍一, 鶴剛, 太田直美, 大里健, 中島真也
    日本天文学会年会講演予稿集 2018 225 2018年8月20日  
  • 江副祐一郎, 石崎欣尚, 藤本龍一, 竹井洋, 石川久美, 安田進, 柳瀬慶一, 山崎典子, 佐藤浩介, 北本俊二, 小山志勇, 野田博文, 吉田誠至, 金尾憲一, 恒松正二, KELLEY R. L., KILBOURNE C. A., DIPIRRO M. J., SHIRRON P.
    日本天文学会年会講演予稿集 2018 2018年  
  • Alle, S.W., Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O.O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., Mccammon, D., Mcnamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Suru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A., Nakaniwa, N.
    Publications of the Astronomical Society of Japan 70(2) 2018年  
    We report a Hitomi observation of IGR J16318-4848, a high-mass X-ray binary<br /> system with an extremely strong absorption of N_H~10^{24} cm^{-2}. Previous<br /> X-ray studies revealed that its spectrum is dominated by strong fluorescence<br /> lines of Fe as well as continuum emission. For physical and geometrical insight<br /> into the nature of the reprocessing material, we utilize the high spectroscopic<br /> resolving power of the X-ray microcalorimeter (the soft X-ray spectrometer;<br /> SXS) and the wide-band sensitivity by the soft and hard X-ray imager (SXI and<br /> HXI) aboard Hitomi. Even though photon counts are limited due to unintended<br /> off-axis pointing, the SXS spectrum resolves Fe K{\alpha_1} and K{\alpha_2}<br /> lines and puts strong constraints on the line centroid and width. The line<br /> width corresponds to the velocity of 160^{+300}_{-70} km s^{-1}. This<br /> represents the most accurate, and smallest, width measurement of this line made<br /> so far from any X-ray binary, much less than the Doppler broadening and shift<br /> expected from speeds which are characteristic of similar systems. Combined with<br /> the K-shell edge energy measured by the SXI and HXI spectra, the ionization<br /> state of Fe is estimated to be in the range of Fe I--IV. Considering the<br /> estimated ionization parameter and the distance between the X-ray source and<br /> the absorber, the density and thickness of the materials are estimated. The<br /> extraordinarily strong absorption and the absence of a Compton shoulder<br /> component is confirmed. These characteristics suggest reprocessing materials<br /> which are distributed in a narrow solid angle or scattering primarily with warm<br /> free electrons or neutral hydrogen.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, L., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A., Uchida, Y.
    Publications of the Astronomical Society of Japan 70(6) 2018年  
    We present the results from the Hitomi Soft Gamma-ray Detector (SGD)<br /> observation of the Crab nebula. The main part of SGD is a Compton camera, which<br /> in addition to being a spectrometer, is capable of measuring polarization of<br /> gamma-ray photons. The Crab nebula is one of the brightest X-ray / gamma-ray<br /> sources on the sky, and, the only source from which polarized X-ray photons<br /> have been detected. SGD observed the Crab nebula during the initial test<br /> observation phase of Hitomi. We performed the data analysis of the SGD<br /> observation, the SGD background estimation and the SGD Monte Carlo simulations,<br /> and, successfully detected polarized gamma-ray emission from the Crab nebula<br /> with only about 5 ks exposure time. The obtained polarization fraction of the<br /> phase-integrated Crab emission (sum of pulsar and nebula emissions) is (22.1<br /> $\pm$ 10.6)% and, the polarization angle is 110.7$^o$ + 13.2 / $-$13.0$^o$ in<br /> the energy range of 60--160 keV (The errors correspond to the 1 sigma<br /> deviation). The confidence level of the polarization detection was 99.3%. The<br /> polarization angle measured by SGD is about one sigma deviation with the<br /> projected spin axis of the pulsar, 124.0$^o$ $\pm$0.1$^o$.
  • Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furukawa, M., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Kato, Y., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A.
    Publications of the Astronomical Society of Japan 70(2) 2018年  
    The present paper investigates the temperature structure of the X-ray<br /> emitting plasma in the core of the Perseus cluster using the 1.8--20.0 keV data<br /> obtained with the Soft X-ray Spectrometer (SXS) onboard the Hitomi Observatory.<br /> A series of four observations were carried out, with a total effective exposure<br /> time of 338 ks and covering a central region $\sim7&#039;$ in diameter. The SXS was<br /> operated with an energy resolution of $\sim$5 eV (full width at half maximum)<br /> at 5.9 keV. Not only fine structures of K-shell lines in He-like ions but also<br /> transitions from higher principal quantum numbers are clearly resolved from Si<br /> through Fe. This enables us to perform temperature diagnostics using the line<br /> ratios of Si, S, Ar, Ca, and Fe, and to provide the first direct measurement of<br /> the excitation temperature and ionization temperature in the Perseus cluster.<br /> The observed spectrum is roughly reproduced by a single temperature thermal<br /> plasma model in collisional ionization equilibrium, but detailed line ratio<br /> diagnostics reveal slight deviations from this approximation. In particular,<br /> the data exhibit an apparent trend of increasing ionization temperature with<br /> increasing atomic mass, as well as small differences between the ionization and<br /> excitation temperatures for Fe, the only element for which both temperatures<br /> can be measured. The best-fit two-temperature models suggest a combination of 3<br /> and 5 keV gas, which is consistent with the idea that the observed small<br /> deviations from a single temperature approximation are due to the effects of<br /> projection of the known radial temperature gradient in the cluster core along<br /> the line of sight. Comparison with the Chandra/ACIS and the XMM-Newton/RGS<br /> results on the other hand suggests that additional lower-temperature components<br /> are present in the ICM but not detectable by Hitomi SXS given its 1.8--20 keV<br /> energy band.

共同研究・競争的資金等の研究課題

 20