Aharonian, F., Akamatsu, H., Akimoto, F., Allen, S.W., Angelini, L., Audard, M., Awaki, H., Axelsson, M., Bamba, A., Bautz, M.W., Blandford, R., Brenneman, L.W., Brown, G.V., Bulbul, E., Cackett, E.M., Chernyakova, M., Chiao, M.P., Coppi, P.S., Costantini, E., De Plaa, J., De Vries, C.P., Den Herder, J.-W., Done, C., Dotani, T., Ebisawa, K., Eckart, M.E., Enoto, T., Ezoe, Y., Fabian, A.C., Ferrigno, C., Foster, A.R., Fujimoto, R., Fukazawa, Y., Furukawa, M., Furuzawa, A., Galeazzi, M., Gallo, L.C., Gandhi, P., Giustini, M., Goldwurm, A., Gu, L., Guainazzi, M., Haba, Y., Hagino, K., Hamaguchi, K., Harrus, I.M., Hatsukade, I., Hayashi, K., Hayashi, T., Hayashida, K., Hiraga, J.S., Hornschemeier, A., Hoshino, A., Hughes, J.P., Ichinohe, Y., Iizuka, R., Inoue, H., Inoue, Y., Ishida, M., Ishikawa, K., Ishisaki, Y., Iwai, M., Kaastra, J., Kallman, T., Kamae, T., Kataoka, J., Kato, Y., Katsuda, S., Kawai, N., Kelley, R.L., Kilbourne, C.A., Kitaguchi, T., Kitamoto, S., Kitayama, T., Kohmura, T., Kokubun, M., Koyama, K., Koyama, S., Kretschmar, P., Krimm, H.A., Kubota, A., Kunieda, H., Laurent, P., Lee, S.-H., Leutenegger, M.A., Limousin, O., Loewenstein, M., Long, K.S., Lumb, D., Madejski, G., Maeda, Y., Maier, D., Makishima, K., Markevitch, M., Matsumoto, H., Matsushita, K., McCammon, D., McNamara, B.R., Mehdipour, M., Miller, E.D., Miller, J.M., Mineshige, S., Mitsuda, K., Mitsuishi, I., Miyazawa, T., Mizuno, T., Mori, H., Mori, K., Mukai, K., Murakami, H., Mushotzky, R.F., Nakagawa, T., Nakajima, H., Nakamori, T., Nakashima, S., Nakazawa, K., Nobukawa, K.K., Nobukawa, M., Noda, H., Odaka, H., Ohashi, T., Ohno, M., Okajima, T., Ota, N., Ozaki, M., Paerels, F., Paltani, S., Petre, R., Pinto, C., Porter, F.S., Pottschmidt, K., Reynolds, C.S., Safi-Harb, S., Saito, S., Sakai, K., Sasaki, T., Sato, G., Sato, K., Sato, R., Sawada, M., Schartel, N., Serlemtsos, P.J., Seta, H., Shidatsu, M., Simionescu, A., Smith, R.K., Soong, Y., Stawarz, Ł., Sugawara, Y., Sugita, S., Szymkowiak, A., Tajima, H., Takahashi, H., Takahashi, T., Takeda, S., Takei, Y., Tamagawa, T., Tamura, T., Tanaka, T., Tanaka, Y., Tanaka, Y.T., Tashiro, M.S., Tawara, Y., Terada, Y., Terashima, Y., Tombesi, F., Tomida, H., Tsuboi, Y., Tsujimoto, M., Tsunemi, H., Tsuru, T.G., Uchida, H., Uchiyama, H., Uchiyama, Y., Ueda, S., Ueda, Y., Uno, S., Urry, C.M., Ursino, E., Watanabe, S., Werner, N., Wilkins, D.R., Williams, B.J., Yamada, S., Yamaguchi, H., Yamaoka, K., Yamasaki, N.Y., Yamauchi, M., Yamauchi, S., Yaqoob, T., Yatsu, Y., Yonetoku, D., Zhuravleva, I., Zoghbi, A.
Publications of the Astronomical Society of Japan 70(2) 2018年
The present paper investigates the temperature structure of the X-ray<br />
emitting plasma in the core of the Perseus cluster using the 1.8--20.0 keV data<br />
obtained with the Soft X-ray Spectrometer (SXS) onboard the Hitomi Observatory.<br />
A series of four observations were carried out, with a total effective exposure<br />
time of 338 ks and covering a central region $\sim7'$ in diameter. The SXS was<br />
operated with an energy resolution of $\sim$5 eV (full width at half maximum)<br />
at 5.9 keV. Not only fine structures of K-shell lines in He-like ions but also<br />
transitions from higher principal quantum numbers are clearly resolved from Si<br />
through Fe. This enables us to perform temperature diagnostics using the line<br />
ratios of Si, S, Ar, Ca, and Fe, and to provide the first direct measurement of<br />
the excitation temperature and ionization temperature in the Perseus cluster.<br />
The observed spectrum is roughly reproduced by a single temperature thermal<br />
plasma model in collisional ionization equilibrium, but detailed line ratio<br />
diagnostics reveal slight deviations from this approximation. In particular,<br />
the data exhibit an apparent trend of increasing ionization temperature with<br />
increasing atomic mass, as well as small differences between the ionization and<br />
excitation temperatures for Fe, the only element for which both temperatures<br />
can be measured. The best-fit two-temperature models suggest a combination of 3<br />
and 5 keV gas, which is consistent with the idea that the observed small<br />
deviations from a single temperature approximation are due to the effects of<br />
projection of the known radial temperature gradient in the cluster core along<br />
the line of sight. Comparison with the Chandra/ACIS and the XMM-Newton/RGS<br />
results on the other hand suggests that additional lower-temperature components<br />
are present in the ICM but not detectable by Hitomi SXS given its 1.8--20 keV<br />
energy band.