研究者業績

早川 雅彦

ハヤカワ マサヒコ  (Masahiko HAYAKAWA)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 太陽系科学研究系 助教
東京大学 大学院理学系研究科 地球惑星科学専攻 助教
学位
理学博士(名古屋大学)
理学修士(名古屋大学)

連絡先
hayakawaplaneta.sci.isas.jaxa.jp
J-GLOBAL ID
200901009402364446
researchmap会員ID
1000363026

論文

 63
  • K. Yumoto, E. Tatsumi, T. Kouyama, D. R. Golish, Y. Cho, T. Morota, S. Kameda, H. Sato, B. Rizk, D. N. DellaGiustina, Y. Yokota, H. Suzuki, J. de León, H. Campins, J. Licandro, M. Popescu, J. L. Rizos, R. Honda, M. Yamada, N. Sakatani, C. Honda, M. Matsuoka, M. Hayakawa, H. Sawada, K. Ogawa, Y. Yamamoto, D. S. Lauretta, S. Sugita
    Icarus 420 2024年9月15日  
    Various natural effects gradually alter the surfaces of asteroids exposed to the space environment. These processes are collectively known as space weathering. The influence of space weathering on the observed spectra of C-complex asteroids remains uncertain. This has long hindered our understanding of their composition and evolution through ground-based telescope observations. Proximity observations of (162173) Ryugu by the telescopic Optical Navigation Camera (ONC-T) onboard Hayabusa2 and that of (101955) Bennu by MapCam onboard Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) found opposite spectral trends of space weathering; Ryugu darkened and reddened while Bennu brightened and blued. How the spectra of Ryugu and Bennu evolved relative to each other would place an important constraint for understanding their mutual relationship and differences in their origins and evolutions. In this study, we compared the space weathering trends on Ryugu and Bennu by applying the results of cross calibration between ONC-T and MapCam obtained in our companion paper. We show that the average Bennu surface is brighter by 18.0 ± 1.5% at v band (550 nm) and bluer by 0.18 ± 0.03 μm−1 (in the 480–850 nm spectral slope) than Ryugu. The spectral slopes of surface materials are more uniform on Bennu than on Ryugu at spatial scales larger than ∼1 m, but Bennu is more heterogeneous at scales below ∼1 m. This suggests that lateral mixing of surface materials due to resurfacing processes may have been more efficient on Bennu. The reflectance−spectral slope distributions of craters on Ryugu and Bennu appeared to follow two parallel trend lines with an offset before cross calibration, but they converged to a single straight trend without a bend after cross calibration. We show that the spectra of the freshest craters on Ryugu and Bennu are indistinguishable within the uncertainty of cross calibration. These results suggest that Ryugu and Bennu initially had similar spectra before space weathering and that they evolved in completely opposite directions along the same trend line, subsequently evolving into asteroids with different disk-averaged spectra. These findings further suggest that space weathering likely expanded the spectral slope variation of C-complex asteroids, implying that they may have formed from materials with more uniform spectral slopes.
  • Shota Kikuchi, Kei Shirai, Ko Ishibashi, Koji Wada, Yasuhiro Yokota, Rie Honda, Toshihiko Kadono, Yuri Shimaki, Naoya Sakatani, Kazunori Ogawa, Hirotaka Sawada, Takanao Saiki, Yuya Mimasu, Yuto Takei, Seiji Sugita, Toru Kouyama, Naru Hirata, Satoru Nakazawa, Makoto Yoshikawa, Satoshi Tanaka, Sei-ichiro Watanabe, Yuichi Tsuda, Masahiko Arakawa
    Advances in Space Research 2024年5月  
  • Moe Matsuoka, Ei-ichi Kagawa, Kana Amano, Tomoki Nakamura, Eri Tatsumi, Takahito Osawa, Takahiro Hiroi, Ralph Milliken, Deborah Domingue, Driss Takir, Rosario Brunetto, Antonella Barucci, Kohei Kitazato, Seiji Sugita, Yuri Fujioka, Osamu Sasaki, Shiho Kobayashi, Takahiro Iwata, Tomokatsu Morota, Yasuhiro Yokota, Toru Kouyama, Rie Honda, Shingo Kameda, Yuichiro Cho, Kazuo Yoshioka, Hirotaka Sawada, Masahiko Hayakawa, Naoya Sakatani, Manabu Yamada, Hidehiko Suzuki, Chikatoshi Honda, Kazunori Ogawa, Kei Shirai, Cateline Lantz, Stefano Rubino, Hisayoshi Yurimoto, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei-ichiro Watanabe, Yuichi Tsuda
    Communications Earth & Environment 4(1) 2023年9月27日  査読有り
    Abstract Returned samples from Cb-type asteroid (162173) Ryugu exhibit very dark spectra in visible and near-infrared ranges, generally consistent with the Hayabusa2 observations. A critical difference is that a structural water absorption of hydrous silicates is around twice as deep in the returned samples compared with those of Ryugu’s surface, suggesting Ryugu surface is more dehydrated. Here we use laboratory experiments data to indicate the spectral differences between returned samples and asteroid surface are best explained if Ryugu surface has (1) higher porosity, (2) larger particle size, and (3) more space-weathered condition, with the last being the most effective. On Ryugu, space weathering by micrometeoroid bombardments promoting dehydration seem to be more effective than that by solar-wind implantation. Extremely homogeneous spectra of the Ryugu’s global surface is in contrast with the heterogeneous S-type asteroid (25143) Itokawa’s spectra, which suggests space weathering has proceeded more rapidly on Cb-type asteroids than S-type asteroids.
  • Kohji Tsumura, Shuji Matsuura, Kei Sano, Takahiro Iwata, Hajime Yano, Kohei Kitazato, Kohji Takimoto, Manabu Yamada, Tomokatsu Morota, Toru Kouyama, Masahiko Hayakawa, Yasuhiro Yokota, Eri Tatsumi, Moe Matsuoka, Naoya Sakatani, Rie Honda, Shingo Kameda, Hidehiko Suzuki, Yuichiro Cho, Kazuo Yoshioka, Kazunori Ogawa, Kei Shirai, Hirotaka Sawada, Seiji Sugita
    Earth, Planets and Space 75(1) 2023年8月22日  査読有り
    Abstract Zodiacal light (ZL) is sunlight scattered by interplanetary dust particles (IDPs) at optical wavelengths. The spatial distribution of IDPs in the Solar System may hold an important key to understanding the evolution of the Solar System and material transportation within it. The number density of IDPs can be expressed as $$n(r) \sim r^{-\alpha }$$, and the exponent $$\alpha \sim 1.3$$ was obtained by previous observations from interplanetary space by Helios 1/2 and Pioneer 10/11 in the 1970s and 1980s. However, no direct measurements of $$\alpha $$ based on ZL observations from interplanetary space outside Earth’s orbit have been performed since then. Here, we introduce initial results for the radial profile of the ZL at optical wavelengths observed over the range 0.76$$-$$1.06 au by ONC-T aboard the Hayabusa2# mission in 2021-2022. The ZL brightness we obtained is well reproduced by a model brightness, although there is a small excess of the observed ZL brightness over the model brightness at around 0.9 au. The radial power-law index we obtained is $$\alpha = 1.30 \pm 0.08$$, which is consistent with previous results based on ZL observations. The dominant source of uncertainty arises from the uncertainty in estimating the diffuse Galactic light (DGL). Graphical Abstract
  • Manabu Yamada, Toru Kouyama, Koki Yumoto, Eri Tatsumi, Naofumi Takaki, Yasuhiro Yokota, Tomokatsu Morota, Naoya Sakatani, Masahiko Hayakawa, Moe Matsuoka, Rie Honda, Chikatoshi Honda, Shingo Kameda, Hidehiko Suzuki, Yuichiro Cho, Kazuo Yoshioka, Kazunori Ogawa, Kei Shirai, Hirotaka Sawada, Seiji Sugita
    Earth, Planets and Space 75(1) 2023年3月13日  査読有り
    After delivering its sample capsule to Earth, the Hayabusa2 spacecraft started its extended mission to perform a flyby of asteroid 2001 CC21 in 2026 and rendezvous with asteroid 1998 KY26 in 2031. During the extended mission, the optical navigation camera (ONC) of Hayabusa2 will play an important role in navigation and science observations, but it has suffered from optical deterioration after the spacecraft's surface contact with and sampling of asteroid Ryugu. Furthermore, the sensitivity of the telescopic camera (ONC-T) has continued to decrease for more than a year, posing a serious problem for the extended mission. These are problems that could potentially be encountered by other sample-return missions involving surface contact. In this study, we evaluated the long-term variation of ONC performance over the 6.5 years following the launch in 2014 to predict how it will perform during observations of the two target asteroids in its extended mission (6 and 11 years from the Earth return, respectively). Our results showed several important long-term trends in ONC performance, such as transmission, dark noise level, and hot pixels. During the long cruising period of the extended mission, we plan to observe both zodiacal light and exoplanet transits as additional science targets. The accuracy of these observations is sensitive to background noise level and stray-light contamination, so we conducted new test observations to search for the lowest stray light, which has been found to depend on spacecraft attitude. The results of these analyses and new test observations suggest that the Hayabusa2 ONC will be able to conduct cruising, flyby, and rendezvous observations of asteroids with sufficient accuracy.

MISC

 55

書籍等出版物

 2

講演・口頭発表等

 217

所属学協会

 3

共同研究・競争的資金等の研究課題

 10