研究者業績

岡田 龍太郎

オカダ リョウタロウ  (ryotaro okada)

基本情報

所属
武蔵野大学 データサイエンス学部データサイエンス学科 助教
学位
博士(工学)(2019年3月 筑波大学)

研究者番号
60884583
ORCID ID
 https://orcid.org/0000-0001-8288-1646
J-GLOBAL ID
202001005533478296
researchmap会員ID
R000011303


論文

 36
  • Yuta Ishii, Ayako Sugiyama, Kosuke Fukushima, Ryotaro Okada, Takafumi Nakanishi
    Studies in Computational Intelligence 219-236 2024年5月3日  査読有り
  • Takafumi Nakanishi, Ayako Minematsu, Ryotaro Okada, Osamu Hasegawa, Virach Sornlertlamvanich
    Frontiers in Artificial Intelligence and Applications, Information Modelling and Knowledge Bases XXXV 227-238 2024年1月16日  査読有り
  • Takafumi Nakanishi, Koharu Sano, Keiko Ojima, Tagiru Nakamura, Ryotaro Okada
    International Journal of Smart Computing and Artificial Intelligence 8(1) 1-1 2024年  査読有り
  • Ayako Sugiyama, Ryotaro Okada, Ayako Minematsu, Takafumi Nakanishi
    2023 15th International Congress on Advanced Applied Informatics Winter (IIAI-AAI-Winter) 2023年12月11日  査読有り
  • Rintaro Fukui, Ryotaro Okada, Ayako Minematsu, Takafumi Nakanishi
    2023 15th International Congress on Advanced Applied Informatics Winter (IIAI-AAI-Winter) 2023年12月11日  査読有り
  • Miyu Momozawa, Ryotaro Okada, Ayako Minematsu, Takafumi Nakanishi
    2023 15th International Congress on Advanced Applied Informatics Winter (IIAI-AAI-Winter) 2023年12月11日  査読有り
  • Rikito Ohnishi, Ryotaro Okada, Yuki Murakami, Takafumi Nakanishi, Teru Ozawa, Yutaka Ogasawara, Kazuhiro Ohashi
    2023 15th International Congress on Advanced Applied Informatics Winter (IIAI-AAI-Winter) 2023年12月11日  査読有り
  • Xuan Luo, Sota Kato, Asahi Obata, Budrul Ahsan, Ryotaro Okada, Takafumi Nakanishi
    4th Workshop on Intelligent Cross-Data Analysis and Retrieval 2023年6月12日  査読有り
  • Kazuma Komiya, Ryotaro Okada, Ayako Minematsu, Takafumi Nakanishi
    Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing 2022-Winter 1-16 2023年5月5日  査読有り
  • Rikito Ohnishi, Yuki Murakami, Takafumi Nakanish, Ryotaro Okada, Teru Ozawa, Kosuke Fukushima, Taichi Miyamae, Yutaka Ogasawara, Kei Akiyama, Kazuhiro Ohashi
    Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing 2022-Winter 59-76 2023年5月5日  査読有り
  • Takafumi Nakanishi, Ayako Minematsu, Ryotaro Okada, Osamu Hasegawa, Virach Sornlertlamvanich
    Frontiers in Artificial Intelligence and Applications 2023年1月23日  査読有り
    Through technology, it is essential to seamlessly bridge the divide between diverse speaking communities (including the signer (the sign language speaker) community). In order to realize communication that successfully conveys emotions, it is necessary to recognize not only verbal information but also non-verbal information. In the case of signers, there are two main types of behavior: verbal behavior and emotional behavior. This paper presents a sign language recognition method by similarity measure with emotional expression specific to signers. We focus on recognizing the sign language conveying verbal information itself and on recognizing emotional expression. Our method recognizes sign language by time-series similarity measure on a small amount of model data, and at the same time, recognizes emotion expression specific to signers. Our method extracts time-series features of the body, arms, and hands from sign language videos and recognizes them by measuring the similarity of the time-series features. In addition, it recognizes the emotional expressions specific to signers from the time-series features of their faces.
  • Yuto Noji, Ryotaro Okada, Takafumi Nakanishi
    Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing 31-43 2023年  査読有り
  • Takuma Nitta, Shinpei Hagimoto, Kyosuke Miyamura, Ryotaro Okada, Takafumi Nakanishi
    2022 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT) 2022年11月  査読有り
  • Koharu Sano, Keiko Ojima, Tagiru Nakamura, Ryotaro Okada, Takafumi Nakanishi
    EPiC Series in Computing 81 89-100 2022年9月  査読有り
    In this paper, we present an emotion estimation method using heart rate variability parameters of vital data. Recently, as sensors have become more precise and smaller, it has been possible to obtain users' vital data in real-time quickly. In our method, ECG (electrocardiogram) data are measured beforehand while listening to a story with voice narration that evokes emotions and based on the trends obtained through the measurement, the emotions that have a high correlation with the newly acquired ECG data are estimated to be the emotions expressed in the ECG data. With the implementation of our method, it is possible to estimate the user's emotions based on ECG data. In this paper, we also represent the application of our method to chat icons that see users' emotions in real-time. By realizing this application, users will see the changes in their emotions and control their mental health.
  • Ryuichi Hirano, Ryotaro Okada, Takafumi Nakanishi
    2022 12th International Congress on Advanced Applied Informatics (IIAI-AAI) 2022年7月  査読有り
  • Miyu Iwamoto, Keiko Ojima, Ryotaro Okada, Takafumi Nakanishi
    IIAI-AAI-Winter 245-250 2022年  査読有り
  • Koharu Sano, Keiko Ojima, Ryotaro Okada, Takafumi Nakanishi
    IIAI-AAI-Winter 202-207 2022年  査読有り
  • Yuta Ishii, Takafumi Nakanishi, Ryotaro Okada, Ayako Minematsu
    ICBIR 2022 - 2022 7th International Conference on Business and Industrial Research, Proceedings 192-197 2022年  査読有り
    In general, when a place depicted in a novel exists, users may like to visit the site that appears in the story. There is a need to efficiently visit tourist spots in or around the places depicted in the novel when visiting them. When we realize to retrieve appropriate tourist spots in areas in stories, it is possible to increase the number of new sightseeing opportunities for users. This paper presents a tourist spot recommendation method corresponding to place names appearing in novel contents. Our system recommends some actual tourist spots corresponding to a novel selected by a user. The feature of our proposed method is to recommend tourist spots within the range that users can visit in a day, based on the place names that appear in the novel. We apply this method to realize seamless linking media between the creative world like a novel and the real-world.
  • Takuma Nitta, Shinpei Hagimoto, Ari Yanase, Ryotaro Okada, Virach Sornlertlamvanich, Takafumi Nakanishi
    International Journal of Smart Computing and Artificial Intelligence 6(1) 1-1 2022年  査読有り
  • Aiha Ikegami, Ryotaro Okada, Takafumi Nakanishi
    Studies in Computational Intelligence 1012 SCI 152-173 2022年  査読有り
    In this paper, we present a method for discovering of historical transition in aesthetic notions of waka poetry over by using changes in co-occurrence words. The structure and the words used in waka poetry change as time passes. By analyzing the chronological changes in the structures and words of waka poetry, we can clarify the historical changes in the aesthetic notions of Japanese people. In this paper, we focus on the three major anthologies of Japanese poetry, Manyoshu, Kokin Wakashu and Shin Kokin Wakashu, and on Kago, which is the central elements in Japanese poetry. Kago is a word and expression often used in Japanese poetry. In our method, we derive differences in the frequency of occurrence of Kago categorized according to their meanings in each collection and extract important co-occurrences of Kago as context words. By our method, we clarify the differences in the context words of Kago and show the historical transition of aesthetic notions.
  • Takeru Hakii, Koshi Shimada, Takafumi Nakanishi, Ryotaro Okada, Keigo Matsuda, Ryo Onishi, Keiko Takahashi
    2021 IEEE/ACIS 19th International Conference on Computer and Information Science (ICIS) 22-28 2021年6月23日  査読有り
  • Kyosuke Miyamura, Ryotaro Okada, Takafumi Nakanishi
    2021 IEEE/ACIS 19th International Conference on Computer and Information Science (ICIS) 36-41 2021年6月23日  査読有り
  • Shinpei Hagimoto, Takuma Nitta, Ari Yanase, Takafumi Nakanishi, Ryotaro Okada, Virach Sornlertlamvanich
    Proceedings of 19th IADIS International Conference e-Society 2021 2021年3月  査読有り
  • Takafumi Nakanishi, Ryotaro Okada, Rintaro Nakahodo
    International Journal of Smart Computing and Artificial Intelligence 5(1) 51-66 2021年  
  • Abdullah Iskandar, Takafumi Nakanishi, Achmad Basuki, Ryotaro Okada, Takashi Kitagawa
    2020 International Electronics Symposium (IES) 655-661 2020年9月  査読有り
    In this paper, we present gaze-music transformation realization method by realizing gaze emotion detection system and interconnecting the detection system and an automatic music media creation system. This method automatically creates a music media contents by a detected emotion from human gaze. When it is possible to realize a system that acquires human gaze data from a camera device, detects emotions from the data, and creates media content in response to those emotions, it will contribute to creative activities corresponding to human emotion. Our method connects a gaze emotion detection system and an automatic music creation system by the similarity of words that represent emotions and impressions. It is possible to compare emotions by comparing the emotions expressed by each different vocabulary using the similarity of words.
  • Takafumi Nakanishi, Ryotaro Okada, Rintaro Nakahodo
    2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI) 418-423 2020年9月  査読有り
  • Ryotaro Okada, Takafumi Nakanishi, Akie Kawagoe, Hirofumi Saito, Hiroshi Saito, Masato Shinohara
    2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI) 116-121 2020年9月  査読有り
  • Ryotaro Okada, Takafumi Nakanishi, Yuichi Tanaka, Yutaka Ogasawara, Kazuhiro Ohashi
    New Generation Computing 37(1) 113-137 2019年1月  査読有り
  • Ryotaro Okada, Takafumi Nakanishi, Yuichi Tanaka, Yutaka Ogasawara, Kazuhiro Ohashi
    Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing 721 45-59 2018年  査読有り
    In this paper, we present a dialogue structure analysis method to visualize the transition of topics in a meeting as the one of dialogue process representation. Our method extracts topics in a meeting on time series. In addition, we define an index to assess the importance of the whole meeting in each phase. By this index, we can represent important phases in the meeting. In organizations such as companies, it is important to improve the efficiency of a meeting, because the meeting time occupies a large proportion in business hours. We should analyze contents and flows of remarks in dialogue on meetings in order to improve efficiency of a meeting. Generally, improving the efficiency of a meeting is improving the form of a meeting, such as pre-sharing of documents, keeping time, clarification of roles of members, and appointing a facilitator. Our method provides the one of the visualization for the flow of remarks in dialogue in a meeting. In this paper, we also represent some preliminary experiment by using text data for actual meetings.
  • Takafumi Nakanishi, Ryotaro Okada, Yuichi Tanaka, Yutaka Ogasawara, Kazuhiro Ohashi
    2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI) 351-356 2017年7月  査読有り
  • Ryotaro Okada, Takafumi Nakanishi, Yuichi Tanaka, Yutaka Ogasawara, Kazuhiro Ohashi
    Information Engineering Express 3(4) 115-124 2017年  査読有り
  • Takafumi Nakanishi, Ryotaro Okada, Takashi Kitagawa
    2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS) 1-6 2016年6月  査読有り
  • 岡田龍太郎, 中西崇文, 本間秀典, 北川高嗣
    情報処理学会論文誌 57(5) 1341-1354 2016年5月15日  査読有り
    本稿では,メディアコンテンツを対象とした統計的一般化逆作用素の構成方式を示す.これは,与えられた印象を表す単語とその重みで表される印象メタデータからメディアコンテンツを生成する機構を実現するものである.本方式は,従来,我々が提案してきた手法であるメディアコンテンツから印象を表す言葉をメタデータとして抽出する,メディアコンテンツを対象としたメタデータ自動抽出方式手法の逆演算として構成される.しかしながら,本逆演算においては一般的に,不良設定問題が発生する.この不良設定問題を解決するために,制約条件としてそのメディアの種類に応じた統計情報やそのメディアを対象とした研究成果・理論を用いる.これにより,メディアコンテンツと言葉の間の相互変換を可能とする.さらに,本方式を楽曲メディアコンテンツに適用し,印象語で表現された印象メタデータから楽曲メディアコンテンツを生成するシステムを実装する.これを用いて実験を行い,提案方式が実現されていることを示す.In this paper, we present a construction method of Stochastic generalized inverse operator for media contents. This method realizes automatic media contents creation depending on impression words as an inverse operation of our automatic metadata extraction method which we have proposed. This is an inverse operator which extracts words from media contents. However, this creation mechanism contains ill-posed problems. In order to solve them, we introduce stochastic data about the media and it's studies. Moreover, we construct a mutual conversion between impression words and media contents. Furthermore, we apply our method to music data creation system. We performed verification experiments, and showed the effectiveness of our method.
  • Kyohei Matsumoto, Ryotaro Okada, Takafumi Nakanishi, Takashi Kitagawa
    2015 International Conference on Computational Science and Computational Intelligence (CSCI) 589-594 2015年12月  査読有り
    In this paper, we propose a method of image feature selection for integration of image classification by Bag-of-Keypoints method and efficient search method. Our method is integration of image classification, which provides high-precision classification for various images. Therefore, in order to select a type of image feature in accordance with various purposes, it is necessary to select method easily. In addition, our method integrates various kinds of image feature by Bag-of-Keypoints method. Classification with a combination of some detectors and descriptors is more effective than with single detector and descriptor. To realize combination of some detectors and descriptors, we propose an integrating method. This paper is LATE BREAKING PAPERS for CSCI-ISAI.
  • Ryotaro Okada, Takafumi Nakanishi, Takashi Kitagawa
    2014 IIAI 3rd International Conference on Advanced Applied Informatics 253-258 2014年8月  査読有り
  • 岡田 龍太郎, 芳村 亮, 本間 秀典
    日本データベース学会letters 6(2) 25-28 2007年9月  査読有り

MISC

 66
  • 中村, 太戯留, 岡田, 龍太郎
    Musashino University Smart Intelligence Center 紀要 (5) 33-40 2024年3月31日  
  • 長谷川, 大和, 岡田, 龍太郎, 田丸, 翔太, 朝倉, 大樹
    第86回全国大会講演論文集 2024(1) 447-448 2024年3月1日  
    本論文では,ある年代におけるヒット曲の歌詞がその次代における人々の価値観を反映しているという仮定を置き,歌詞データのポジネガ分析による年別感情データの抽出方式および社会情勢との比較検証方式について示す.本方式では,ヒット曲の歌詞データを感情分析し,年ごとの推移をグラフ化することで,年ごとの歌詞の傾向を可視化する.さらに,年ごとの出来事に歌詞が影響しているのかを調査するため,ニュース記事に対しても感情分析を行い,歌詞の感情との連動性について検証する.この連動性を明らかにすることによって,ヒット曲の歌詞から社会情勢の変化を推察することが可能になる.
  • 宮地, 沙綾, 岡田, 龍太郎, 峰松, 彩子, 中西, 崇文
    第86回全国大会講演論文集 2024(1) 819-820 2024年3月1日  
    本研究では,カラオケ歌唱曲選定のためのユーザの適性を表現する楽曲特徴の検討とその可視化を実現する.一般的に,ユーザが自身の歌唱演奏スキルに合致した楽曲を選定することは容易ではない.歌唱のレパートリーを増やすために, 楽曲の難易度を表す楽曲特徴の検討とその可視化が重要であると考えられる.この可視化を実現することにより,ユーザ自身の難易度に合致した楽曲を推薦することも可能になると考えられる.具体的には,本研究において,歌唱演奏の相対的な難易度は,リズムの複雑度,音程の変化度,音域,およびロングトーンであると定義し,これらの難易度をもとに楽曲メディアコンテンツの可視化を実現する.
  • 渡邊, 紀文, 上地, 泰彰, 田丸, 恵理子, 圓崎, 祐貴, 岡田, 龍太郎, 糸田, 孝太, 岡田, 真穂, 守谷, 元一, 宮田, 真宏
    Musashino University Smart Intelligence Center 紀要 4 73-82 2023年3月31日  
  • 神垣, 千絵, 中西, 崇文, 岡田, 龍太郎, 峰松, 彩子
    第85回全国大会講演論文集 2023(1) 573-574 2023年2月16日  
    本稿では,楽曲メディアコンテンツを対象とした音響特徴による楽曲内セグメンテーションとその可視化手法であるMusiColor Chartについて示す.本方式は,楽曲メディアコンテンツを対象として,それぞれの時間ごとの音響特徴を抽出し,その音響特徴をクラスタリングすることにより,楽曲のセクションを自動抽出することを可能とする.さらに,自動抽出された楽曲のセクションごとに,そのセクションの音響特徴に起因する印象に合致した色彩情報を割り当て,楽曲1曲を複数の色彩情報から成り立つカラーバーとして可視化することで,その楽曲全体の印象の変化を俯瞰的に可視化できる.

講演・口頭発表等

 3