研究者業績

礒川 悌次郎

イソカワ テイジロウ  (Teijiro Isokawa)

基本情報

所属
兵庫県立大学 大学院 工学研究科 電子情報工学専攻 准教授
学位
博士(工学)(姫路工業大学)

J-GLOBAL ID
200901099615439120
researchmap会員ID
1000311122

外部リンク

論文

 208
  • Sihai Yu, Jia Lee, Teijiro Isokawa, Qianfei Mao
    2024年10月21日  査読有り
  • Shuichi Inoue, Sou Nobukawa, Haruhiko Nishimura, Eiji Watanabe, Teijiro Isokawa
    Frontiers in Artificial Intelligence 7 2024年7月16日  
    Introduction The deep echo state network (Deep-ESN) architecture, which comprises a multi-layered reservoir layer, exhibits superior performance compared to conventional echo state networks (ESNs) owing to the divergent layer-specific time-scale responses in the Deep-ESN. Although researchers have attempted to use experimental trial-and-error grid searches and Bayesian optimization methods to adjust the hyperparameters, suitable guidelines for setting hyperparameters to adjust the time scale of the dynamics in each layer from the perspective of dynamical characteristics have not been established. In this context, we hypothesized that evaluating the dependence of the multi-time-scale dynamical response on the leaking rate as a typical hyperparameter of the time scale in each neuron would help to achieve a guideline for optimizing the hyperparameters of the Deep-ESN. Method First, we set several leaking rates for each layer of the Deep-ESN and performed multi-scale entropy (MSCE) analysis to analyze the impact of the leaking rate on the dynamics in each layer. Second, we performed layer-by-layer cross-correlation analysis between adjacent layers to elucidate the structural mechanisms to enhance the performance. Results As a result, an optimum task-specific leaking rate value for producing layer-specific multi-time-scale responses and a queue structure with layer-to-layer signal transmission delays for retaining past applied input enhance the Deep-ESN prediction performance. Discussion These findings can help to establish ideal design guidelines for setting the hyperparameters of Deep-ESNs.
  • Goichi Narita, Teijiro Isokawa, Hikaru Nomura, Hitoshi Kubota, Tomohiro Taniguchi, Naotake Kamiura
    MA7 2024年7月7日  査読有り
  • Sihai Yu, Wenli Xu, Jia Lee, Teijiro Isokawa
    New Generation Computing 2024年6月4日  査読有り最終著者
  • Sihai Yu, Jia Lee, Teijiro Isokawa
    Journal of Membrane Computing 2024年5月6日  査読有り

MISC

 12

書籍等出版物

 6

講演・口頭発表等

 60

共同研究・競争的資金等の研究課題

 20

産業財産権

 8