Prof. Hajime Yano is a space scientist, professor, and project manager of JAXA/ISAS, Japan, who specializes in solar system exploration science and astrobiology, with an emphasis on sample return missions and space experiments.
As an expert in cosmic dust studies and impact physics for over a quarter of the century, his expertise extends to observational, experimental, analytical, and theoretical works of cosmic dust and space debris, as well as planetary protection and planetary defense. In particular, he has specialized in in-situ detection and collection of cosmic dust and ultimately sample return missions from their parent bodies such as Stardust, Hayabusa, and Hayabusa-2.
Hajime has contributed more than 250 refereed papers as a researcher, a co-investigator, or the principal investigator of about 20 past or ongoing space projects from Japan, Europe, and the United States including LDEF, EuReCa, HST, SFU, Nozomi, Stardust, Hayabusa, Leonid-MAC, SSSAT, IKAROS, Tanpopo, BepiColombo, Hayabusa-2, Tanpopo-2, SpaceSkin, EQUULEUS, DESTINY+, Comet Interceptor, and Gateway. Through these projects, he has accomplished a number of pioneering works that led to major scientific discoveries and “game-changing” movements in solar system exploration. Since 2007, Hajime holds and maintains a Project Management Professional (PMP) certification and served as Tanpopo-2 project manager.
In the space shuttle era, Hajime established post-flight analysis procedures of micrometeoroid and orbital debris impact signatures on retrieved spacecraft surfaces. Microscopic analyses of several hundred impacts per spacecraft such as LDEF, EuReCa, and HST revealed their origins and formed a fundamental database for dust environment modeling in near-Earth space. The SFU post-flight analysis formed Japan’s first in-situ measurement database of meteoroids and debris.
In 1998-2002, Hajime and his team became the world’s first to use high-definition video imagery for astronomical research and their airborne observation onboard the Leonid MAC mission, which yielded both the faintest influx and organic and volatile spectroscopy of the Leonid meteor storm. The Leonid MAC mission resulted in a quantum leap of meteor science as a “human mission to comets without going to space, by using the atmosphere as a large dust detector”.
Hajime developed and operated a number of new instruments for cosmic dust detection and collection. The detectors include the Nozomi-MDC and DESTINY+ DDA impact-induced plasma detector/analyzer, the BepiColombo-MDM and Gateway ERSA/LVDM acoustic sensors, and the ALADDIN PVDF detectors onboard SSSAT and IKAROS as well as the CLOTH PVDF integrated within MLI thermal blankets onboard EQUULEUS. All of them are involved in hypervelocity impact calibration experiments and simulations so Hajime has developed stable shotgun techniques for microparticle impacts with two-stage light gas guns at the University of Kent in the U.K., NASA Johnson Space Center in the U.S.A., and ISAS in Japan. ALADDIN onboard the world’s first interplanetary solar sail IKAROS deployed a 0.54 m2 detection area of cosmic dust impacts; it is the largest dedicated dust detector in the history of solar system exploration and has yielded the finest structure of dust distribution ever between the Earth and Venus. Hajime has also collaborated with MIT ISN to upgrade the LIPIT dust accelerator for impact calibrations of space instrumentation. He is now the science lead of the dust impact bumper for JAXA's B1 spacecraft in the Comet Interceptor mission.
Intact capture of meteoroids was attempted by foil stuck or aerogel modules used on LDEF, EuReCa, Stardust, Tanpopo, and Tanpopo-2. Hajime was also involved in the development of an ice-melting dust collection device for Japan’s first Antarctic micrometeorite expedition in 1999. He is now advancing these experiences for future mission concepts like a sample return from Saturn's ring dust and Enceladus’ icy plume as well as impact ejecta from interstellar objects.
Also noted is Hayabusa-1&2’s asteroid surface sampling device that resulted in the world’s first asteroid sample return from Itokawa in 2010 and the second of its kind from Ryugu in 2020. This impact sampling technique that Hajime and his team developed is a robust system suitable for almost any unknown surface conditions of an airless solid body. Upon the sampling attempt on Itokawa by the Hayabusa-1, Hajime and his colleagues discovered evidence of granular migration on such a small body, which revolutionized ideas of their surface activities and created a new research field of “microgravity geology”. As future sample return missions are more inclined to organic and volatile-rich small bodies, he is also contributing in the fields of astrobiology, planetary protection, and microgravity experiments.
As an educator, Hajime has given a number of classes and lectures for planetary science, astronautical engineering, and project management in universities and institutes worldwide. He has supervised dozens of Masters and Ph.D. students as well as domestic interns and international students in the field of solar system science and exploration at ISAS.
In the international academic community, Hajime has served leading positions in organizing numerous scientific meetings in the collaboration with COSPAR, IAA, IAU, ISTS, and space agencies. He was the chair of the inaugural meeting of the International Primitive Body Exploration Working Group (IPEWG) in 2008 and the first Asian vice chair of the COSPAR Planetary Protection Panel (PPP) in 2014-2018. At present, he is the IAA Academician as well as the secretary of the IAA Space Physical Science Commission. Since 2022, he has been serving as the Chair of the COSPAR Scientific Commission-B on "Space Studies of the Earth-Moon System, Planets, and Small Bodies of the Solar System".
The main belt carbonaceous (B/Cb) asteroid 1995 WF2 is named 8906 Yano.