研究者業績

渡辺 伸

ワタナベ シン  (Shin Watanabe)

基本情報

所属
国立研究開発法人宇宙航空研究開発機構 宇宙科学研究所 宇宙物理学研究系 准教授
学位
博士(理学)(2004年3月 東京大学)

研究者番号
60446599
ORCID ID
 https://orcid.org/0000-0003-0441-7404
J-GLOBAL ID
202001021434500706
researchmap会員ID
R000012970

論文

 215
  • Marc Audard, Hisamitsu Awaki, Ralf Ballhausen, Aya Bamba, Ehud Behar, Rozenn Boissay-Malaquin, Laura Brenneman, Gregory V. Brown, Lia Corrales, Elisa Costantini, Renata Cumbee, Maria Diaz Trigo, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan E. Eckart, Dominique Eckert, Teruaki Enoto, Satoshi Eguchi, Yuichiro Ezoe, Adam Foster, Ryuichi Fujimoto, Yutaka Fujita, Yasushi Fukazawa, Kotaro Fukushima, Akihiro Furuzawa, Luigi Gallo, Javier A. García, Liyi Gu, Matteo Guainazzi, Kouichi Hagino, Kenji Hamaguchi, Isamu Hatsukade, Katsuhiro Hayashi, Takayuki Hayashi, Natalie Hell, Edmund Hodges-Kluck, Ann Hornschemeier, Yuto Ichinohe, Manabu Ishida, Kumi Ishikawa, Yoshitaka Ishisaki, Jelle Kaastra, Timothy Kallman, Erin Kara, Satoru Katsuda, Yoshiaki Kanemaru, Richard Kelley, Caroline Kilbourne, Shunji Kitamoto, Shogo Kobayashi, Takayoshi Kohmura, Aya Kubota, Maurice Leutenegger, Michael Loewenstein, Yoshitomo Maeda, Maxim Markevitch, Hironori Matsumoto, Kyoko Matsushita, Dan McCammon, Brian McNamara, François Mernier, Eric D. Miller, Jon M. Miller, Ikuyuki Mitsuishi, Misaki Mizumoto, Tsunefumi Mizuno, Koji Mori, Koji Mukai, Hiroshi Murakami, Richard Mushotzky, Hiroshi Nakajima, Kazuhiro Nakazawa, Jan-Uwe Ness, Kumiko Nobukawa, Masayoshi Nobukawa, Hirofumi Noda, Hirokazu Odaka, Shoji Ogawa, Anna Ogorzalek, Takashi Okajima, Naomi Ota, Stephane Paltani, Robert Petre, Paul Plucinsky, Frederick S. Porter, Katja Pottschmidt, Kosuke Sato, Toshiki Sato, Makoto Sawada, Hiromi Seta, Megumi Shidatsu, Aurora Simionescu, Randall Smith, Hiromasa Suzuki, Andrew Szymkowiak, Hiromitsu Takahashi, Mai Takeo, Toru Tamagawa, Keisuke Tamura, Takaaki Tanaka, Atsushi Tanimoto, Makoto Tashiro, Yukikatsu Terada, Yuichi Terashima, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Tsuru, Hiroyuki Uchida, Nagomi Uchida, Yuusuke Uchida, Hideki Uchiyama, Yoshihiro Ueda, Shinichiro Uno, Jacco Vink, Shin Watanabe, Brian J. Williams, Satoshi Yamada, Shinya Yamada, Hiroya Yamaguchi, Kazutaka Yamaoka, Noriko Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Tahir Yaqoob, Tomokage Yoneyama, Tessei Yoshida, Mihoko Yukita, Irina Zhuravleva, Xin Xiang, Takeo Minezaki, Margaret Buhariwalla, Dimitra Gerolymatou, Scott Hagen
    The Astrophysical Journal Letters 973(1) L25-L25 2024年9月  査読有り
    Abstract We present an analysis of the first two XRISM/Resolve spectra of the well-known Seyfert-1.5 active galactic nucleus (AGN) in NGC 4151, obtained in 2023 December. Our work focuses on the nature of the narrow Fe K α emission line at 6.4 keV, the strongest and most common X-ray line observed in AGN. The total line is found to consist of three components. Even the narrowest component of the line is resolved with evident Fe K α,1 (6.404 keV) and K α,2 (6.391 keV) contributions in a 2:1 flux ratio, fully consistent with neutral gas with negligible bulk velocity. Subject to the limitations of our models, the narrowest and intermediate-width components are consistent with emission from optically thin gas, suggesting that they arise in a disk atmosphere and/or wind. Modeling the three line components in terms of Keplerian broadening, they are readily associated with (1) the inner wall of the “torus,” (2) the innermost optical “broad-line region” (or “X-ray BLR”), and (3) a region with a radius of r ≃ 100 GM/c 2 that may signal a warp in the accretion disk. Viable alternative explanations of the broadest component include a fast-wind component and/or scattering; however, we find evidence of variability in the narrow Fe K α line complex on timescales consistent with small radii. The best-fit models are statistically superior to simple Voigt functions, but when fit with Voigt profiles the time-averaged lines are consistent with a projected velocity broadening of FWHM . Overall, the resolution and sensitivity of XRISM show that the narrow Fe K line in AGN is an effective probe of all key parts of the accretion flow, as it is currently understood. We discuss the implications of these findings for our understanding of AGN accretion, future studies with XRISM, and X-ray-based black hole mass measurements.
  • Yoshiaki Kanemaru, Ryo Iizuka, Yoshitomo Maeda, Takashi Okajima, Takayuki Hayashi, Kazuhiro Kiyokane, Yuto Nihei, Takashi Kominato, Manabu Ishida, Chikara Natsukari, Shin Watanabe, Kosuke Sato, Yukikatsu Terada, Katsuhiro Hayashi, Chris Baluta, Tessei Yoshida, Akio Hoshino, Shoji Ogawa, Kotaro Fukushima, Hiromitsu Takahashi, Masayoshi Nobukawa, Tsunefumi Mizuno, Kazuhiro Nakazawa, Shin'ichiro Uno, Ken Ebisawa, Satoshi Eguchi, Satoru Katsuda, Aya Kubota, Naomi Ota, Megumi Shidatsu, Atsushi Tanimoto, Yuichi Terashima, Yohko Tsuboi, Yuusuke Uchida, Hideki Uchiyama, Shigeo Yamauchi, Yoneyama Tomokage, Satoshi Yamada, Nagomi Uchida, Rie Sato, Matt Holland, Michael Loewenstein, Eric D. Miller, Tahir Yaqoob, Robert S. Hill, Trisha F. Doyle, Efrain Perez-Solis, Morgan D. Waddy, Mark Mekosh, Joseph B. Fox, Makoto S. Tashiro, Kenichi Toda, Hironori Maejima
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 224-224 2024年8月21日  
  • Megumi Shidatsu, Yukikatsu Terada, Takashi Kominato, So Kato, Ryohei Sato, Minami Sakama, Takumi Shioiri, Yugo Motogami, Yuki Niida, Toshihiro Takagi, Chikara Natsukari, Makoto S. Tashiro, Kenichi Toda, Hironori Maejima, Shin Watanabe, Ryo Iizuka, Rie Sato, Chris Baluta, Katsuhiro Hayashi, Tessei Yoshida, Shoji Ogawa, Yoshiaki Kanemaru, Kotaro Fukushima, Akio Hoshino, Hiromitsu Takahashi, Masayoshi Nobukawa, Tsunefumi Mizuno, Kazuhiro Nakazawa, Shin'ichiro Uno, Ken Ebisawa, Satoshi Eguchi, Satoru Katsuda, Aya Kubota, Naomi Ota, Atsushi Tanimoto, Yuichi Terashima, Yohko Tsuboi, Yuusuke Uchida, Hideki Uchiyama, Shigeo Yamauchi, Tomokage Yoneyama, Satoshi Yamada, Nagomi Uchida, Matt Holland, Michael Loewenstein, Eric D. Miller, Tahir Yaqoob, Robert S. Hill, Trisha F. Doyle, Efrain Perez-Solis, Morgan D. Waddy, Mark Mekosh, Joseph B. Fox
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 235-235 2024年8月21日  
  • Kazuhiro Nakazawa, Teruaki Enoto, Wataru B. Iwakiri, Megumi Shidatsu, Hiromitsu Takahashi, Takashi Okajima, Manabu Ishida, Hiromasa Suzuku, Hiroya Yamaguchi, Shin Watanabe, Mariko Kimura, Hiroshi Nakajima, Takaaki Tanaka, Hiroyuki Uchida, Yoshihiro Ueda, Takeshi G. Tsuru, Kosuke Namekata, Koji Mori, Masayoshi Nobukawa, Hironori Matsumoto, Hiroki Akamatsu, Taiki Kawamuro, Satoshi Yamada, Yukikatsu Terada, Yoichi Yatsu, Hirofumi Noda
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 92-92 2024年8月21日  
  • Makoto S. Tashiro, Shin Watanabe, Hironori Maejima, Kenichi Toda, Kyoko Matsushita, Hiroya Yamaguchi, Richard L. Kelley, Lillian S. Reichenthal, Leslie S. Hartz, Robert Petre, Brian J. Williams, Matteo Guainazzi, Andrea Santovincenzo, Elisa Costantini, Yoh Takei, Yoshitaka Ishisaki, Ryuichi Fujimoto, Joy Henegar-Leon, Gary Sneiderman, Hiroshi Tomida, Koji Mori, Hiroshi Nakajima, Yukikatsu Terada, Matt Holland, Micheal Loewenstein, Tomothey Kallman, Jelle Kaastra, Eric Miller, Makoto Sawada, Chris Done, Teruaki Enoto, Aya Bamba, Paul Plucinsky, Yoshitaka Ueda, Erin Kara, Irina Zhuravleva, Yutaka Fujita, Jose Antonio Quero, Yoshitaka Arai, Marc Audard, Hisamitsu Awaki, Chris Baluta, Nobutaka Bando, Ehud Behar, Thomas Bialas, Rozenn Boissay-Malaquin, Laura Brenneman, Gregory V. Brown, Meng Chiao, Lia Corrales, Renata Cumbee, Cor de Vries, Jan-Willem den Herder, Maria Diaz-Trigo, Michael DiPirro, Tadayasu Dotani, Jacobo Ebrero Carrero, Ken Ebisawa, Megan Eckart, Dominique Eckart, Satoshi Eguchi, Yuichiro Ezoe, Carlo Ferrgno, Adam Foster, Yasushi Fukazawa, Kotaro Fukushima, Akihiro Furuzawa, Luigi Gallo, Nathalie Gorter, Martin Grim, Liyi Gu, Koichi Hagino, Kenji Hamaguchi, Isamu Hatsukade, Katsuhiro Hayashi, Takayuki Hayashi, Natalie Hell, Edmund Hodges-Kluck, Takafumi Horiuchi, Ann Hornschemeier, Akio Hoshino, Yuto Ichinohe, Chisato Ikuta, Ryo Iizuka, Daiki Ishi, Manabu Ishida, Naoki Ishihama, Kumi Ishikawa, Kosei Ishimura, Tess Jaffe, Satoru Katsuda, Yoshiaki Kanemaru, Steven Kenyon, Caroline Kilbourne, Mark Kimball, Shunji Kitamoto, Shogo Kobayashi, Akihide Kobayashi, Takayoshi Kohmura, Aya Kubota, Maurice Leutenegger, Muzi Li, Yoshitomo Maeda, Maxim Markevitch, Hironori Matsumoto, Keiichi Matsuzaki, Dan McCammon, Brian McLaughlin, Brian McNamara, Josegh Miko, Jon Miller, Kenji Minesugi, Shinji Mitani, Ikuyuki Mitsuishi, Misaki Mizumoto, Tsunefumi Mizuno, Koji Mukai, Hiroshi Murakami, Richard Mushotzky, Kazuhiro Nakazawa, Chikara Natsukari, Jan-Uwe Ness, Kenichiro Nigo, Mari Nishiyama, Kumiko Nobukawa, Masayoshi Nobukawa, Hirofumi Noda, Hirokazu Odaka, Mina Ogawa, Shoji Ogawa, Takashi Okajima, Atsushi Okamoto, Naomi Ota, Masanobu Ozaki, Stephane Paltani, F. Scott Porter, Katja Pottschmidt, Takahiro Sasaki, Kosuke Sato, Rie Sato, Toshiki Sato, Yoichi Sato, Hiromi Seta, Maki Shida, Megumi Shidatsu, Shuhei Shigeto, Russel Shipman, Keisuke Shinozaki, Peter Shirron, Aurora Simionescu, Randall Smith, Young Soong, Hiromasa Suzuki, Andy Szymkowiak, Hiromitsu Takahashi, Mai Takeo, Toru Tamagawa, Keisuke Tamura, Takaaki Tanaka, Atsushi Tanimoto, Yoichi Terashima, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Tsuru, Hiroyuki Uchida, Nagomi Ucghida, Yuusuke Uchida, Hideki Uchiyama, Shinichiro Uno, Erik Van der Meer, Jacco Vink, Michael Wittheof, Rob Wolf, Satoshi Yamada, Shinya Yamada, Kazutaka Yamaoka, Noriko Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Keiichi Yamagase, Tahir Yaqoob, Susumu Yasuda, Tomokage Yoneyama, Tessei Yoshida
    Space Telescopes and Instrumentation 2024: Ultraviolet to Gamma Ray 52-52 2024年8月21日  
  • S. Go, Y. Tsuzuki, H. Yoneda, Y. Ichikawa, T. Ikeda, N. Imai, K. Imamura, M. Niikura, D. Nishimura, R. Mizuno, S. Takeda, H. Ueno, S. Watanabe, T. Y. Saito, S. Shimoura, S. Sugawara, A. Takamine, T. Takahashi
    Scientific Reports 14(1) 2024年2月9日  査読有り
    Abstract To detect and track structural changes in atomic nuclei, the systematic study of nuclear levels with firm spin-parity assignments is important. While linear polarization measurements have been applied to determine the electromagnetic character of gamma-ray transitions, the applicable range is strongly limited due to the low efficiency of the detection system. The multi-layer Cadmium-Telluride (CdTe) Compton camera can be a state-of-the-art gamma-ray polarimeter for nuclear spectroscopy with the high position sensitivity and the detection efficiency. We demonstrated the capability to operate this detector as a reliable gamma-ray polarimeter by using polarized 847-keV gamma rays produced by the $$^{56}\textrm{Fe}$$($${ p},{ p'}\gamma $$) reaction. By combining the experimental data and simulated calculations, the modulation curve for the gamma ray was successfully obtained. A remarkably high polarization sensitivity was achieved, compatible with a reasonable detection efficiency. Based on the obtained results, a possible future gamma-ray polarimetery is discussed.
  • Takahiro Minami, Miho Katsuragawa, Shunsaku Nagasawa, Shin’ichiro Takeda, Shin Watanabe, Yutaka Tsuzuki, Tadayuki Takahashi
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1059 169024-169024 2024年2月  査読有り
  • Kazuhiko Ninomiya, Takahito Osawa, Kentaro Terada, Taiga Wada, Shunsaku Nagasawa, I. Haun Chiu, Tomoki Nakamura, Tadayuki Takahashi, Yasuhiro Miyake, M. Kenya Kubo, Soshi Takeshita, Akihiro Taniguchi, Izumi Umegaki, Shin Watanabe, Toshiyuki Azuma, Miho Katsuragawa, Takahiro Minami, Kazumi Mizumoto, Koichiro Shimomura, Shin'ichiro Takeda, Tomoyo Morita, Mizuha Kikuiri, Kana Amano, Eiichi Kagawa, Yoshihiro Furukawa, Hisayoshi Yurimoto, Takaaki Noguchi, Ryuji Okazaki, Hikaru Yabuta, Hiroshi Naraoka, Kanako Sakamoto, Shogo Tachibana, Toru Yada, Masahiro Nishimura, Aiko Nakato, Akiko Miyazaki, Kasumi Yogata, Masanao Abe, Tatsuaki Okada, Tomohiro Usui, Makoto Yoshikawa, Takanao Saiki, Satoshi Tanaka, Fuyuto Terui, Satoru Nakazawa, Sei ichiro Watanabe, Yuichi Tsuda
    Meteoritics and Planetary Science 2024年  査読有り
    Samples from asteroid Ryugu, brought back by asteroid explorer Hayabusa2, are important for investigating the origin and evolution of the solar system. Here, we report the elemental compositions of a 123-mg Ryugu sample determined with a nondestructive muon elemental analysis method. This method is a powerful tool for determining bulk chemical composition, including light elements such as C, N, and O. From the muonic x-ray spectra with three carbonaceous chondrites, the relationship between the elemental composition and muonic x-ray intensity was determined for each element. Calibration curves showed linearity, and the elemental composition of Ryugu was quantitatively determined. The results reflect the average bulk elemental composition of asteroid Ryugu owing to the large amount of samples. Ryugu has an elemental composition similar to that of Orgueil (CI1) and should be classified as CI1. However, the O/Si ratio of Ryugu is 25% lower than that of Orgueil, indicating that Orgueil may have been seriously contaminated by terrestrial materials after its fall to Earth. These results indicate that the Ryugu sample is more representative than the CI chondrites as a solid material of the solar system.
  • Shin’ichiro Takeda, Tadashi Orita, Atsushi Yagishita, Miho Katsuragawa, Goro Yabu, Ryota Tomaru, Fumiki Moriyama, Hirotaka Sugawara, Shin Watanabe, Hiroshi Mizuma, Yousuke Kanayama, Kazunobu Ohnuki, Hirofumi Fujii, Lars R. Furenlid, Tadayuki Takahashi
    IEEE Transactions on Radiation and Plasma Medical Sciences 7(8) 860-870 2023年11月  査読有り
  • Shunsaku Nagasawa, Takahiro Minami, Shin Watanabe, Tadayuki Takahashi
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 1050 168175-168175 2023年5月  査読有り
  • T. Okumura, T. Azuma, D. A. Bennett, I. Chiu, W. B. Doriese, M. S. Durkin, J. W. Fowler, J. D. Gard, T. Hashimoto, R. Hayakawa, G. C. Hilton, Y. Ichinohe, P. Indelicato, T. Isobe, S. Kanda, M. Katsuragawa, N. Kawamura, Y. Kino, K. Mine, Y. Miyake, K. M. Morgan, K. Ninomiya, H. Noda, G. C. O’Neil, S. Okada, K. Okutsu, N. Paul, C. D. Reintsema, D. R. Schmidt, K. Shimomura, P. Strasser, H. Suda, D. S. Swetz, T. Takahashi, S. Takeda, S. Takeshita, M. Tampo, H. Tatsuno, Y. Ueno, J. N. Ullom, S. Watanabe, S. Yamada
    Physical Review Letters 130(17) 2023年4月27日  査読有り
  • Nobuyuki Nakamura, Naoki Numadate, Simpei Oishi, Xiao-Min Tong, Xiang Gao, Daiji Kato, Hirokazu Odaka, Tadayuki Takahashi, Yutaka Tsuzuki, Yuusuke Uchida, Hirofumi Watanabe, Shin Watanabe, Hiroki Yoneda
    Physical Review Letters 130(11) 2023年3月15日  査読有り
  • Takahito Osawa, Shunsaku Nagasawa, Kazuhiko Ninomiya, Tadayuki Takahashi, Tomoki Nakamura, Taiga Wada, Akihiro Taniguchi, Izumi Umegaki, Kenya M. Kubo, Kentaro Terada, I-Huan Chiu, Shinichiro Takeda, Miho Katsuragawa, Takahiro Minami, Shin Watanabe, Toshiyuki Azuma, Kazumi Mizumoto, Go Yoshida, Soshi Takeshita, Motonobu Tampo, Koichiro Shimomura, Yasuhiro Miyake
    ACS Earth and Space Chemistry 7(4) 699-711 2023年3月9日  査読有り
  • T. Fukuchi, S. Takeda, M. Katsuragawa, G. Yabu, S. Watanabe, T. Takahashi, Y. Watanabe
    Journal of Instrumentation 18(01) P01030-P01030 2023年1月1日  査読有り
    Abstract We have developed a γ-ray computed tomography system using a CdTe double-sided strip detector. Owing to a 250 μm fine strip pitch and high energy resolution with photon-counting capability, the system provides highly accurate images, with which the materials and their distributions inside the target can be determined according to the photon transmittances. We evaluated the key performance of the system, conducting transmission measurements for Al, Cu, and Pb plates and also for Al, Fe, Cu, and Pb rod-phantoms, both using X-rays (∼30 keV) and γ-rays (∼80 keV) from a 133Ba source. The measured transmittances agreed well with the calculated values from simulations. We successfully reconstructed the three-dimensional structure of the rod-phantom and distinguished the elements inside the phantom. Compared with the simulated photon transmittances, we found that material identification based on tomographic images obtained with the system is efficient as long as the target object does not contain thick high-Z elements.
  • T. Nakamura, M. Matsumoto, K. Amano, Y. Enokido, M. E. Zolensky, T. Mikouchi, H. Genda, S. Tanaka, M. Y. Zolotov, K. Kurosawa, S. Wakita, R. Hyodo, H. Nagano, D. Nakashima, Y. Takahashi, Y. Fujioka, M. Kikuiri, E. Kagawa, M. Matsuoka, A. J. Brearley, A. Tsuchiyama, M. Uesugi, J. Matsuno, Y. Kimura, M. Sato, R. E. Milliken, E. Tatsumi, S. Sugita, T. Hiroi, K. Kitazato, D. Brownlee, D. J. Joswiak, M. Takahashi, K. Ninomiya, T. Takahashi, T. Osawa, K. Terada, F. E. Brenker, B. J. Tkalcec, L. Vincze, R. Brunetto, A. Aléon-Toppani, Q. H. S. Chan, M. Roskosz, J.-C. Viennet, P. Beck, E. E. Alp, T. Michikami, Y. Nagaashi, T. Tsuji, Y. Ino, J. Martinez, J. Han, A. Dolocan, R. J. Bodnar, M. Tanaka, H. Yoshida, K. Sugiyama, A. J. King, K. Fukushi, H. Suga, S. Yamashita, T. Kawai, K. Inoue, A. Nakato, T. Noguchi, F. Vilas, A. R. Hendrix, C. Jaramillo-Correa, D. L. Domingue, G. Dominguez, Z. Gainsforth, C. Engrand, J. Duprat, S. S. Russell, E. Bonato, C. Ma, T. Kawamoto, T. Wada, S. Watanabe, R. Endo, S. Enju, L. Riu, S. Rubino, P. Tack, S. Takeshita, Y. Takeichi, A. Takeuchi, A. Takigawa, D. Takir, T. Tanigaki, A. Taniguchi, K. Tsukamoto, T. Yagi, S. Yamada, K. Yamamoto, Y. Yamashita, M. Yasutake, K. Uesugi, I. Umegaki, I. Chiu, T. Ishizaki, S. Okumura, E. Palomba, C. Pilorget, S. M. Potin, A. Alasli, S. Anada, Y. Araki, N. Sakatani, C. Schultz, O. Sekizawa, S. D. Sitzman, K. Sugiura, M. Sun, E. Dartois, E. De Pauw, Z. Dionnet, Z. Djouadi, G. Falkenberg, R. Fujita, T. Fukuma, I. R. Gearba, K. Hagiya, M. Y. Hu, T. Kato, T. Kawamura, M. Kimura, M. K. Kubo, F. Langenhorst, C. Lantz, B. Lavina, M. Lindner, J. Zhao, B. Vekemans, D. Baklouti, B. Bazi, F. Borondics, S. Nagasawa, G. Nishiyama, K. Nitta, J. Mathurin, T. Matsumoto, I. Mitsukawa, H. Miura, A. Miyake, Y. Miyake, H. Yurimoto, R. Okazaki, H. Yabuta, H. Naraoka, K. Sakamoto, S. Tachibana, H. C. Connolly, D. S. Lauretta, M. Yoshitake, M. Yoshikawa, K. Yoshikawa, K. Yoshihara, Y. Yokota, K. Yogata, H. Yano, Y. Yamamoto, D. Yamamoto, M. Yamada, T. Yamada, T. Yada, K. Wada, T. Usui, R. Tsukizaki, F. Terui, H. Takeuchi, Y. Takei, A. Iwamae, H. Soejima, K. Shirai, Y. Shimaki, H. Senshu, H. Sawada, T. Saiki, M. Ozaki, G. Ono, T. Okada, N. Ogawa, K. Ogawa, R. Noguchi, H. Noda, M. Nishimura, N. Namiki, S. Nakazawa, T. Morota, A. Miyazaki, A. Miura, Y. Mimasu, K. Matsumoto, K. Kumagai, T. Kouyama, S. Kikuchi, K. Kawahara, S. Kameda, T. Iwata, Y. Ishihara, M. Ishiguro, H. Ikeda, S. Hosoda, R. Honda, C. Honda, Y. Hitomi, N. Hirata, N. Hirata, T. Hayashi, M. Hayakawa, K. Hatakeda, S. Furuya, R. Fukai, A. Fujii, Y. Cho, M. Arakawa, M. Abe, S. Watanabe, Y. Tsuda
    Science 379(6634) 2022年9月22日  査読有り
    Samples of the carbonaceous asteroid Ryugu were brought to Earth by the Hayabusa2 spacecraft. We analyzed seventeen Ryugu samples measuring 1-8 mm. CO 2 -bearing water inclusions are present within a pyrrhotite crystal, indicating that Ryugu’s parent asteroid formed in the outer Solar System. The samples contain low abundances of materials that formed at high temperatures, such as chondrules and Ca, Al-rich inclusions. The samples are rich in phyllosilicates and carbonates, which formed by aqueous alteration reactions at low temperature, high pH, and water/rock ratios < 1 (by mass). Less altered fragments contain olivine, pyroxene, amorphous silicates, calcite, and phosphide. Numerical simulations, based on the mineralogical and physical properties of the samples, indicate Ryugu’s parent body formed ~ 2 million years after the beginning of Solar System formation.
  • Juan Camilo Buitrago-Casas, Lindsay Glesener, Steven Christe, Sam Krucker, Juliana Vievering, P. S. Athiray, Sophie Musset, Lance Davis, Sasha Courtade, Gregory Dalton, Paul Turin, Zoe Turin, Brian Ramsey, Stephen Bongiorno, Daniel Ryan, Tadayuki Takahashi, Kento Furukawa, Shin Watanabe, Noriyuki Narukage, Shin-nosuke Ishikawa, Ikuyuki Mitsuishi, Kouichi Hagino, Van Shourt, Jessie Duncan, Yixian Zhang, Stuart D. Bale
    ASTRONOMY & ASTROPHYSICS 665 2022年9月  
    Context. Solar nanoflares are small impulsive events releasing magnetic energy in the corona. If nanoflares follow the same physics as their larger counterparts, they should emit hard X-rays (HXRs) but with a rather faint intensity. A copious and continuous presence of nanoflares would result in a sustained HXR emission. These nanoflares could deliver enormous amounts of energy into the solar corona, possibly accounting for its high temperatures. To date, there has not been any direct observation of such persistent HXRs from the quiescent Sun. However, the quiet-Sun HXR emission was constrained in 2010 using almost 12 days of quiescent solar off-pointing observations by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). These observations set 2 sigma upper limits at 3.4 x 10(-2) photons s(-1) cm(-2) keV(-1) and 9.5 x 10(-4) photons s(-1) cm(-2) keV(-1) for the 3-6 keV and 6-12 keV energy ranges, respectively. Aims. Observing faint HXR emission is challenging because it demands high sensitivity and dynamic range instruments. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment excels in these two attributes when compared with RHESSI. FOXSI completed its second and third successful flights (FOXSI-2 and -3) on December 11, 2014, and September 7, 2018, respectively. This paper aims to constrain the quiet-Sun emission in the 5-10 keV energy range using FOXSI-2 and -3 observations. Methods. To fully characterize the sensitivity of FOXSI, we assessed ghost ray backgrounds generated by sources outside of the field of view via a ray-tracing algorithm. We used a Bayesian approach to provide upper thresholds of quiet-Sun HXR emission and probability distributions for the expected flux when a quiet-Sun HXR source is assumed to exist. Results. We found a FOXSI-2 upper limit of 4.5 x 10(-2) photons s(-1) cm(-2) keV(-1) with a 2 sigma confidence level in the 5-10 keV energy range. This limit is the first-ever quiet-Sun upper threshold in HXR reported using similar to 1 min observations during a period of high solar activity. RHESSI was unable to measure the quiet-Sun emission during active times due to its limited dynamic range. During the FOXSI-3 flight, the Sun exhibited a fairly quiet configuration, displaying only one aged nonflaring active region. Using the entire similar to 6.5 min of FOXSI-3 data, we report a 2 sigma upper limit of similar to 10(-4) photons s(-1) cm(-2) keV(-1) for the 5-10 keV energy range. Conclusions. The FOXSI-3 upper limits on quiet-Sun emission are similar to that previously reported, but FOXSI-3 achieved these results with only 5 min of observations or about 1/2600 less time than RHESSI. A possible future spacecraft using hard X-ray focusing optics like those in the FOXSI concept would allow enough observation time to constrain the current HXR quiet-Sun limits further, or perhaps even make direct detections. This is the first report of quiet-Sun HXR limits from FOXSI and the first science paper using FOXSI-3 observations.
  • Hirofumi Fujii, Kazunobu Ohnuki, Shin’ichiro Takeda, Miho Katsuragawa, Atsushi Yagishita, Goro Yabu, Shin Watanabe, Tadayuki Takahashi
    RADIOISOTOPES 71(2) 141-151 2022年7月15日  査読有り
  • Goro Yabu, Hiroki Yoneda, Tadashi Orita, Shin'ichiro Takeda, Pietro Caradonna, Tadayuki Takahashi, Shin Watanabe, Fumiki Moriyama
    IEEE Transactions on Radiation and Plasma Medical Sciences 6(5) 592-600 2022年5月  査読有り
  • Atsushi Yagishita, Shin’ichiro Takeda, Miho Katsuragawa, Tenyo Kawamura, Hideaki Matsumura, Tadashi Orita, Izumi O. Umeda, Goro Yabu, Pietro Caradonna, Tadayuki Takahashi, Shin Watanabe, Yousuke Kanayama, Hiroshi Mizuma, Kazunobu Ohnuki, Hirofumi Fujii
    Nature Biomedical Engineering 6(5) 640-647 2022年4月4日  査読有り
  • I-Huan Chiu, Shin’ichiro Takeda, Meito Kajino, Atsushi Shinohara, Miho Katsuragawa, Shunsaku Nagasawa, Ryota Tomaru, Goro Yabu, Tadayuki Takahashi, Shin Watanabe, Soshi Takeshita, Yasuhiro Miyake, Kazuhiko Ninomiya
    Scientific Reports 12(1) 2022年3月28日  査読有り
    Abstract Elemental analysis based on muonic X-rays resulting from muon irradiation provides information about bulk material composition without causing damage, which is essential in the case of precious or otherwise unreachable samples, such as in archeology and planetary science. We developed a three-dimensional (3D) elemental analysis technique by combining the elemental analysis method based on negative muons with an imaging cadmium telluride double-sided strip detector (CdTe-DSD) designed for the hard X-ray and soft $$\gamma$$-ray observation. A muon irradiation experiment using spherical plastic samples was conducted at the Japan Proton Accelerator Research Complex (J-PARC); a set of projection images was taken by the CdTe-DSD, equipped with a pinhole collimator, for different sample rotation angles. The projection images measured by the CdTe-DSD were utilized to obtain a 3D volumetric phantom by using the maximum likelihood expectation maximization algorithm. The reconstructed phantom successfully revealed the 3D distribution of carbon in the bulk samples and the stopping depth of the muons. This result demonstrated the feasibility of the proposed non-destructive 3D elemental analysis method for bulk material analysis based on muonic X-rays.
  • Naoki Numadate, Shimpei Oishi, Hirokazu Odaka, Priti, Makoto Sakurai, Tadayuki Takahashi, Yutaka Tsuzuki, Yuusuke Uchida, Hirofumi Watanabe, Shin Watanabe, Hiroki Yoneda, Nobuyuki Nakamura
    Physical Review A 105(2) 2022年2月17日  査読有り
  • Tadashi Orita, Goro Yabu, Hiroki Yoneda, Shin'Ichiro Takeda, Pietro Caradonna, Tadayuki Takahashi, Shin Watanabe, Yuusuke Uchida, Fumiki Moriyama, Hirotaka Sugawara, Mizuki Uenomachi, Kenji Shimazoe
    IEEE Transactions on Nuclear Science 68(8) 2279-2285 2021年8月  査読有り
  • Takuma Okumura, Toshiyuki Azuma, Douglas A. Bennett, Pietro Caradonna, I. Huan Chiu, W. Bertrand Doriese, Malcolm S. Durkin, Joseph W. Fowler, Johnathon D. Gard, Tadashi Hashimoto, Ryota Hayakawa, Gene C. Hilton, Yuto Ichinohe, Paul Indelicato, Tadaaki Isobe, Sohtaro Kanda, Miho Katsuragawa, Naritoshi Kawamura, Yasushi Kino, Kairi Mine, Yasuhiro Miyake, Kelsey M. Morgan, Kazuhiko Ninomiya, Hirofumi Noda, Galen C. O'Neil, Shinji Okada, Kenichi Okutsu, Takahito Osawa, Nancy Paul, Carl D. Reintsema, Dan R. Schmidt, Koichiro Shimomura, Patrick Strasser, Hirotaka Suda, Daniel S. Swetz, Tadayuki Takahashi, Shinichiro Takeda, Soshi Takeshita, Hideyuki Tatsuno, Yasuhiro Ueno, Joel N. Ullom, Shin Watanabe, Shinya Yamada
    IEEE Transactions on Applied Superconductivity 31(5) 2021年8月  査読有り
    A superconducting transition-edge sensor (TES) microcalorimeter is an ideal X-ray detector for experiments at accelerator facilities because of good energy resolution and high efficiency. To study the performance of the TES detector with a high-intensity pulsed charged-particle beam, we measured X-ray spectra with a pulsed muon beam at the Japan Proton Accelerator Research Complex (J-PARC) in Japan. We found substantial temporal shifts of the X-ray energy correlated with the arrival time of the pulsed muon beam, which was reasonably explained by pulse pileup due to the incidence of energetic particles from the initial pulsed beam.
  • T. Okumura, T. Azuma, D. A. Bennett, P. Caradonna, I. Chiu, W. B. Doriese, M. S. Durkin, J. W. Fowler, J. D. Gard, T. Hashimoto, R. Hayakawa, G. C. Hilton, Y. Ichinohe, P. Indelicato, T. Isobe, S. Kanda, D. Kato, M. Katsuragawa, N. Kawamura, Y. Kino, M. K. Kubo, K. Mine, Y. Miyake, K. M. Morgan, K. Ninomiya, H. Noda, G. C. O’Neil, S. Okada, K. Okutsu, T. Osawa, N. Paul, C. D. Reintsema, D. R. Schmidt, K. Shimomura, P. Strasser, H. Suda, D. S. Swetz, T. Takahashi, S. Takeda, S. Takeshita, M. Tampo, H. Tatsuno, X. M. Tong, Y. Ueno, J. N. Ullom, S. Watanabe, S. Yamada
    Physical Review Letters 127(5) 2021年7月27日  査読有り
    We observed electronic K x rays emitted from muonic iron atoms using superconducting transition-edge sensor microcalorimeters. The energy resolution of 5.2 eV in FWHM allowed us to observe the asymmetric broad profile of the electronic characteristic Kα and Kβ x rays together with the hypersatellite Khα x rays around 6 keV. This signature reflects the time-dependent screening of the nuclear charge by the negative muon and the L-shell electrons, accompanied by electron side feeding. Assisted by a simulation, these data clearly reveal the electronic K- and L-shell hole production and their temporal evolution on the 10-20 fs scale during the muon cascade process.
  • Yutaka Tsuzuki, Shin Watanabe, Shimpei Oishi, Nobuyuki Nakamura, Naoki Numadate, Hirokazu Odaka, Yuusuke Uchida, Hiroki Yoneda, Tadayuki Takahashi
    Review of Scientific Instruments 92(6) 2021年6月1日  査読有り
    Methods to measure the polarization of x rays from highly charged heavy ions with a significantly higher accuracy than that of the existing technology are needed to explore relativistic and quantum electrodynamics effects, including the Breit interaction. We developed an Electron Beam Ion Trap Compton Camera (EBIT-CC), a new Compton polarimeter with pixelated multi-layer silicon, and cadmium telluride counters. The EBIT-CC detects the three-dimensional position of Compton scattering and photoelectric absorption, and thus, the degree of polarization of incoming x rays can be evaluated. We attached the EBIT-CC on the Tokyo Electron Beam Ion Trap (Tokyo-EBIT) in the University of Electro-Communications. An experiment was performed to evaluate its polarimetric capability through an observation of radiative recombination x rays emitted from highly charged krypton ions, which were generated by the Tokyo-EBIT. The CC of the EBIT-CC was calibrated for the ∼75 keV x rays. We developed event reconstruction and selection procedures and applied them to every registered event. As a result, we successfully obtained the polarization degree with an absolute uncertainty of 0.02. This uncertainty is small enough to probe the difference between the zero-frequency approximation and full-frequency-dependent calculation for the Breit interaction, which is expected for dielectronic recombination x rays of highly charged heavy ions.
  • Juan Camilo Buitrago-Casas, Juliana Vievering, Sophie Musset, Lindsay Glesener, P. S. Athiray, Wayne Baumgartner, Stephen Bongiorno, Patrick Champey, Steven Christe, Sasha Courtade, Gregory Dalton, Jessie Duncan, Kelsey Gilchrist, Shin-Nosuke Ishikawa, Christine Jhabvala, Hunter Kanniainen, Sam Krucker, Kyle Gregory, Juan Carlos Martinez Oliveros, Jeff McCracken, Ikuyuki Mitsuishi, Noriyuki Narukage, Athanasios Pantazides, Eliad Peretz, Savannah Perez-Piel, Aruna Ramanayaka, Brian Ramsey, Danny Ryan, Sabrina Savage, Tadayuki Takahashi, Shin Watanabe, Amy Winebarger, Yixian Zhang
    Proceedings of SPIE - The International Society for Optical Engineering 11821 2021年  
    The FOXSI-4 sounding rocket will fly a significantly upgraded instrument in NASAs first solar are campaign. It will deploy direct X-ray focusing optics which have revolutionized our understanding of astrophysical phenomena. For example, they have allowed NuSTAR to provide X-ray imaging and IXPE (scheduled for launch in 2021) to provide X-ray polarization observations with detectors with higher photon rate capability and greater sensitivity than their predecessors. The FOXSI sounding rocket is the first solar dedicated mission using this method and has demonstrated high sensitivity and improved imaging dynamic range with its three successful flights. Although the building blocks are already in place for a FOXSI satellite instrument, further advances are needed to equip the next generation of solar X-ray explorers. FOXSI-4 will develop and implement higher angular resolution optics/detector pairs to investigate fine spatial structures (both bright and faint) in a solar are. FOXSI-4 will use highly polished electroformed Wolter-I mirrors fabricated at the NASA/Marshall Space Flight Center (MSFC), together with finely pixelated Si CMOS sensors and fine-pitch CdTe strip detectors provided by a collaboration with institutes in Japan. FOXSI-4 will also implement a set of novel perforated attenuators that will enable both the low and high energy spectral components to be observed simultaneously in each pixel, even at the high rates expected from a medium (or large) size solar are. The campaign will take place during one of the Parker Solar Probe (PSP) perihelia, allowing coordination between this spacecraft and other instruments which observe the Sun at different wavelengths.
  • Tenyo Kawamura, Tadashi Orita, Shin'ichiro Takeda, Shin Watanabe, Hirokazu Ikeda, Tadayuki Takahashi
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 982 2020年12月1日  査読有り
    We present our latest ASIC, which is used for the readout of Cadmium Telluride double-sided strip detectors (CdTe DSDs) and high spectroscopic imaging. It is implemented in a 0.35 μm CMOS technology (X-Fab XH035), consists of 64 readout channels and has a function that performs simultaneous AD conversion for each channel. The equivalent noise charge of 54.9e− ± 11.3e− (rms) is measured without connecting the ASIC to any detectors. From the spectroscopy measurements using a CdTe single-sided strip detector, the energy resolution of 1.12 keV (FWHM) is obtained at 13.9 keV, and photons within the energy from 6.4 keV to 122.1 keV are detected. Based on the experimental results, we propose a new low-noise readout architecture making use of a slew-rate limited mode at the shaper followed by a peak detector circuit.
  • Kento Furukawa, Shunsaku Nagasawa, Lindsay Glesener, Miho Katsuragawa, Shin'ichiro Takeda, Shin Watanabe, Tadayuki Takahashi
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 978 2020年10月21日  査読有り
    We have evaluated the performance of a fine pitch CdTe Double-sided Strip Detector (CdTe-DSD), which was originally developed for the focal plane detector of a hard X-ray telescope to observe the Sun. The detector has a thickness of 750 μm and has 128 strip electrodes with a 60 μm strip pitch orthogonally placed on both sides of the detector and covers an energy range 4 keV to 80 keV. The study of the depth of photon interaction and charge sharing effects are of importance in order to provide good spectroscopic and imaging performance. We study the tail structure observed in the spectra caused by charge trapping and develop a new method to reconstruct the spectra based on induced charge information from both anode and cathode strips. By applying this method, energy resolutions (FWHM) of 0.76 keV and 1.0 keV can be obtained at photon energies of 14 keV and 60 keV, respectively, if the energy difference between the anode and cathode is within 1 keV. Furthermore, the tail component at 60 keV is reduced, and the energy resolution of the 60 keV peak is improved from 2.4 keV to 1.5 keV (FWHM) if the energy difference is greater than 1 keV. In order to study the imaging performance, we constructed a simple imaging system using a 5 mm thick tungsten plate that has a pinhole with a diameter of 100 μm. We utilize a 133Ba radioisotope of 1 mm in diameter as a target source in combination with a 100 μm slit made from 0.5 mm thickness tungsten. We imaged the 133Ba source behind the 100 μm slit using a 30 keV peak, with a 100 μm pinhole placed at the center of the source-detector distance. By applying a charge sharing correction between strips, we have succeeded in obtaining a position resolution better than the strip pitch of 60 μm.
  • Kouichi Hagino, Hirokazu Odaka, Goro Sato, Tamotsu Sato, Hiromasa Suzuki, Tsunefumi Mizuno, Madoka Kawaharada, Masanori Ohno, Kazuhiro Nakazawa, Shogo B. Kobayashi, Hiroaki Murakami, Katsuma Miyake, Makoto Asai, Tatsumi Koi, Greg Madejski, Shinya Saito, Dennis H. Wright, Teruaki Enoto, Yasushi Fukazawa, Katsuhiro Hayashi, Jun Kataoka, Junichiro Katsuta, Motohide Kokubun, Philippe Laurent, François Lebrun, Olivier Limousin, Daniel Maier, Kazuo Makishima, Kunishiro Mori, Takeshi Nakamori, Toshio Nakano, Hirofumi Noda, Masayuki Ohta, Rie Sato, Hiroyasu Tajima, Hiromitsu Takahashi, Tadayuki Takahashi, Shin'Ichiro Takeda, Takaaki Tanaka, Yukikatsu Terada, Hideki Uchiyama, Yasunobu Uchiyama, Shin Watanabe, Kazutaka Yamaoka, Yoichi Yatsu, Takayuki Yuasa
    Journal of Astronomical Telescopes, Instruments, and Systems 6(4) 2020年10月1日  査読有り
    Understanding and reducing in-orbit instrumental backgrounds are essential to achieving high sensitivity in hard x-ray astronomical observations. The observational data of the Hard X-ray Imager (HXI) onboard the Hitomi satellite provide useful information on the background components due to its multilayer configuration with different atomic numbers: The HXI consists of a stack of four layers of Si (Z = 14) detectors and one layer of cadmium telluride (CdTe) (Z = 48, 52) detector surrounded by well-Type Bi4Ge3O12 active shields. Based on the observational data, the backgrounds of the top Si layer, the three underlying Si layers, and the CdTe layer are inferred to be dominated by different components, namely, low-energy electrons, albedo neutrons, and proton-induced radioactivation, respectively. Monte Carlo simulations of the in-orbit background of the HXI reproduce the observed background spectrum of each layer well, thereby quantitatively verifying the above hypothesis. In addition, we suggest the inclusion of an electron shield to reduce the background.
  • S. Okada, T. Azuma, D. A. Bennett, P. Caradonna, W. B. Doriese, M. S. Durkin, J. W. Fowler, J. D. Gard, T. Hashimoto, R. Hayakawa, G. C. Hilton, Y. Ichinohe, P. Indelicato, T. Isobe, S. Kanda, M. Katsuragawa, N. Kawamura, Y. Kino, Y. Miyake, K. M. Morgan, K. Ninomiya, H. Noda, G. C. O’Neil, T. Okumura, C. D. Reintsema, D. R. Schmidt, K. Shimomura, P. Strasser, D. S. Swetz, T. Takahashi, S. Takeda, S. Takeshita, H. Tatsuno, Y. Ueno, J. N. Ullom, S. Watanabe, S. Yamada
    Journal of Low Temperature Physics 200(5-6) 445-451 2020年9月1日  査読有り
    © 2020, Springer Science+Business Media, LLC, part of Springer Nature. High-resolution X-ray spectroscopy of the highly charged muonic atoms/ions isolated in vacuum is an ideal probe to explore quantum electrodynamics under extremely strong electric fields, which is one of the major topic in fundamental atomic physics. A feasibility test measurement with a low-density neon gas target was performed by observing X-rays emitted by muonic neon via the 5 → 4 transition, ∼ 6.3 keV, using a multi-pixel array of superconducting transition-edge-sensor (TES) microcalorimeters at the J-PARC muon facility. We successfully demonstrated the feasibility of muonic atom X-ray spectroscopy with a gas target at a pressure as low as 0.1 atom using TES array under an intense pulsed muon beam.
  • Mizuki Uenomachi, Yuki Mizumachi, Yuri Yoshihara, Hiroyuki Takahashi, Kenji Shimazoe, Goro Yabu, Hiroki Yoneda, Shin Watanabe, Shin'ichiro Takeda, Tadashi Orita, Tadayuki Takahashi, Fumiki Moriyama, Hirotaka Sugawara
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 954 2020年2月21日  査読有り
    © 2018 Elsevier B.V. Compton imaging is a promising gamma-ray imaging method based on the Compton scattering kinematics due to high Compton scattering probability for sub-MeV to MeV gamma-rays. A conventional Compton camera has a disadvantage of low signal-to-background ratio (SBR), which is caused by drawing of multiple Compton cones. A method to solve this fundamental problem is the double-photon emission computed tomography (DPECT), which uses the coincidence detection for cascade gamma-rays and significantly increases the SBR using intersections of two Compton cones. In this study, we demonstrated the DPECT method by using 134Cs radio isotope, which is one of important radioisotopes for the imaging of fuel debris, with two Ce:Gd3(Al,Ga)5O12 (GAGG) scintillator Compton cameras.
  • Takashi Nakano, Makoto Sakai, Kota Torikai, Yoshiyuki Suzuki, Shin'Ichiro Takeda, Shin Ei Noda, Mitsutaka Yamaguchi, Yuto Nagao, Mikiko Kikuchi, Hirokazu Odaka, Tomihiro Kamiya, Naoki Kawachi, Shin Watanabe, Kazuo Arakawa, Tadayuki Takahashi
    Physics in Medicine and Biology 65(5) 2020年  査読有り
    © 2020 Institute of Physics and Engineering in Medicine. The Compton camera can simultaneously acquire images of multiple isotopes injected in a body; therefore, it has the potential to introduce a new subfield in the field of biomedical imaging applications. The objective of this study is to assess the ability of a prototype semiconductor-based silicon/cadmium telluride (Si/CdTe) Compton camera to simultaneously image the distributions of technetium (99mTc)-dimercaptosuccinic acid (DMSA) (141 keV emission) and 18F-fluorodeoxyglucose (FDG) (511 keV emission) injected into a human volunteer. 99mTc-DMSA and 18F-FDG were injected intravenously into a 25-year-old male volunteer. The distributions of 99mTc-DMSA and 18F-FDG were simultaneously made visible by setting a specified energy window for each radioisotope. The images of these radiopharmaceuticals acquired using the prototype Compton camera were superimposed onto computed tomography images for reference. The reconstructed image showed that 99mTc-DMSA had accumulated in both kidneys, which is consistent with the well-known diagnostic distribution determined by clinical imaging via single-photon emission computed tomography. In the 18F-FDG image, there is broad distribution around the liver and kidneys, which was expected based on routine clinical positron emission tomography imaging. The current study demonstrated for the first time that the Si/CdTe Compton camera was capable of simultaneously imaging the distributions of two radiopharmaceuticals, 99mTc-DMSA and 18F-FDG, in a human body. These results suggest that the Si/CdTe Compton camera has the potential to become a novel modality for nuclear medical diagnoses enabling multi-probe simultaneous tracking.
  • Masanori Ohno, Yasushi Fukazawa, Tsunefumi Mizuno, Hiromitsu Takahashi, Yasuyuki Tanaka, Jun'ichiro Katsuta, Takafumi Kawano, Sho Habata, Chiho Okada, Norie Ohashi, Takuto Teramae, Koji Tanaka, Tadayuki Takahashi, Motohide Kokubun, Shin Watanabe, Goro Sato, Rie Sato, Masayuki Ohta, Yusuke Uchida, Ryota Tamaru, Hiroki Yoneda, Kazuhiro Nakazawa, Hiroaki Murakami, Hiroyasu Tajima, Kazutaka Yamaoka, Masaomi Kinoshita, Katsuhiro Hayashi, Takao Kitaguchi, Hirokazu Odaka
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 924 327-331 2019年4月  査読有り
    © 2018 Elsevier B.V. The soft gamma-ray detector (SGD) onboard Hitomi, which has a unique design concept, based on the combination of a ”narrow-field multi-layer semi-conductor Compton camera” and an active shielding, realizes astronomical observations in the 60−600 keV energy band with a high sensitivity. Development of optimum event selection criteria is essential for deriving the best observational performance of the SGD, but it is challenging because many parameters such as the detected photon energy, the Compton-scattering angle, and distance of each hit, among others, are non-linearly correlated. In this study, we propose a new method for distinguishing the signal from the background in the multi-parameter space utilizing a machine-learning approach. Our preliminary result, which uses both on-ground experimental data with good photon statistics and flight data with real in-orbit background and signal information, suggests that this approach might a good guide for an optimal event selection by the Compton camera.
  • Kento Furukawa, Juan Camilo Buitrago-Casas, Juliana Vievering, Kouichi Hagino, Lindsay Glesener, P. S. Athiray, Säm Krucker, Shin Watanabe, Shin'ichiro Takeda, Shin'nosuke Ishikawa, Sophie Musset, Steven Christe, Tadayuki Takahashi
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 924 321-326 2019年4月  査読有り
    © 2018 Elsevier B.V. FOXSI-3 (Focusing Optics X-ray Solar Imager) is an international sounding rocket experiment to observe hard X-rays from the Sun. The previous two flights successfully demonstrated the efficacy of the concept of direct solar imaging in hard X-ray band. For the third launch scheduled in the summer of 2018, we have fabricated a prototype of the CdTe Double-sided Strip Detector. To evaluate the basic performance, laboratory tests were conducted. Energy resolution (FWHM) of 0.8 keV at 13.9 keV and 1.3 keV at 59.5 keV are confirmed. Since the optic angular resolution is finer than the strip pitch of the detector at the focal plane, sub-strip position determination is important to make full use of the high precision of the optic. To test the possibility of sub-strip resolution, we developed a new method of investigating the detector strips with a fine multi-pinhole collimator. The results of the analysis were highly favorable and we confirmed the sub-strip resolution by making sub-strip images of multi-pinholes and flat-irradiation. The spectral uniformity over the detector is also confirmed using the sub-strip image of flat-irradiation.
  • Sophie Musset, Juan Camilo Buitrago-Casas, Lindsay Glesener, Stephen Bongiorno, Sasha Courtade, P. S. Athiray, Juliana Vievering, Shin Nosuke Ishikawa, Noriyuki Narukage, Kento Furukawa, Daniel Ryan, Greg Dalton, Zoe Turin, Lance Davis, Tadayuki Takahashi, Shin Watanabe, Ikuyuki Mitsuishi, Kouichi Hagino, Tomoko Kawate, Paul Turin, Steven Christe, Brian Ramsey, Säm Krucker
    Proceedings of SPIE - The International Society for Optical Engineering 11118 2019年  査読有り
    © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only. The Focusing Optics X-ray Solar Imager (FOXSI) sounding rocket experiment demonstrates the technique of focusing hard X-ray (HXR) optics for the study of fundamental questions about the high-energy Sun. Solar HXRs provide one of the most direct diagnostics of accelerated electrons and the impulsive heating of the solar corona. Previous solar missions have been limited in sensitivity and dynamic range by the use of indirect imaging, but technological advances now make direct focusing accessible in the HXR regime, and the FOXSI rocket experiment optimizes HXR focusing telescopes for the unique scientific requirements of the Sun. FOXSI has completed three successful flights between 2012 and 2018. This paper gives a brief overview of the experiment, focusing on the third flight of the instrument on 2018 Sept. 7. We present the telescope upgrades highlighting our work to understand and reduce the effects of singly reflected X-rays and show early science results obtained during FOXSI's third flight.
  • Shin'ichiro Takeda, Miho Katsuragawa, Tadashi Orita, Fumiki Moriyama, Yasuo Arai, Hirotaka Sugawara, Sayuri Oshita, Goro Yabu, Shin Watanabe, Tadayuki Takahashi, Lars R. Furenlid
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 912 57-60 2018年12月21日  査読有り
    © 2017 Elsevier B.V. High-resolution CdTe semiconductor detectors with both fine position resolution and high energy resolution hold great promise to improve measurement in various hard X-ray and gamma-ray imaging experiments. In the field of in-vivo molecular imaging, where the molecules labeled with radioisotopes are injected into a small animal and their distribution in a body is detected by gamma-ray imaging detectors externally, a large detection area is also required to obtain a number of projections from multiple pinholes. We have developed a prototype imaging system consisting of a 32 mm-wide CdTe double-sided strip detector equipped with multi-pinhole optics. We describe its imaging capability, as studied through experiments with radioisotopes for medical use (125I and 111In) and a 3D phantom.
  • Daniel Maier, Benoit Horeau, Philippe Laurent, Olivier Limousin, Diana Renaud, Madoka Kawaharada, Motohide Kokubun, Goro Sato, Tadayuki Takahashi, Shin Watanabe, Kazuhiro Nakazawa, Cesar Boatella Polo
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 912 199-204 2018年12月21日  査読有り
    © 2017 Elsevier B.V. This work presents a long-term operation of two stacked CdTe double sided strip detectors that are comparable with the CdTe detectors onboard Hitomi's HXI. The goal of this test is to study the evolution of the spectroscopic performance of the detectors during a one year operation cycle which resembles the in-orbit operation cycle of Hitomi HXI. Crystal defects inside CdTe cause a degradation of the spectroscopic performance (polarization effect) of the crystal which is becoming worse during detector operation. In order to prevent crystal polarization, the detectors are reset (switch-off of the depletion voltage) once a day. Our main investigation was to study if a long-term degradation can occur as a result of incomplete depolarization during the reset. We present the hardware setup and the analytical steps that were used to investigate the detector stability during each day and over the whole testing period. For the anode signals our results show at 60 keV: a daily line drift of (−2.8±0.7) eV/ks while the long-term drift is (−1.5±1.2) eV/day. The degradation of the energy resolution is measured to be (+2.4±0.3) eV/ks FWHM and the loss of efficiency is (−0.29±0.02) %/ks.
  • Shin nosuke Ishikawa, Tadayuki Takahashi, Shin Watanabe, Noriyuki Narukage, Satoshi Miyazaki, Tadashi Orita, Shin'ichiro Takeda, Masaharu Nomachi, Iwao Fujishiro, Fumio Hodoshima
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 912 191-194 2018年12月21日  査読有り
    © 2017 Elsevier B.V. We have developed a system combining a back-illuminated Complementary-Metal–Oxide-Semiconductor (CMOS) imaging sensor and Xilinx Zynq System-on-Chip (SoC) device for a soft X-ray (0.5–10 keV) imaging spectroscopy observation of the Sun to investigate the dynamics of the solar corona. Because typical timescales of energy release phenomena in the corona span a few minutes at most, we aim to obtain the corresponding energy spectra and derive the physical parameters, i.e., temperature and emission measure, every few tens of seconds or less for future solar X-ray observations. An X-ray photon-counting technique, with a frame rate of a few hundred frames per second or more, can achieve such results. We used the Zynq SoC device to achieve the requirements. Zynq contains an ARM processor core, which is also known as the Processing System (PS) part, and a Programable Logic (PL) part in a single chip. We use the PL and PS to control the sensor and seamless recording of data to a storage system, respectively. We aim to use the system for the third flight of the Focusing Optics Solar X-ray Imager (FOXSI-3) sounding rocket experiment for the first photon-counting X-ray imaging and spectroscopy of the Sun.
  • Hiroki Yoneda, Shinya Saito, Shin Watanabe, Hirokazu Ikeda, Tadayuki Takahashi
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 912 269-273 2018年12月21日  査読有り
    © 2017 Elsevier B.V. Electron tracking based Compton imaging is a key technique to improve the sensitivity of Compton cameras by measuring the initial direction of recoiled electrons. To realize this technique in semiconductor Compton cameras, we propose a new detector concept, Si-CMOS hybrid detector. It is a Si detector bump-bonded to a CMOS readout integrated circuit to obtain electron trajectory images. To acquire the energy and the event timing, signals from N-side are also read out in this concept. By using an ASIC for the N-side readout, the timing resolution of few μs is achieved. In this paper, we present the results of two prototypes with 20 μm pitch pixels. The images of the recoiled electron trajectories are obtained with them successfully. The energy resolutions (FWHM) are 4.1keV (CMOS) and 1.4keV (N-side) at 59.5 keV. In addition, we confirmed that the initial direction of the electron is determined using the reconstruction algorithm based on the graph theory approach. These results show that Si-CMOS hybrid detectors can be used for electron tracking based Compton imaging.
  • Makoto Sakai, Mitsutaka Yamaguchi, Yuto Nagao, Naoki Kawachi, Mikiko Kikuchi, Kota Torikai, Tomihiro Kamiya, Shin'Ichiro Takeda, Shin Watanabe, Tadayuki Takahashi, Kazuo Arakawa, Takashi Nakano
    Physics in Medicine and Biology 63(20) 2018年10月16日  査読有り
    © 2018 Institute of Physics and Engineering in Medicine. We have been developing a medical imaging technique using a Compton camera. This study evaluates the feasibility of clear imaging with 99mTc and 18F simultaneously, and demonstrates in vivo imaging with 99mTc and/or 18F. We used a Compton camera with silicon and cadmium telluride (Si/CdTe) semiconductors. We estimated the imaging performance of the Compton camera for 141 keV and 511 keV gamma rays from 99mTc and 22Na, respectively. Next, we simultaneously imaged 99mTc and 18F point sources to evaluate the cross-talk artifacts produced by a higher energy gamma-ray background. Then, in the in vivo experiments, three rats were injected with 99mTc-dimercaptosuccinic acid and/or 18F-fluorodeoxyglucose and imaged. The Compton images were compared with PET images. The rats were euthanized, and the activities in their organs were measured using a well counter. The energy resolution and spatial resolution were measured for the sources. No apparent cross-talk artifacts were observed in the practical-activity ratio (99mTc:18F = 1:16). We succeeded in imaging the distributions of 99mTc and 18F simultaneously, and the results were consistent with the PET images and well counter measurements. Our Si/CdTe Compton camera can thus work as a multi-tracer imager, covering various SPECT and PET probes, with less cross-talk artifacts in comparison to the conventional Anger cameras using a collimator. Our findings suggest the possibility of human trials.
  • Hitomi Collaboration, Felix Aharonian, Hiroki Akamatsu, Fumie Akimoto, Steven W. Allen, Lorella Angelini, Marc Audard, Hisamitsu Awaki, Magnus Axelsson, Aya Bamba, Marshall W. Bautz, Roger Blandford, Laura W. Brenneman, Gregory V. Brown, Esra Bulbul, Edward M. Cackett, Maria Chernyakova, Meng P. Chiao, Paolo S. Coppi, Elisa Costantini, Jelle de Plaa, Cor P. de Vries, Jan-Willem den Herder, Chris Done, Tadayasu Dotani, Ken Ebisawa, Megan E. Eckart, Teruaki Enoto, Yuichiro Ezoe, Andrew C. Fabian, Carlo Ferrigno, Adam R. Foster, Ryuichi Fujimoto, Yasushi Fukazawa, Akihiro Furuzawa, Massimiliano Galeazzi, Luigi C. Gallo, Poshak Gandhi, Margherita Giustini, Andrea Goldwurm, Liyi Gu, Matteo Guainazzi, Yoshito Haba, Kouichi Hagino, Kenji Hamaguchi, Ilana M. Harrus, Isamu Hatsukade, Katsuhiro Hayashi, Takayuki Hayashi, Kiyoshi Hayashida, Junko S. Hiraga, Ann Hornschemeier, Akio Hoshino, John P. Hughes, Yuto Ichinohe, Ryo Iizuka, Hajime Inoue, Yoshiyuki Inoue, Manabu Ishida, Kumi Ishikawa, Yoshitaka Ishisaki, Masachika Iwai, Jelle Kaastra, Tim Kallman, Tsuneyoshi Kamae, Jun Kataoka, Satoru Katsuda, Nobuyuki Kawai, Richard L. Kelley, Caroline A. Kilbourne, Takao Kitaguchi, Shunji Kitamoto, Tetsu Kitayama, Takayoshi Kohmura, Motohide Kokubun, Katsuji Koyama, Shu Koyama, Peter Kretschmar, Hans A. Krimm, Aya Kubota, Hideyo Kunieda, Philippe Laurent, Shiu-Hang Lee, Maurice A. Leutenegger, Olivier Limousin, Michael Loewenstein, Knox S. Long, David Lumb, Greg Madejski, Yoshitomo Maeda, Daniel Maier, Kazuo Makishima, Maxim Markevitch, Hironori Matsumoto, Kyoko Matsushita, Dan McCammon, Brian R. McNamara, Missagh Mehdipour, Eric D. Miller, Jon M. Miller, Shin Mineshige, Kazuhisa Mitsuda, Ikuyuki Mitsuishi, Takuya Miyazawa, Tsunefumi Mizuno, Hideyuki Mori, Koji Mori, Koji Mukai, Hiroshi Murakami, Richard F. Mushotzky, Takao Nakagawa, Hiroshi Nakajima, Takeshi Nakamori, Shinya Nakashima, Kazuhiro Nakazawa, Kumiko K. Nobukawa, Masayoshi Nobukawa, Hirofumi Noda, Hirokazu Odaka, Takaya Ohashi, Masanori Ohno, Takashi Okajima, Naomi Ota, Masanobu Ozaki, Frits Paerels, Stephane Paltani, Robert Petre, Ciro Pinto, Frederick S. Porter, Katja Pottschmidt, Christopher S. Reynolds, Samar Safi-Harb, Shinya Saito, Kazuhiro Sakai, Toru Sasaki, Goro Sato, Kosuke Sato, Rie Sato, Makoto Sawada, Norbert Schartel, Peter J. Serlemtsos, Hiromi Seta, Megumi Shidatsu, Aurora Simionescu, Randall K. Smith, Yang Soong, Lukasz Stawarz, Yasuharu Sugawara, Satoshi Sugita, Andrew Szymkowiak, Hiroyasu Tajima, Hiromitsu Takahashi, Tadayuki Takahashi, Shin'ichiro Takeda, Yoh Takei, Toru Tamagawa, Takayuki Tamura, Takaaki Tanaka, Yasuo Tanaka, Yasuyuki T. Tanaka, Makoto S. Tashiro, Yuzuru Tawara, Yukikatsu Terada, Yuichi Terashima, Francesco Tombesi, Hiroshi Tomida, Yohko Tsuboi, Masahiro Tsujimoto, Hiroshi Tsunemi, Takeshi Go Tsuru, Hiroyuki Uchida, Hideki Uchiyama, Yasunobu Uchiyama, Shutaro Ueda, Yoshihiro Ueda, Shin'ichiro Uno, C. Megan Urry, Eugenio Ursino, Shin Watanabe, Norbert Werner, Dan R. Wilkins, Brian J. Williams, Shinya Yamada, Hiroya Yamaguchi, Kazutaka Yamaoka, Noriko Y. Yamasaki, Makoto Yamauchi, Shigeo Yamauchi, Tahir Yaqoob, Yoichi Yatsu, Daisuke Yonetoku, Irina Zhuravleva, Abderahmen Zoghbi, Yuusuke Uchida
    Publications of the Astronomical Society of Japan 70(6) 2018年10月1日  査読有り責任著者
    We present the results from the Hitomi Soft Gamma-ray Detector (SGD) observation of the Crab nebula. The main part of SGD is a Compton camera, which in addition to being a spectrometer, is capable of measuring polarization of gamma-ray photons. The Crab nebula is one of the brightest X-ray / gamma-ray sources on the sky, and, the only source from which polarized X-ray photons have been detected. SGD observed the Crab nebula during the initial test observation phase of Hitomi. We performed the data analysis of the SGD observation, the SGD background estimation and the SGD Monte Carlo simulations, and, successfully detected polarized gamma-ray emission from the Crab nebula with only about 5 ks exposure time. The obtained polarization fraction of the phase-integrated Crab emission (sum of pulsar and nebula emissions) is (22.1 $\pm$ 10.6)% and, the polarization angle is 110.7$^o$ + 13.2 / $-$13.0$^o$ in the energy range of 60--160 keV (The errors correspond to the 1 sigma deviation). The confidence level of the polarization detection was 99.3%. The polarization angle measured by SGD is about one sigma deviation with the projected spin axis of the pulsar, 124.0$^o$ $\pm$0.1$^o$.
  • D. Baudin, S. Dubos, O. Gevin, O. Limousin, D. Maier, A. Michalowska, D. Renaud, P. Serrano, T. Takahashi, S. Watanabe
    IEEE Transactions on Nuclear Science 65(7) 1408-1415 2018年7月  査読有り
    © 1963-2012 IEEE. This paper describes a 16 × 16 pixels CdTe-based X-ray detector named dimension 2 revision 1 (D2R1) with a pixel size of 300 μ m × 300 μ m. An application-specific integrated circuit (ASIC) is interconnected to a CdTe detector by means of an indium gold stud bonding process. This ASIC has a mean equivalent noise charge of 29 el.rms (at 0 pF). The combination of a low capacitance interconnection and low-dark-current detector (0.5 pA) with an optimized ASIC results in a spectral resolution of 584-eV full-width at half-maximum at 60 keV, an energy threshold of 2 keV with a dynamic range of 250 keV. A filtering stage made of a multicorrelated double sampling allows the system to measure X-ray photons at a frequency of 10 kcounts/s typically suited for low photon flux less than 3000 photons cm-2 s-1. The energy range, resolution, and timing capability of D2R1 can suite a variety of different applications such as X-ray astrophysics, nuclear safety, or medical applications.
  • Hirokazu Odaka, Makoto Asai, Kouichi Hagino, Tatsumi Koi, Greg Madejski, Tsunefumi Mizuno, Masanori Ohno, Shinya Saito, Tamotsu Sato, Dennis H. Wright, Teruaki Enoto, Yasushi Fukazawa, Katsuhiro Hayashi, Jun Kataoka, Junichiro Katsuta, Madoka Kawaharada, Shogo B. Kobayashi, Motohide Kokubun, Philippe Laurent, Francois Lebrun, Olivier Limousin, Daniel Maier, Kazuo Makishima, Taketo Mimura, Katsuma Miyake, Kunishiro Mori, Hiroaki Murakami, Takeshi Nakamori, Toshio Nakano, Kazuhiro Nakazawa, Hirofumi Noda, Masayuki Ohta, Masanobu Ozaki, Goro Sato, Rie Sato, Hiroyasu Tajima, Hiromitsu Takahashi, Tadayuki Takahashi, Shin'ichiro Takeda, Takaaki Tanaka, Yasuyuki Tanaka, Yukikatsu Terada, Hideki Uchiyama, Yasunobu Uchiyama, Shin Watanabe, Kazutaka Yamaoka, Tetsuya Yasuda, Yoichi Yatsu, Takayuki Yuasa, Andreas Zoglauer
    Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 891 92-105 2018年5月21日  査読有り
    © 2018 Elsevier B.V. Hard X-ray astronomical observatories in orbit suffer from a significant amount of background due to radioactivation induced by cosmic-ray protons and/or geomagnetically trapped protons. Within the framework of a full Monte Carlo simulation, we present modeling of in-orbit instrumental background which is dominated by radioactivation. To reduce the computation time required by straightforward simulations of delayed emissions from activated isotopes, we insert a semi-analytical calculation that converts production probabilities of radioactive isotopes by interaction of the primary protons into decay rates at measurement time of all secondary isotopes. Therefore, our simulation method is separated into three steps: (1) simulation of isotope production, (2) semi-analytical conversion to decay rates, and (3) simulation of decays of the isotopes at measurement time. This method is verified by a simple setup that has a CdTe semiconductor detector, and shows a 100-fold improvement in efficiency over the straightforward simulation. To demonstrate its experimental performance, the simulation framework was tested against data measured with a CdTe sensor in the Hard X-ray Imager onboard the Hitomi X-ray Astronomy Satellite, which was put into a low Earth orbit with an altitude of 570 km and an inclination of 31°, and thus experienced a large amount of irradiation from geomagnetically trapped protons during its passages through the South Atlantic Anomaly. The simulation is able to treat full histories of the proton irradiation and multiple measurement windows. The simulation results agree very well with the measured data, showing that the measured background is well described by the combination of proton-induced radioactivation of the CdTe detector itself and thick Bi4Ge3O12 scintillator shields, leakage of cosmic X-ray background and albedo gamma-ray radiation, and emissions from naturally contaminated isotopes in the detector system.
  • Ryota Tomaru, Chris Done, Hirokazu Odaka, Shin Watanabe, Tadayuki Takahashi
    Monthly Notices of the Royal Astronomical Society 476(2) 1776-1784 2018年5月11日  査読有り
    © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. Blueshifted absorption lines from highly ionized iron are seen in some high inclination X-ray binary systems, indicating the presence of an equatorial disc wind. This launch mechanism is under debate, but thermal driving should be ubiquitous. X-ray irradiation from the central source heats disc surface, forming a wind from the outer disc where the local escape velocity is lower than the sound speed. The mass-loss rate from each part of the disc is determined by the luminosity and spectral shape of the central source.We use these together with an assumed density and velocity structure of the wind to predict the column density and ionization state, then combine this with a Monte Carlo radiation transfer to predict the detailed shape of the absorption (and emission) line profiles. We test this on the persistent wind seen in the bright neutron star binary GX 13+1, with luminosity L/LEdd ~ 0.5. We approximately include the effect of radiation pressure because of high luminosity, and compute line features.We compare these to the highest resolution data, the Chandra third-order grating spectra, which we show here for the first time. This is the first physical model for the wind in this system, and it succeeds in reproducing many of the features seen in the data, showing that the wind in GX13+1 is most likely a thermal-radiation driven wind. This approach, combined with better streamline structures derived from full radiation hydrodynamic simulations, will allow future calorimeter data to explore the detail wind structure.
  • Kazuhiro Nakazawa, Goro Sato, Motohide Kokubun, Teruaki Enoto, Yasushi Fukazawa, Kouichi Hagino, Katsuhiro Hayashi, Jun Kataoka, Junichiro Katsuta, Shogo B. Kobayashi, Philippe Laurent, Francois Lebrun, Olivier Limousin, Daniel Maier, Kazuo Makishima, Tsunefumi Mizuno, Kunishiro Mori, Takeshi Nakamori
    Journal of Astronomical Telescopes, Instruments, and Systems 4(02) 1-1 2018年4月9日  査読有り
  • Tadayuki Takahashi, Motohide Kokubun, Kazuhisa Mitsuda, Richard L. Kelley, Takaya Ohashi, Felix Aharonian, Hiroki Akamatsu, Fumie Akimoto, Steven W. Allen, Naohisa Anabuki, Lorella Angelini, Keith Arnaud, Makoto Asai, Marc Audard, Hisamitsu Awaki, Magnus Axelsson, Philipp Azzarello, Chris Baluta, Aya Bamba, Nobutaka Bando, Marshall W. Bautz, Thomas Bialas, Roger Blandford, Kevin Boyce, Laura W. Brenneman, Gregory V. Brown, Esra Bulbul, Edward M. Cackett, Edgar Canavan, Maria Chernyakova, Meng P. Chiao, Paolo S. Coppi, Elisa Costantini, Steve O' Dell, Michael DiPirro, Chris Done, Tadayasu Dotani, John Doty, Ken Ebisawa, Megan E. Eckart, Teruaki Enoto, Yuichiro Ezoe, Andrew C. Fabian, Carlo Ferrigno, Adam R. Foster, Ryuichi Fujimoto, Yasushi Fukazawa, Stefan Funk, Akihiro Furuzawa, Massimiliano Galeazzi, Luigi C. Gallo, Poshak Gandhi, Kirk Gilmore, Margherita Giustini, Andrea Goldwurm, Liyi Gu, Matteo Guainazzi, Daniel Haas, Yoshito Haba, Kouichi Hagino, Kenji Hamaguchi, Ilana M. Harrus, Isamu Hatsukade, Takayuki Hayashi, Katsuhiro Hayashi, Kiyoshi Hayashida, Jan Willem Den Herder, Junko S. Hiraga, Kazuyuki Hirose, Ann Hornschemeier, Akio Hoshino, John P. Hughes, Yuto Ichinohe, Ryo Iizuka, Hajime Inoue, Yoshiyuki Inoue, Kazunori Ishibashi, Manabu Ishida, Kumi Ishikawa, Kosei Ishimura, Yoshitaka Ishisaki, Masayuki Itoh, Masachika Iwai, Naoko Iwata, Naoko Iyomoto, Chris Jewell, Jelle Kaastra, Tim Kallman, Tsuneyoshi Kamae, Erin Kara, Jun Kataoka, Satoru Katsuda, Junichiro Katsuta, Madoka Kawaharada, Nobuyuki Kawai, Taro Kawano, Shigeo Kawasaki, Dmitry Khangulyan, Caroline A. Kilbourne, Mark Kimball
    Journal of Astronomical Telescopes, Instruments, and Systems 4(2) 2018年4月  査読有り
    © The Authors. The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
  • Hiroyasu Tajima, Shin Watanabe, Yasushi Fukazawa, Roger Blandford, Teruaki Enoto, Andrea Goldwurm, Kouichi Hagino, Katsuhiro Hayashi, Yuto Ichinohe, Jun Kataoka, Junichiro Katsuta, Takao Kitaguchi, Motohide Kokubun, Philippe Laurent, François Lebrun, Olivier Limousin, Grzegorz M. Madejski, Kazuo Makishima, Tsunefumi Mizuno, Kunishiro Mori, Takeshi Nakamori, Toshio Nakano, Kazuhiro Nakazawa, Hirofumi Noda, Hirokazu Odaka, Masanori Ohno, Masayuki Ohta, Shinya Saito, Goro Sato, Rie Sato, Shinichiro Takeda, Hiromitsu Takahashi, Tadayuki Takahashi, Takaaki Tanaka, Yasuyuki Tanaka, Yukikatsu Terada, Hideki Uchiyama, Yasunobu Uchiyama, Kazutaka Yamaoka, Yoichi Yatsu, Daisuke Yonetoku, Takayuki Yuasa
    Journal of Astronomical Telescopes, Instruments, and Systems 4(2) 2018年4月  査読有り責任著者
    © 2018 BMJ Publishing Group Ltd (unless otherwise stated in the text of the article). All rights reserved. Hitomi (ASTRO-H) was the sixth Japanese X-ray satellite that carried instruments with exquisite energy resolution of <7 eV and broad energy coverage of 0.3 to 600 keV. The Soft Gamma-ray Detector (SGD) was the Hitomi instrument that observed the highest energy band (60 to 600 keV). The SGD design achieves a low background level by combining active shields and Compton cameras where Compton kinematics is utilized to reject backgrounds coming from outside of the field of view. A compact and highly efficient Compton camera is realized using a combination of silicon and cadmium telluride semiconductor sensors with a good energy resolution. Compton kinematics also carries information for gamma-ray polarization, making the SGD an excellent polarimeter. Following several years of development, the satellite was successfully launched on February 17, 2016. After proper functionality of the SGD components were verified, the nominal observation mode was initiated on March 24, 2016. The SGD observed the Crab Nebula for approximately two hours before the spacecraft ceased to function on March 26, 2016. We present concepts of the SGD design followed by detailed description of the instrument and its performance measured on ground and in orbit.
  • Kouichi Hagino, Kazuhiro Nakazawa, Goro Sato, Motohide Kokubun, Teruaki Enoto, Yasushi Fukazawa, Katsuhiro Hayashi, Jun Kataoka, Junichiro Katsuta, Shogo B. Kobayashi, Philippe Laurent, Francois Lebrun, Olivier Limousin, Daniel Maier, Kazuo Makishima, Taketo Mimura, Katsuma Miyake, Tsunefumi Mizuno, Kunishiro Mori, Hiroaki Murakami, Takeshi Nakamori, Toshio Nakano, Hirofumi Noda, Hirokazu Odaka, Masanori Ohno, Masayuki Ohta, Shinya Saito, Rie Sato, Hiroyasu Tajima, Hiromitsu Takahashi, Tadayuki Takahashi, Shin'ichiro Takeda, Takaaki Tanaka, Yukikatsu Terada, Hideki Uchiyama, Yasunobu Uchiyama, Shin Watanabe, Kazutaka Yamaoka, Yoichi Yatsu, Takayuki Yuasa
    Journal of Astronomical Telescopes, Instruments, and Systems 4(2) 2018年4月  
    © The Authors. The Hard X-ray Imager (HXI) onboard Hitomi (ASTRO-H) is an imaging spectrometer covering hard x-ray energies of 5 to 80 keV. Combined with the Hard X-ray Telescope, it enables imaging spectroscopy with an angular resolution of 10.7 half-power diameter, in a field of view of 9' × 9'. The main imager is composed of four layers of Si detectors and one layer of CdTe detector, stacked to cover a wide energy band up to 80 keV, surrounded by an active shield made of Bi4Ge3O12 scintillator to reduce the background. The HXI started observations 12 days before the Hitomi loss and successfully obtained data from G21.5-0.9, Crab, and blank sky. Utilizing these data, we calibrate the detector response and study properties of in-orbit background. The observed Crab spectra agree well with a powerlaw model convolved with the detector response, within 5% accuracy. We find that albedo electrons in specified orbit strongly affect the background of the Si top layer and establish a screening method to reduce it. The background level over the full field of view after all the processing and screening is as low as the preflight requirement of 1 - 3 × 10-4 counts s-1 cm-2 keV-1.
  • Hiroki Yoneda, Chris Done, Frits Paerels, Tadayuki Takahashi1, Shin Watanabe
    Monthly Notices of the Royal Astronomical Society 475(2) 2194-2203 2018年4月  
    © 2017 The Authors. The equation of state for ultradense matter can be tested from observations of the ratio of mass to radius of neutron stars. This could be measured precisely from the redshift of a narrow line produced on the surface. X-rays bursts have been intensively searched for such features, but so far without detection. Here instead we search for redshifted lines in the persistent emission, where the accretion flow dominates over the surface emission. We discuss the requirements for narrow lines to be produced, and show that narrow absorption lines from highly ionized iron can potentially be observable in accreting low-mass X-ray binaries (LMXBs; low B field) that have either low spin or low inclination so that Doppler broadening is small. This selects Serpens X-1 as the only potential candidate persistent LMXB due to its low inclination. Including surface models in the broad-band accretion flow model predicts that the absorption line from He-like iron at 6.7 keV should be redshifted to~5.1-5.7 keV (10-15 km for 1.4M⊙) and have an equivalent width of 0.8-8 eV for surface temperatures of 7-10 × 106 K. We use the high-resolution Chandra grating data to give a firm upper limit of 2-3 eV for an absorption line at ~5 keV. We discuss possible reasons for this lack of detection (the surface temperature and the geometry of the boundary layer etc.). Future instruments with better sensitivity are required in order to explore the existence of such features.
  • Goro Yabu, Miho Katsuragawa, Motonobu Tampo, Koji Hamada, Atsushi Harayama, Yasuhiro Miyake, Sayuri Oshita, Shinya Saito, Goro Sato, Tadayuki Takahashi, Shin’ichiro Takeda, Shin Watanabe
    Proceedings of the 14th International Conference on Muon Spin Rotation, Relaxation and Resonance (μSR2017) 2018年2月28日  

MISC

 221
  • Keigo Okuma, Kazuhiro Nakazawa, Shin'ichiro Takeda, Mii Ando, Yuki Omiya, Manari Oguchi, Atsuya Tanaka, Yuna Tsuji, Shin Watanabe, Tadayuki Takahashi, Masahiko Kobayashi, Naoki Ishida, Takahiro Minami, Mitsunobu Onishi, Toshihiko Arai
    Proceedings of 38th International Cosmic Ray Conference — PoS(ICRC2023) 2023年8月18日  
  • 成影典之, 岡光夫, 松崎恵一, 渡辺伸, 坂尾太郎, 萩野浩一, 三石郁之, 深沢泰司, 水野恒史, 篠原育, 川手朋子, 下条圭美, 高棹真介, 金子岳史, 田辺博士, 上野宗孝, 高橋忠幸, 高島健, 太田方之
    日本天文学会年会講演予稿集 2023 2023年  
  • 小高裕和, 新井翔大, 市橋正裕, 高嶋聡, 丹波翼, 南木宙斗, 馬場彩, 青山一天, 櫻井真由, 清水虎冴, 田中雅士, 谷口日奈子, 中島理幾, 中曽根太地, 寄田浩平, 一戸悠人, KHANGULYAN Dmitry, 井上芳幸, 内田悠介, 須田祐介, 高橋弘充, 深沢泰司, 辻直美, 廣島渚, 八幡和志, 米田浩基, 渡辺伸, ARAMAKI Tsuguo, KARAGIORGI Georgia, MUKHERJEE Reshmi
    日本天文学会年会講演予稿集 2023 2023年  
  • 米田浩基, 新井翔大, 市橋正裕, 小高裕和, 高嶋聡, 丹波翼, 南木宙斗, 馬場彩, 青山一天, 岩澤広大, 櫻井真由, 清水虎冴, 田中雅士, 谷口日奈子, 中島理機, 中曽根太地, 寄田浩平, 一戸悠人, KHANGULYAN Dmitry, 井上芳幸, 内田悠介, 須田祐介, 高橋弘充, 深沢泰司, 辻直美, 廣島渚, 八幡和志, 渡辺伸, ARAMAKI Tsuguo, KARAGIORGI Georgia, MUKHERJEE Reshmi
    日本物理学会講演概要集(CD-ROM) 78(1) 2023年  
  • 中澤知洋, 石田学, 内田裕之, 小高裕和, 幸村孝由, 佐藤寿紀, 澤田真理, 鈴木寛大, 高橋弘充, 田中孝明, 鶴剛, 中嶋大, 野田博文, 萩野浩一, 松本浩典, 村上弘志, 森浩二, 山口弘悦, 米山友景, 渡辺伸
    日本天文学会年会講演予稿集 2023 2023年  

講演・口頭発表等

 93
  • 外山裕一, 東俊行A, 石田勝彦A, 一戸悠人B, 大豆生田創B, 岡田信二, 奥村拓馬C, 桂川美穂D, 河村成肇E, 神田聡太郎, 木野康志F, 小西蓮F, 小湊菜央B, 佐々木喬祐, 佐藤寿紀B, 下村浩一郎, 高橋忠幸D, 竹下聡史E, 武田伸一郎, 竜野秀行C, 反保元伸E, 中島良太F, 名取寛顕E, 野田博文G, 橋本直H, 早川亮大B, 三宅康博E, 山下琢磨F, 山田真也B, 渡辺伸D, D.A. BennettI, W.B. DorieseI, M.S. DurkinI, J.W. FowlerI, J.D. GardI, G.C. HiltonI, K.M. MorganI, G.C. O'NeilI, C.D. ReintsemaI, D.R. SchmidtI, P. StrasserE, D.S. SwetzI, J.N. UllomI
    日本物理学会2024年春季大会 2024年3月18日
  • 小高裕和, 石渡幸太, 井上芳幸, 河村穂登, 白濱健太郎, 高嶋聡, 巽隆太朗, 袴田知宏, 松下友亮, 善本真梨那, 青山一天A, 荒井紳太朗A, 石川皓貴A, 内海和伸A, 清水虎冴A, 田中雅士A, 谷口日奈子A, 中島理幾A, 𡈽方歌乃A, 矢野裕太郎A, 寄田浩平A, 新井翔大B, 市橋正裕B, 岩田季也B, 加藤辰明B, 萩野浩一B, 馬場彩B, 一戸悠人C, 内田悠介D, 大熊佳吾E, 中澤知洋E, Dmitry KhangulyanF, 須田祐介G, 高橋弘充G, 深沢泰司G, 丹波翼H, 渡辺伸H, 白石卓也I, 辻直美I, 廣島渚J, 八幡和志K, 米田浩基L, Tsuguo AramakiM, Georgia KaragiorgiN, Reshmi MukherjeeO, GRAMSコラボレーション
    日本物理学会2024年春季大会 2024年3月18日
  • 寺田幸功A, 志達めぐみB, 塩入匠, 新居田祐基B, 澤田真理C, 小湊隆D, 田代信A, 戸田謙一A, 前島弘則A, 夏苅権A, 高橋弘充E, 信川正順F, 水野恒史E, 宇野伸一郎G, 中澤知洋H, 内山秀樹I, 久保田あやJ, 寺島雄一B, 深沢泰司E, 山内茂雄K, 太田直美K, 北口貴雄L, 勝田哲, 坪井陽子M, 海老沢研A, 内田悠介N, 江口智士O, 林克洋A, 谷本敦P, 米山友景M, 山田智史L, 内田和海A, 吉田鉄生A, 金丸善朗A, 小川翔司A, 星野晶夫A, 渡辺伸A, 飯塚亮A, Holland MattQ, Loewenstein MichaelQ, R, Miller EricS, Yaqoob TahirT, Baluta ChrisQ, Sakamoto NF, Shiraki AK, Nemoto NM, Omiya YH, Suzuki NK, Yoshimoto MT, Okuma KH
    日本物理学会2024年春季大会 2024年3月18日
  • 林克洋A, 田代信A, B, 寺田幸功A, 高橋弘充C, 信川正順D, 水野恒史C, 宇野伸一郎, 中澤知洋F, 内山秀樹G, 久保田あやH, 寺島雄一I, 深澤泰司C, 山内茂雄J, 太田直美J, 北口貴雄K, 勝田哲B, 坪井陽子L, 志達めぐみI, 海老沢研A, 内田悠介M, 江口智士N, 谷本敦O, 米山友景L, 山田智史K, 内田和海A, 吉田鉄生A, 金丸善朗A, 小川翔司A, 星野晶夫A, 渡辺伸A, 飯塚亮A, Matt HollandP, Michael LoewensteinP, Q, Eric MillerR, Tahir YaqoobP, Chris BalutaP, 塩入匠B, 阪本菜月C, 白木天音J, 新居田祐基I, 根本登L, 大宮悠希F, 鈴木那梨J, 善本真梨那S, 大熊佳吾F
    日本物理学会2024年春季大会 2024年3月18日
  • 成影 典之, 三石 郁之, 渡辺 伸, 坂尾 太郎, 高橋 忠幸, 長澤 俊作, Kavli IPMU, 南 喬博, 佐藤 慶暉, 清水 里香, 加島 颯太, 開発機構, 作田 皓基, 安福 千貴, 藤井 隆登, 吉田 有 佑, 馬場 萌花, 須崎 理恵, 草野 完也, 学, ISEE, 金子 岳史, 高棹 真介, Glesener Lindsay, FOXSI-4 チーム
    日本天文学会2024年春季年会 2024年3月13日

共同研究・競争的資金等の研究課題

 16